首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A role for glycosaminoglycans in the development of collagen fibrils   总被引:3,自引:0,他引:3  
Extensive data on the glycosaminoglycan (GAG) composition and the collagen fibril diameter distribution have been collected for a diverse range of connective tissues. It is shown that tissues with the smallest diameter collagen fibrils (mass-average diameter less than 60 nm) have high concentrations of hyaluronic acid and that tissues with the largest diameter collagen fibrils (mass-average diameter approximately 200 nm) have high concentrations of dermatan sulphate. It is suggested that the lateral growth of fibrils beyond a diameter of about 60 nm is inhibited by the presence of an excess of hyaluronic acid but that this inhibitory effect may be removed by an increasing concentration of chondroitin sulphate and/or dermatan sulphate. It is also postulated that high concentrations of chondroitin sulphate will inhibit fibril growth beyond a mass-average diameter of approximately 150 nm. Such an inhibition may in turn be removed by an increasing concentration of dermatan sulphate such that it becomes the dominant GAG present in the tissue.  相似文献   

2.
Rabbit annulus fibrosus and nucleus pulposus were analysed for hydroxyproline, chondroitin sulphate, keratan sulphate and dermatan sulphate. Tissue proteoglycans were stained for electron microscopy with Cupromeronic blue, used in the critical electrolyte concentration mode, with and without prior digestion by chondroitinase AC or ABC, hyaluronidase or keratanase. Collagen bands, a-e were demonstrated with UO2++. A chondroitin sulphate proteoglycan was found orthogonally associated with loosely packed collagen fibrils in annulus fibrosus at the d and e bands. The close metabolic and structural analogies with the dermatan sulphate proteoglycans previously shown to be located at collagen d-e bands in tendon, skin, etc. (Scott and Haigh (1985) Biosci. Rep. 5:71-81), are discussed. Tightly packed annulus collagen fibrils were surrounded by axially oriented proteoglycan filaments, mostly without specific locations.  相似文献   

3.
The effects of three glycosaminoglycans (chondroitin 6-sulfate, dermatan sulfate, and hyaluronate) and a proteoglycan on the kinetics of fibril formation and on the thermal stability of the in vitro assembled collagen fibrils, under physiological conditions of ionic strength and pH, have been examined. The glycosaminoglycans were found to influence the kinetics of collagen precipitation but not the thermal stability of the in vitro assembled fibrils. The proteoglycan was found to influence the kinetics of collagen precipitation and to reduce the thermal stability of the in vitro assembled fibrils. Comparison of the interaction occurring between chondroitin 6-sulfate and collagen under acidic conditions (0.05M acetic acid) and that occurring under physiological conditions showed that markedly different interaction products were formed under the different conditions.  相似文献   

4.
1. The effects of acid mucopolysaccharides and acid mucopolysaccharide-proteins on the size and rate of formation of fibril aggregates from collagen solutions in pH7.6 buffers were studied by turbidimetric and light-scattering methods. 2. Serum albumin, orosomucoid, methylated cellulose, chondroitin sulphate A and chondroitin sulphate C of molecular weight less than 20000, and hyaluronate of molecular weight less than 40000 did not influence rates of fibril formation. Chondroitin sulphate A, chondroitin sulphate C and hyaluronate of high molecular weight retarded the rate of fibril formation. This effect of high-molecular-weight chondroitin sulphate C decreased with increasing ionic strength. Heparin, though of low molecular weight (13000), was highly effective, as was also heparitin sulphate. The chondroitin sulphate-proteins of very high molecular weight were highly effective, despite the fact that for some preparations the component chondroitin sulphate chains had molecular weights much less than 20000. 3. Agents that had delayed fibril formation were also effective in producing an increase in degree of aggregation of fibrillar collagen, as indicated by dissymmetry changes observed in light-scattering experiments at low collagen concentrations. Methylated cellulose and heparin at 2.5mug./ml. were unusual in decreasing aggregation, but heparin at 0.25mug./ml. increased aggregation. Electron microscopy of gels showed fibrils and fibril aggregates with ;normal' collagen spacing and dimensions consistent with the light-scattering results. 4. The rates of electrical transport of agents and of solvent (electro-osmosis) through collagen gels indicated a contribution of molecular entanglement that increased with increase in molecular size of the agents. Electrostatic binding of heparin to collagen was noted. Binding to collagen during fibril formation was also found for heparitin sulphate and a chondroitin sulphate with extra sulphate groups. 5. Electrostatic binding of acid mucopolysaccharide-proteins to collagen may be an important factor in the organization and functioning of connective tissues at all stages of growth and development. Excluded-volume (molecular-entanglement) effects may also be important. These factors operate simultaneously and interact mutually so that precise assessment of their relative importance is difficult.  相似文献   

