首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-ray crystal structure of uncomplexed Escherichia coli RecA protein has been determined in three new crystal forms at resolutions of 1.9 A, 2.0 A, and 2.6 A. The RecA protein used for this study contains the extra residues Gly-Ser-His-Met at the N terminus, but retains normal ssDNA-dependent ATPase and coprotease activities. In all three crystals, RecA is packed in a right-handed helical filament with a pitch of approximately 74 A. These RecA filaments are compressed relative to the original crystal structure of RecA, which has a helical pitch of 82.7 A. In the structures of the compressed RecA filament, the monomer-monomer interface and the core domain are essentially the same as in the RecA structure with the 83 A pitch. The change in helical pitch is accommodated by a small movement of the N-terminal domain, which is reoriented to preserve the contacts it makes at the monomer-monomer interface. The new crystal structures show significant variation in the orientation and conformation of the C-terminal domain, as well as in the inter-filament packing interactions. In crystal form 2, a calcium ion is bound closely to a beta-hairpin of the C-terminal domain and to Asp38 of a neighboring filament, and residues 329-331 of the C-terminal tail become ordered to contact a neighboring filament. In crystal forms 3 and 4, a sulfate ion or a phosphate anion is bound to the same site on RecA as the beta-phosphate group of ADP, causing an opening of the P-loop. Altogether, the structures show the conformational variability of RecA protein in the crystalline state, providing insight into many aspects of RecA function.  相似文献   

2.
RecA protein of Escherichia coli and chromosome partitioning   总被引:5,自引:0,他引:5  
Escherichia coli cells deficient in RecA protein frequently contain an abnormal number of chromosomes after completion of ongoing rounds of DNA replication. This suggests that RecA protein may be required for correct timing of initiation of DNA replication; however, we show here that initiation of DNA replication is properly timed in recA mutants. We also find that more than 10% of recA mutant cells contain no DNA. These anucleate cells appear to arise from partitioning of all the DNA into one daughter cell and no DNA into the other daughter cell. Based on these and previously published results, we propose that RecA protein is required for equal partitioning of chromosomes into the two daughter cells.  相似文献   

3.
A strain of Escherichia coli with a mutation in the promoter proximal gene ( uncI ) of the unc operon has been constructed by using a new gene replacement method. The mutation is a deletion of a defined sequence of 196 base pairs. It was constructed by homologous integration and segregation of a ColE1-derived recombinant plasmid containing the mutation, in a temperature-sensitive polA strain. The mutant strain is phenotypically unc+ but has a reduced growth yield compared to a normal sibling strain.  相似文献   

4.
RecA protein catalyses an ATP-dependent DNA strand-exchange reaction that is the central step in the repair of dsDNA breaks by homologous recombination. Although much is known about the structure of RecA protein itself, we do not at present have a detailed picture of how RecA binds to ssDNA and dsDNA substrates, and how these interactions are controlled by the binding and hydrolysis of the ATP cofactor. Recent studies from electron microscopy and X-ray crystallography have revealed important ATP-mediated conformational changes that occur within the protein, providing new insights into how RecA catalyses DNA strand-exchange. A unifying theme is emerging for RecA and related ATPase enzymes in which the binding of ATP at a subunit interface results in large conformational changes that are coupled to interactions with the substrates in such a way as to promote the desired reactions.  相似文献   

5.
Enzymatic activities of the RecA protein of Escherichia coli   总被引:1,自引:0,他引:1  
G M Weinstock 《Biochimie》1982,64(8-9):611-616
  相似文献   

6.
To verify the extent of contribution of spontaneous DNA lesions to spontaneous mutagenesis, we have developed a new genetic system to examine simultaneously both forward mutations and recombination events occurring within about 600 base pairs of a transgenic rpsL target sequence located on Escherichia coli chromosome. In a wild-type strain, the recombination events were occurring at a frequency comparable to that of point mutations within the rpsL sequence. When the cells were UV-irradiated, the recombination events were induced much more sharply than point mutations. In a recA null mutant, no recombination event was observed. These data suggest that the blockage of DNA replication, probably caused by spontaneous DNA lesions, occurs often in normally growing E. coli cells and is mainly processed by cellular functions requiring the RecA protein. However, the recA mutant strain showed elevated frequencies of single-base frameshifts and large deletions, implying a novel mutator action of this strain. A similar mutator action of the recA mutant was also observed with a plasmid-based rpsL mutation assay. Therefore, if the recombinogenic problems in DNA replication are not properly processed by the RecA function, these would be a potential source for mutagenesis leading to single-base frameshift and large deletion in E. coli. Furthermore, the single-base frameshifts induced in the recA-deficient cells appeared to be efficiently suppressed by the mutS-dependent mismatch repair system. Thus, it seems likely that the single-base frameshifts are derived from slippage errors that are not directly caused by DNA lesions but made indirectly during some kind of error-prone DNA synthesis in the recA mutant cells.  相似文献   