5.
Confluent cultures of mouse aortic endothelial (END-D) were incubated with either [35S]methionine or 35SO4 2-, and the radiolabelled proteoglycans in media and cell layers were analysed for their hyaluronate-binding activity. The proteoglycan subfraction which bound to hyaluronate accounted for about 18% (media) and 10% (cell layers) of the total 35S radioactivity of each proteoglycan fraction. The bound proteoglycan molecules could be dissociated from the aggregates either by digestion with hyaluronate lyase or by treatment with hyaluronate decasaccharides. Digestion of [methionine-35S]proteoglycans with chondroitinase and/or heparitinase, followed by SDS/polyacrylamide-gel electrophoresis, indicated that the medium and cell layer contain at least three chondroitin sulphate proteoglycans, one dermatan sulphate proteoglycan, and two heparan sulphate proteoglycans which differ from one another in the size of core molecules. Among these, only the hydrodynamically large chondroitin sulphate species with an Mr 550,000 core molecule was shown to bind to hyaluronate. A very similar chondroitin sulphate proteoglycan capable of binding to hyaluronate was also found in cultures of calf pulmonary arterial endothelial cells (A.T.C.C. CCL 209). These observations, together with the known effects of hyaluronate on various cellular activities, suggest the existence of possible specialized functions of this proteoglycan subspecies in cellular processes characteristic of vascular development and diseases.  相似文献   

6.
1. Corneas of mouse, rat, guinea pig, rabbit, sheep, cat, dog, pig and cow were quantitatively analysed for water, hydroxyproline, nucleic acid, total sulphated polyanion, chondroitin sulphate/dermatan sulphate and keratan sulphate, several samples or pools of tissue from each species being used. Ferret cornea was similarly analysed for water and hydroxyproline on one pool of eight corneas. Pooled frog (38) and ferret (eight) corneas and a single sample of human cornea were qualitatively examined for keratan sulphate and chondroitin sulphate/dermatan sulphate by electrophoresis on cellulose acetate membranes. Nine species (mouse, frog, rat, guinea pig, rabbit, sheep, cat, pig and cow) were examined by light microscopy and six (mouse, frog, rat, guinea pig, rabbit and cow) by electron microscopy, with the use of Alcian Blue or Cupromeronic Blue in critical-electrolyte-concentration (CEC) methods to stain proteoglycans. 2. Water (% of wet weight), hydroxyproline (mg/g dry wt.) and chondroitin sulphate (mg/g of hydroxyproline) contents were approximately constant across the species, except for mouse. 3. Keratan sulphate contents (mg/g of hydroxyproline) increased with corneal thickness, whereas dermatan sulphate contents decreased. The oversulphated domain of keratan sulphate was absent from mouse and frog corneas, increasing as percentage of total keratan sulphate with increasing corneal thickness. Sulphation of dermatan sulphate was essentially complete (i.e. one sulphate group per disaccharide unit). 4. Chondroitin sulphate/dermatan sulphate proteoglycans were present at the d bands of the collagen fibrils of all species examined, orthogonally arrayed, with high frequency, and occasionally at the e bands. Keratan sulphate proteoglycans were present at the a and c bands of all species examined, but with far higher frequency in the thicker corneas, where keratan sulphate contents were high. 5. Alcian Blue CEC staining showed much higher sulphation of keratan sulphate in thick corneas, e.g. that of cow, than in thin corneas, e.g. that of mouse, in keeping with biochemical analyses. 6. It is suggested that the constancy of interfibrillar volumes is regulated via the swelling and osmotic pressure of the interfibrillar polyanions, by adjustment of the extent of sulphation in two independent proteoglycan populations, to achieve an 'average sulphation' of the total polyanion similar to that of fully sulphated chondroitin sulphate/dermatan sulphate. 7. The balance of synthesis of the two kinds of proteoglycans may be determined by the O2 supply to the avascular cornea. O2 supply may also determine the conversion of chondroitin sulphate into dermatan sulphate.  相似文献   

7.
Dermatan sulphate proteoglycans were purified from juvenile human articular cartilage, with a yield of about 2 mg/g wet wt. of cartilage. Both dermatan sulphate proteoglycan I (DS-PGI) and dermatan sulphate proteoglycan II (DS-PGII) were identified and the former was present in greater abundance. The two proteoglycans could not be resolved by agarose/polyacrylamide-gel electrophoresis, but could be resolved by SDS/polyacrylamide-gel electrophoresis, which indicated average Mr values of 200,000 and 98,000 for DS-PGI and DS-PGII respectively. After digestion with chondroitin ABC lyase the Mr values of the core proteins were 44,000 for DS-PGI and 43,000 and 47,000 for DS-PGII, with the smaller core protein being predominant in DS-PGII. Sequence analysis of the N-terminal 20 amino acid residues reveals the presence of a single site for the potential substitution of dermatan sulphate at residue 4 of DS-PGII and two such sites at residues 5 and 10 for DS-PGI.  相似文献   

8.
Proteoglycans (PGs) in bovine corneal stroma were stained with Cupromeronic Blue in 'critical-electrolyte-concentration' (CEC) methods for electron microscopy, and were located vis-à-vis collagen fibril a-e banding patterns. Keratanase and chondroitin ABC lyase digestion showed that a + c-band- and d + e-band-associated PGs were keratan sulphate-rich and chondroitin (dermatan) sulphate-rich respectively. The CEC pattern proved that the keratan sulphate PGs at the a and c bands differed. Comparison of their CECs with their behaviour on anion-exchange chromatography confirmed previous (indirect) attempts at identification [Scott & Haigh (1985) Biosci. Rep. 5, 765-774]. Similar arguments were applied to the dermatan sulphate PGs at the d and e bands. These results strongly support the one-PG-one-binding-site hypothesis [e.g. Scott (1988) Biochem. J. 252, 313-323]. Remarkable inter-species variations in the keratan sulphate PG patterns contrast with the relatively constant picture of dermatan sulphate PG-collagen fibril interactions.  相似文献   

9.
Interaction between cartilage proteoglycan and the collagen(s) composed of 1 alpha, 2 alpha, and 3 alpha chains was studied in vitro. Most of the collagen was insoluble under the conditions of assay (0.15 M NaCl, 0.008 M phosphate buffer, pH 7.4; 4 degrees C) and was in the form of fibrils 20 nm in diameter or thinner. The larger fibrils had 60-70 nm periodicity, characteristic of native collagens. Proteoglycan monomers which had been labeled by incubating cartilage slices in vitro with Na2 35SO4 were used to assay the interaction. The insoluble collagen fraction bound proteoglycan from solution. At proteoglycan:collagen ratios lower than 1:2, binding was rapid and linear, and the dissociation constant was 1.7 X 10(-9) M. At higher proteoglycan:collagen ratios, more proteoglycan was bound, but at a slower rate. Binding of proteoglycan to collagen did not require fibrils, since soluble 1 alpha, 2 alpha, and 3 alpha containing collagen also bound to proteoglycan and formed an insoluble complex. Denatured collagens did not bind proteoglycan or compete for binding with normal collagen. Optimum binding occurred with intact proteoglycan, but proteoglycan which had been treated with protease was also bound at low levels. Both protease-treated proteoglycan and free chondroitin sulfate competed with intact proteoglycan in the binding assays, but neither chondroitinase ABC-treated proteoglycan nor the oligosaccharides produced by digestion of chondroitin sulfate with testicular hyaluronidase altered the binding of proteoglycan to collagen. Hyaluronic acid did not compete with radioactive proteoglycan, but heparin and dextran sulfate were extremely effective inhibitors of binding. These data suggest a relatively nonspecific interaction between sulfated polyanions and 1 alpha, 2 alpha, and 3 alpha containing collagens. However, given the location of these collagens near the chondrocyte surface, the interaction of fibrillar 1 alpha, 2 alpha, 3 alpha collagen with proteoglycan is likely to occur and to be of biological importance.  相似文献   