7.
Escherichia coli dinD is an SOS gene up-regulated in response to DNA damage. We find that the purified DinD protein is a novel inhibitor of RecA-mediated DNA strand exchange activities. Most modulators of RecA protein activity act by controlling the amount of RecA protein bound to single-stranded DNA by affecting either the loading of RecA protein onto DNA or the disassembly of RecA nucleoprotein filaments bound to single-stranded DNA. The DinD protein, however, acts postsynaptically to inhibit RecA during an on-going DNA strand exchange, likely through the disassembly of RecA filaments. DinD protein does not affect RecA single-stranded DNA filaments but efficiently disassembles RecA when bound to two or more DNA strands, effectively halting RecA-mediated branch migration. By utilizing a nonspecific duplex DNA-binding protein, YebG, we show that the DinD effect is not simply due to duplex DNA sequestration. We present a model suggesting that the negative effects of DinD protein are targeted to a specific conformational state of the RecA protein and discuss the potential role of DinD protein in the regulation of recombinational DNA repair.  相似文献   

8.
Summary We further characterize a novel plasmid function preventing SOS induction called Psi (Plasmid SOS Inhibition). We show that Psi function is expressed by psiB, a gene located at coordinate 54.9 of plasmid R6-5 and near oriT, the origin of conjugal transfer. Deletions and amber mutations of the psiB gene permitted us to demonstrate that PsiB polypeptide (apparent molecular weight, 12 kDa) is responsible for Psi function. PsiB protein prevents recA730-promoted mutagenesis and intra-chromosomal recombination but not recombination following conjugation. Overproduction of PsiB protein sensitizes the host cell to UV irradiation. We propose that PsiB polypeptide has an anti-SOS action by inhibiting activation of RecA protein, thus preventing the occurrence of LexA-controlled functions.  相似文献   

9.
RecA is important in recombination, DNA repair and repair of replication forks. It functions through the production of a protein-DNA filament. To study the localization of RecA in live Escherichia coli cells, the RecA protein was fused to the green fluorescence protein (GFP). Strains with this gene have recombination/DNA repair activities three- to tenfold below wild type (or about 1000-fold above that of a recA null mutant). RecA-GFP cells have a background of green fluorescence punctuated with up to five foci per cell. Two types of foci have been defined: 4,6-diamidino-2-phenylindole (DAPI)-sensitive foci that are bound to DNA and DAPI-insensitive foci that are DNA-less aggregates/storage structures. In log phase cells, foci were not localized to any particular region. After UV irradiation, the number of foci increased and they localized to the cell centre. This suggested colocalization with the DNA replication factory. recA, recB and recF strains showed phenotypes and distributions of foci consistent with the predicted effects of these mutations.  相似文献   

10.
11.
The RecA protein of Escherichia coli plays important roles in homologous recombination, recombinational DNA repair, and SOS induction. Because its functions are conserved among the phylogenetic kingdoms, RecA investigations have provided a paradigm for understanding these biological processes. The RecA protein has been overproduced in E. coli and purified using a variety of purification schemes requiring multiple, time-intensive steps. The purification schemes share a dependence on appropriate RecA structure and/or function at one or more steps. In this report, we used a modified protein splicing element (intein) and a chitin-binding domain, fused to the C-terminus of RecA, to facilitate a one-step affinity purification of RecA protein without modification of the native protein sequence. Following the single chromatographic step, RecA protein that is greater than 95% physical purity at a concentration of greater than microM was obtained. The protein displays in vitro activities that are identical to those of protein isolated using classical procedures. The purification strategy described here promises to yield mutant RecA proteins in sufficient quantity for rigorous biophysical characterization without dependence on intrinsic RecA function.  相似文献   

12.