10.
Summary The initial migration of neural crest (NC) cells into cell-free space was studied by transmission electron microscopy at trunk levels of fowl embryos, some of which were fixed in the presence of ruthenium red. Migrating NC cells occurred in zones which contained fewer ruthenium-red stained 15–40 nm diameter granules than other regions. The ruthenium-red stained granules were linked by similarly stained thin ( 3 nm diameter) microfibrils. The granules resemble proteoglycan and the microfibrils may be hyaluronate. NC cells contacted thicker ( 10 nm diameter) fibrils and interstitial bodies, which did not require ruthenium red for visualization. Cytoplasmic microfilaments were sometimes aligned at the point of contact with the extracellular fibrils, which may be fibronectin and collagen.Phase-contrast time-lapse videotaping and scanning electron microscopy showed that NC cells of the fowl embryo in vitro migrated earlier and more extensively on glass coated with fibronectin-rich fibrous material and adsorbed fibronectin molecules than on glass coated with collagen type I (fibres and adsorbed molecules). NC cells became completely enmeshed in fibronectin-rich fibres, but generally remained on the surface of collagen-fibre gels. When given a choice, NC cells strongly preferred fibronectin coatings to plain glass, and plain glass to dried collagen gels. NC cells showed a slight preference for plain glass over glass to which collagen was adsorbed. Addition to the culture medium of hyaluronate (initial conc. 20 mg/ml), chondroitin (5 mg/ml) and fully sulphated chondroitin sulphate and dermatan sulphate (up to 10 mg/ml) did not drastically alter NC cell migration on fibronectin-rich fibrous substrates. However, partially desulphated chondroitin sulphate (5mg/ml) strongly retarded the migration of NC cells.The in vivo and in vitro studies suggest that fibronectin may dictate the pathways of NC cell migration by acting as a highly preferred physical substrate. However, the utilization of these pathways may be reduced by the presence of proteoglycans bearing undersulphated chondroitin sulphate.Abbreviations NC neural crest - ECM extracellular material - GAG glycosaminoglycan - FN fibronectin - CIG cold insoluble globulin - TEM transmission electron microscopy - SEM scanning electron microscopy - DMEM-H HEPES buffered Dulbecco's modified Eagle's medium - FCS foetal calf serum - CEE chick embryo extract - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - PBS phosphate-buffered saline  相似文献   

11.
Non-pregnant and pregnant rats of known gestational age were killed at intervals and their uterine cervices were excised and digested with papain. Glycosaminoglycans thus extracted were separated by cellulose acetate electrophoresis and stained with Alcian Blue. Glycosaminoglycans were identified by comparison with standards and by serial degradation with chondroitin ABC lyase, butyl nitrite and leech hyaluronidase. Dermatan sulphate, hyaluronic acid and heparan sulphate were identified and quantitative determined by densitometry. The overall concentration of glycosaminoglycans changed little during pregnancy. A 3-fold total increase in uronic acid paralleled the increase in cervical weight. Hyaluronate content, however, increased 17-fold, and rose from 6% of total glycosaminoglycans in the non-pregnant state to 33% at term. Furthermore, the ratio of hyaluronate to hydroxyproline increased 10-fold. These changes are consistent with an accumulation of hyaluronate in the interstices between collagen fibres, resulting in the softening of this tissue that is seen in late pregnancy.  相似文献   

12.
Current wisdom on intermolecular interactions in the extracellular matrix assumes that small proteoglycans bind collagen fibrils on highly specific sites via their protein core, while their carbohydrate chains interact with each other in the interfibrillar space. The present study used high-resolution scanning electron microscopy to analyse the interaction of two small leucine-rich proteoglycans and several glycosaminoglycan chains with type I collagen fibrils obtained in vitro in a controlled, cell-free environment. Our results show that most ligands directly influence the collagen fibril size and shape, and their aggregation into thicker bundles. All chondroitin sulphate/dermatan sulphate glycosaminoglycans we tested, except chondroitin 4-sulphate, bound to the fibril surface in a highly specific way and, even in the absence of any protein core, formed regular, periodic interfibrillar links resembling those of the intact proteoglycan. Only intact decorin, however, was able to organize collagen fibrils into fibres compact enough to mimic in vitro the superfibrillar organization of natural tissues. Our data indicate that multiple interaction patterns may exist in vivo, may explain why decorin- or biglycan-knockout organisms show milder effects than can be expected, and may lead to the development of better, simpler engineered biomaterials.  相似文献   

13.
Ordered conformations from the sodium salts of chondroitin 4-sulphate, dermatan sulphate and heparan sulphate were observed by X-ray diffraction. Chondroitin 4-sulphate shows similar threefold helical character to that previously reported for chondroitin 6-sulphate and hyaluronates. Dermatan sulphate forms an eightfold helix with an axial rise per disaccharide of 0.93nm, which favours the l-iduronic acid moiety in the normal C1 chair form. The layer-line spacing and axial projection in heparan sulphate of 1.86nm favours a tetrasaccharide repeat with glycosidic linkages alternating beta-d-(1-->4) and alpha-d-(1-->4).  相似文献   