Background  

Minicircle DNA is the non-replicating product of intramolecular site-specific recombination within a bacterial minicircle producer plasmid. Minicircle DNA can be engineered to contain predominantly human sequences which have a low content of CpG dinucleotides and thus reduced immunotoxicity for humans, whilst the immunogenic bacterial origin and antibiotic resistance marker gene sequences are entirely removed by site-specific recombination. This property makes minicircle DNA an excellent vector for non-viral gene therapy. Large-scale production of minicircle DNA requires a bacterial strain expressing tightly controlled site-specific recombinase, such as Cre recombinase. As recombinant plasmids tend to be more stable in RecA-deficient strains, we aimed to construct a recA - bacterial strain for generation of minicircle vector DNA with less chance of unwanted deletions.  相似文献   

13.
Escherichia coli RecG and RecA proteins in R-loop formation.   总被引:10,自引:2,他引:10       下载免费PDF全文
X Hong  G W Cadwell    T Kogoma 《The EMBO journal》1995,14(10):2385-2392
  相似文献   

14.
The antitumor drug cisplatin causes intrastrand cross-linking of adjacent guanine residues that severely distorts the DNA backbone. These DNA adducts impede the progress of the replisome and may result in replication fork arrest. In Escherichia coli, the response to cisplatin involves the action of the prototypic recombinase RecA. Here we show that RecA can utilize, albeit at reduced levels, oligonucleotides that bear site-specific cisplatin-induced 1,2 d(GpG) intrastrand cross-links in strand invasion reactions. Binding of RecA to cisplatin-damaged oligonucleotides was not affected, indicating that the impediment was in the pairing step. The cognate E. coli single-strand DNA-binding protein specifically stimulated strand invasion particularly with cisplatin-damaged DNA. These results indicate that RecA is capable of processing the major cisplatin-induced lesion via a recombination mechanism.  相似文献   

15.
S C Kowalczykowski 《Biochimie》1991,73(2-3):289-304
The recA protein of E coli participates in several diverse biological processes and promotes a variety of complex in vitro reactions. A careful comparison of the phenotypic behavior of E coli recA mutations to the biochemical properties of the corresponding mutant proteins reveals a close parallel both between recombination phenotype and DNA strand exchange and renaturation activities, and between inducible phenomena and repressor cleavage activity. The biochemical alterations manifest by the mutant recA proteins are reflected in the strength of their interaction with ssDNA. The defective mutant recA proteins fail to properly assume the high-affinity DNA-binding state that is characteristic of the wild-type protein and, consequently, form less stable complexes with DNA. The mutant proteins displaying an 'enhanced' activity bind ssDNA with approximately the same affinity as the wild-type protein but, due to altered protein-protein interactions, they associate more rapidly with ssDNA. These changes proportionately affect the ability of recA protein to compete with SSB protein, to interact with dsDNA, and, perhaps, to bind repressor proteins. In turn, the DNA strand exchange, DNA renaturation, and repressor cleavage activities mirror these modifications.  相似文献   

16.
17.
Salmelin C  Vilpo J 《Mutation research》2002,500(1-2):125-134
Chlorambucil (CLB; N,N-bis(2-chloroethyl)-p-aminophenylbutyric acid) is a bifunctional alkylating agent widely used as an anticancer drug and also as an immunosuppressant. Its chemical structure and clinical experience indicate that CLB is mutagenic and carcinogenic. We have investigated the ability of CLB to induce mutations and gene expression changes in the wild-type (WT) Escherichia coli strain AB1157 and in the base excision repair-deficient (alkA1, tag-1) E. coli strain MV1932 using a rifampicin (rif) forward mutation system and a cDNA array method. The results showed that CLB is a potent mutagen in MV1932 cells compared with the E. coli WT strain AB1157, emphasizing the role of 3-methyladenine DNA glycosylases I and II in protecting the cells from CLB-induced DNA damage and subsequent mutations. Global gene expression profiling revealed that nine genes in WT E. coli and 100 genes in MV1932, of a total of 4290 genes, responded at least 2.5-fold to CLB. Interestingly, all of these MV1932 genes were downregulated, while 22% were upregulated in WT cells. The downregulated genes in MV1932 represented most (19/23) functional categories, and unexpectedly, many of them code for proteins responsible for genomic integrity. These include: (i) RecF (SOS-response, adaptive mutation), (ii) RecC (resistance to cross-linking agents), (iii) HepA (DNA repair, a possible substitute of RecBCD), (iv) Ssb (DNA recombination repair, controls RecBCD), and (v) SbcC (genetic recombination). Our results strongly suggest that in addition to the DNA damage itself, the downregulation of central protecting genes is responsible for the decreased cell survival (demonstrated in a previous work) and the increased mutation rate (this work) of DNA repair-deficient cells, when exposed to CLB.  相似文献   

18.
Suppressors of a UGG missense mutation in Escherichia coli   总被引:6,自引:1,他引:5       下载免费PDF全文
As part of our investigation of tRNA structure-function relationships, we isolated and preliminarily characterized translational suppressors of the tryptophan codon UGG in a trpA missense mutant of Escherichia coli. the parent strain also contained two other mutant alleles relevant to the suppressor search; these were supD, which codes for a serine-inserting amber suppressor tRNA, and gly V55, the gene for a GGA/G-reading mutationally altered glycine tRNA. On the basis of map location, reversed-phase (RPC-5) column chromatography of glycyl-tRNA, and codon response, several classes have been distinguished so far. The number of suppressors in each class, their codon responses, and their apparent genic identities, respectively, are as follows: class 1--4 suppressors, UGG, supD; class 2--12 suppressors, UGG, glyU; class 3--9 suppressors, UGA and UGG, glyT; class 4--2 suppressors, UGG, glyT; class 5--7 suppressors, UGG, gly V55. Besides these, one suppressor retains supD activity, but so far its map location has not been distinguished from that of supD. Another suppressor clearly does not map near supD or any of the glycine tRNA genes mentioned. These last two suppressors may represent novel missense suppressors such as misacylated tRNA's or mutationally altered aminoacyl-tRNA synthetases, tRNA modification enzymes, or ribosomes. Finally, three other suppressors were obtained from a strain containing glyT56, the gene for an AGA/G-reading form of glyT tRNA. All three occurred at the expense of glyT56 activity and exhibited the the transductional linkage to argH that is characteristic of glyT.  相似文献   

19.
Summary The sequences of a collection of 261 spontaneous lacI- mutants recovered in a PolA- strain of Escherichia coli have indicated an increase in the frequency of most classes of mutation in this strain. Among base substitutions in lacI, a preference for transversions over transitions was observed. In addition, a single transition in the lac operator was enhanced 8-fold. More significantly, of 18 frameshifts, 12 occurred adjacent to a 5-GTGG-3 sequence. Likewise, 15 of 24 deletions and 2 of 10 duplications had 5-GTGG-3 sequences at one or both endpoints. We speculate that the prevalence of mutations at these specific sequences reflects the persistence of strand discontinuities that enhance the opportunity for mutagenic mishaps. Further, 5-GTGG-3 sequences apparently represent sites where DNA polymerase I is involved in some aspect of DNA metabolism. These results strengthen the view that DNA context contributes an important component to spontaneous mutagenesis and indicate an anti-mutagenic role for DNA polymerase I.  相似文献   

20.
Inhibition of Escherichia coli RecA coprotease activities by DinI.   总被引:2,自引:0,他引:2       下载免费PDF全文
T Yasuda  K Morimatsu  T Horii  T Nagata    H Ohmori 《The EMBO journal》1998,17(11):3207-3216
In Escherichia coli, the SOS response is induced upon DNA damage and results in the enhanced expression of a set of genes involved in DNA repair and other functions. The initial step, self-cleavage of the LexA repressor, is promoted by the RecA protein which is activated upon binding to single-stranded DNA. In this work, induction of the SOS response by the addition of mitomycin C was found to be prevented by overexpression of the dinI gene. dinI is an SOS gene which maps at 24.6 min of the E.coli chromosome and encodes a small protein of 81 amino acids. Immunoblotting analysis with anti-LexA antibodies revealed that LexA did not undergo cleavage in dinI-overexpressed cells after UV irradiation. In addition, the RecA-dependent conversion of UmuD to UmuD' (the active form for mutagenesis) was also inhibited in dinI-overexpressed cells. Conversely, a dinI-deficient mutant showed a slightly faster and more extensive processing of UmuD and hence higher mutability than the wild-type. Finally, we demonstrated, by using an in vitro reaction with purified proteins, that DinI directly inhibits the ability of RecA to mediate self-cleavage of UmuD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号