14.
Corneal transparency is dependent upon the development of an organized extracellular matrix containing small diameter collagen fibrils with regular spacing, organized as orthogonal lamellae. Proteoglycan-collagen interactions have been implicated in the regulation of collagen fibrillogenesis and matrix assembly. To determine the role of dermatan sulfate proteoglycan in the development and organization of the secondary corneal stroma, its synthesis was disrupted using beta-D xyloside. The secondary corneal stroma contains two different proteoglycans, dermatan sulfate and keratan sulfate proteoglycan. beta-D xyloside interferes with xylose-mediated O-linked proteoglycan synthesis, and thus disrupts dermatan sulfate proteoglycan synthesis. Corneal keratan sulfate proteoglycan, a mannose-mediated N-linked proteoglycan, should not be altered. Biochemical analysis of corneas treated both in vitro and in ovo revealed a reduced synthesis of normally glycosylated dermatan sulfate proteoglycans and an increased synthesis of free xyloside-dermatan sulfate glycosaminoglycans. Keratan sulfate proteoglycan synthesis was unaltered in both cases. Corneal stromas were studied using histochemistry and electron microscopy after in ovo treatment with beta-D xyloside. The observed biochemical alterations in dermatan sulfate proteoglycans translated into disruptions in the organization of beta-D xyloside-treated stromas. There was a reduction in the histochemical staining of proteoglycans, but no alteration in collagen fibril diameter. In addition, focal alterations in collagen fibril packing, and a disruption of lamellar organization were observed in beta-D xyloside-treated corneas. These data suggest that dermatan sulfate proteoglycans are not involved in the regulation of corneal collagen fibril diameter, but are important in the fibril-fibril spacing as well as in lamellar organization, and cohesiveness.  相似文献   

15.
Electron histochemical investigations of mammalian and echinoderm tissues, using cupromeronic blue to stain proteoglycans (PGs) specifically in critical electrolyte concentration methods, showed that collagen fibrils are associated with keratan sulphate and chondroitin (dermatan) sulphate ('tadpole') PGs at the a, c, d and e bands on the fibril surface, giving rise to the 'one proteoglycan: one binding site' hypothesis. Intra-fibrillar PGs have been observed, distributed in a regular way which suggests that collagen fibrils are aggregates of 'protofibrils', some of which carry PGs at their surfaces. A scheme for remodelling of collagen fibrils, based on recycling of these protofibrils, is outlined. The choice of which tadpole PG to use to carry out a given function is decided to a considerable extent by the availability of oxygen to the relevant tissue element.  相似文献   

16.
The interaction between a small dermatan sulphate proteoglycan isolated from human uterine cervix and collagen type I from human and rat skin was investigated by collagen-fibrillogenesis experiments. Collagen fibrillogenesis was initiated by elevation of temperature and pH after addition of proteoglycan, chondroitinase-digested proteoglycan or isolated side chains, and monitored by turbidimetry. Collagen-associated and unbound proteoglycan was determined by enzyme-linked immunosorbent assay after aggregation was complete. (1) The binding of proteoglycan to collagen could be explained by the presence of two mutually non-interacting binding sites, with Ka1 = 1.3 x 10(8) M-1 and Ka2 = 1.3 x 10(6) M-1. The number of binding sites per tropocollagen molecule was n1 = 0.11 and n2 = 1.1. The 0.1 high-affinity binding site per tropocollagen molecule indicates that the strong interaction between proteoglycan and collagen results from a concerted action of tropocollagen molecules in fibrils. Digestion of the proteoglycan with chondroitinase ABC did not affect these binding characteristics. (2) Proteoglycan did not affect the rate of fibrillogenesis, but increased the steady-state A400 by up to 90%. This increase was directly proportional to the saturation of the high-affinity type of binding sites. Neither isolated core protein nor isolated side chains induced a similar high increase in steady-state A400. (3) Electron micrographs showed that the fibril diameter was affected only to a minor extent, if at all, by the proteoglycan, whereas bundles of laterally aligned fibrils were common in the presence of proteoglycan. (4) Results obtained with human and rat collagen were similar.  相似文献   

17.
Human skin fibroblasts were metabolically labelled in the presence of affinity-purified antibodies against the core protein of small dermatan sulphate proteoglycan II. The treatment resulted in a dose- and time-dependent accumulation of this proteoglycan in the culture medium, with a 2-3-fold increase found within an experimental period of 4 h. The presence of antibodies was without influence on the rate of biosynthesis of the proteoglycan. However, proteoglycan-antibody complexes were inefficiently endocytosed. Addition of unlabelled proteoglycan, which served as a competitor for uptake, similarly led to an accumulation of newly formed [35S]sulphate-labelled proteoglycans. Proteoglycan accumulation also occurred as a consequence of its binding to collagen fibrils which were physically separated from the cell layer. Together, these results establish the quantitative importance of the secretion-recapture pathway of small dermatan sulphate proteoglycan II in cultured fibroblasts.  相似文献   

18.
Cultured arterial smooth muscle cells synthesize and secrete two types of sulfated proteoglycans designated as proteoglycan A and proteoglycan B. Proteoglycan A has been characterized as chondroitin sulfate-rich, whereas proteoglycan B was found to be dermatan sulfate-rich [Schmidt, A. & Buddecke, E. (1985) Eur. J. Biochem. 153, 260-273]. During the logarithmic growth phase, arterial smooth muscle cells incorporated about 3 times more [35S]sulfate into the total proteoglycans secreted into the culture medium than did non-dividing cells. When arterial smooth muscle cells stopped proliferating the ratio of [35S]proteoglycan A/B increased. No differences were detected in the respective molecular and chemical characteristics of purified proteoglycans A and B isolated from both proliferating and non-dividing cells. Regardless of the growth phase proteoglycan A had a molecular mass of about 280 kDa and contained 8-9 chondroitin sulfate-rich side chains. Proteoglycan B had a molecular mass of about 180 kDa and contained 6-7 dermatan sulfate-rich side chains. The [35S]methionine-labelled protein cores of proteoglycan A and B had a molecular mass of about 48 kDa, but were distinguishable by their specific reactions to monospecific antibodies. Proliferating cells endocytosed proteoglycan B at a rate up to 100% higher than that of non-dividing cells. In all growth phases proteoglycan A was endocytosed at a 10-fold lower rate than proteoglycan B.  相似文献   

19.
Dermatan sulphate proteoglycans have been extracted from bovine lung with 2.0 M CaCl2 and isolated using CsCl density gradient centrifugation, DEAE ion-exchange chromatography, gel chromatography and preparative sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Ultrastructurally these proteoglycans are specifically associated with collagen fibrils. Dermatan sulphate (Mr 15.10(3)-35.10(3), with a strong prevalence for the higher Mr) is link via an O-glycosidic bond to a protein core, which is rich in Asx, Glx and Leu. Of the total uronic acid, 91% is iduronic acid. A part of the glucuronic acid residues is located near the protein core and a large cluster of disaccharides is devoid of glucuronic acid residues. An inhibition enzyme immunoassay has been developed to quantitate the proteoglycan. A model for the interaction between dermatan sulphate proteoglycans and collagen fibrils is proposed.  相似文献   

20.
Proteoglycan monomers from pig laryngeal cartilage were examined by electron microscopy with benzyldimethylalkylammonium chloride as the spreading agent. The proteoglycans appeared as extended molecules with a beaded structure, representing the chondroitin sulphate chains collapsed around the protein core. Often a fine filamentous tail was present at one end. Substructures within proteoglycan molecules were localized by incubation with specific antibodies followed by Protein A-gold (diameter 4 nm). After the use of an anti-(binding region) serum the Protein A-gold (typically one to three particles) bound at the extreme end of the filamentous region. A small proportion of the labelled molecules (10-15%) showed the presence of gold particles at both ends. A monoclonal antibody specific for a keratan sulphate epitope (MZ15) localized a keratan sulphate-rich region at one end of the proteoglycan, but gold particles were not observed along the extended part of the protein core. This distribution was not changed by prior chondroitin AC lyase digestion of the proteoglycan. Localization with a different monoclonal antibody to keratan sulphate (5-D-4) caused a change in the spreading behaviour of a proportion (approx. 20%) of the proteoglycan monomers that lost their beaded structure and appeared with the chondroitin sulphate chains projecting from the protein core. In these molecules the Protein A-gold localized antibody (5-D-4) along the length of the protein core whereas in those molecules with a beaded appearance it labelled only at one end. Labelling with either of the monoclonal antibodies was specific, as it was inhibited by exogenously added keratan sulphate. The differential localization achieved may reflect structural differences within the proteoglycan population involving keratan sulphate and the protein core to which it is attached. The results showed that by this technique substructures within proteoglycan molecules can be identified by Protein A-gold labelling after the use of specific monoclonal or polyclonal antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号