首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inducible NO-synthase inhibitor aminoguanidine (AG) was used for investigation into enhanced nitric oxide (NO) production influence on elevated pressure in the pulmonary circulation (pulmonary hypertension, PH) under endothelial dysfunction. PH was simulated by subcutaneous injection of 60 mg/kg MCT to Wistar rats. Experimental groups were given AG in drinking water (15 mg/(kg x day)), and control groups were given drinking water. Rate of nitrite/nitrate excretion (RENOx) with urine was measured. The RENOx was elevated since second week as long as through the PH development. Chronic AG administration led to RENOx and soluble guanylate cyclase (sGC) NO-dependent activity restoration, and also it led to partial restoration of the right ventricular pressure. AG administration restored the perfusion pressure responses of isolated pulmonary arteries to acetylcholine. These results suggest that chronic inducible NO-synthase inhibition restores the impaired endothelium-dependent and sGC-dependent relaxation of pulmonary artery in MC-induced PH.  相似文献   

2.
Pulmonary hypertension (PH) is characterized by pulmonary arteriolar remodeling with excessive pulmonary vascular smooth muscle cell (VSMC) proliferation. This results in decreased responsiveness of pulmonary circulation to vasodilator therapies. We have shown that extracellular acidosis inhibits VSMC proliferation and migration in vitro. Here we tested whether induction of nonhypercapnic acidosis in vivo ameliorates PH and the underlying pulmonary vascular remodeling and dysfunction. Adult male Sprague-Dawley rats were exposed to hypoxia (8.5% O(2)) for 2 wk, or injected subcutaneously with monocrotaline (MCT, 60 mg/kg) to develop PH. Acidosis was induced with NH(4)Cl (1.5%) in the drinking water 5 days prior to and during the 2 wk of hypoxic exposure (prevention protocol), or after MCT injection from day 21 to 28 (reversal protocol). Right ventricular systolic pressure (RVSP) and Fulton's index were measured, and pulmonary arteriolar remodeling was analyzed. Pulmonary and mesenteric artery contraction to phenylephrine (Phe) and high KCl, and relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) were examined ex vivo. Hypoxic and MCT-treated rats demonstrated increased RVSP, Fulton's index, and pulmonary arteriolar thickening. In pulmonary arteries of hypoxic and MCT rats there was reduced contraction to Phe and KCl and reduced vasodilation to ACh and SNP. Acidosis prevented hypoxia-induced PH, reversed MCT-induced PH, and resulted in reduction in all indexes of PH including RVSP, Fulton's index, and pulmonary arteriolar remodeling. Pulmonary artery contraction to Phe and KCl was preserved or improved, and relaxation to ACh and SNP was enhanced in NH(4)Cl-treated PH animals. Acidosis alone did not affect the hemodynamics or pulmonary vascular function. Phe and KCl contraction and ACh and SNP relaxation were not different in mesenteric arteries of all groups. Thus nonhypercapnic acidosis ameliorates experimental PH, attenuates pulmonary arteriolar thickening, and enhances pulmonary vascular responsiveness to vasoconstrictor and vasodilator stimuli. Together with our finding that acidosis decreases VSMC proliferation, the results are consistent with the possibility that nonhypercapnic acidosis promotes differentiation of pulmonary VSMCs to a more contractile phenotype, which may enhance the effectiveness of vasodilator therapies in PH.  相似文献   

3.
RhoA/Rho kinase (ROCK) signaling plays a key role in the pathogenesis of experimental pulmonary hypertension (PH). Dehydroepiandrosterone (DHEA), a naturally occurring steroid hormone, effectively inhibits chronic hypoxic PH, but the responsible mechanisms are unclear. This study tested whether DHEA was also effective in treating monocrotaline (MCT)-induced PH in left pneumonectomized rats and whether inhibition of RhoA/ROCK signaling was involved in the protective effect of DHEA. Three weeks after MCT injection, pneumonectomized rats developed PH with severe vascular remodeling, including occlusive neointimal lesions in pulmonary arterioles. In lungs from these animals, we detected cleaved (constitutively active) ROCK I as well as increases in activities of RhoA and ROCK and increases in ROCK II protein expression. Chronic DHEA treatment (1%, by food for 3 wk) markedly inhibited the MCT-induced PH (mean pulmonary artery pressures after treatment with 0% and 1% DHEA were 33+/-5 and 16+/-1 mmHg, respectively) and severe pulmonary vascular remodeling in pneumonectomized rats. The MCT-induced changes in RhoA/ROCK-related protein expression were nearly normalized by DHEA. A 3-wk DHEA treatment (1%) started 3 wk after MCT injection completely inhibited the progression of PH (mean pulmonary artery pressures after treatment with 0% and 1% DHEA were 47+/-3 and 30+/-3 mmHg, respectively), and this treatment also resulted in 100% survival in contrast to 30% in DHEA-untreated rats. These results suggest that inhibition of RhoA/ROCK signaling, including the cleavage and constitutive activation of ROCK I, is an important component of the impressive protection of DHEA against MCT-induced PH in pneumonectomized rats.  相似文献   

4.
To explore the effect of dimethyl 4-(2-chlorophenyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (DCDDP) on pulmonary hypertension (PH) induced by monocrotaline (MCT), the parameters of pulmonary hemodynamics, the contents of endothelin-like immunoreactivity, nitric oxide (NO), malondialdehyde, and superoxide dismutase in plasma and pulmonary homogenate were measured. DCDDP was administered in 5, 50, and 500 microg x kg(-1) x day(-1) ip doses, once a day for 28 days. The antiserotonin effect of DCDDP was investigated by using immunohistochemistry, image analysis, and cell culture technique. The results showed that pulmonary arterial pressure was significantly dropped and pulmonary resistance was decreased in DCDDP groups, compared with the MCT group. DCDDP had no influence on endothelin-like immunoreactivity levels in plasma and pulmonary homogenate but reduced the contents of NO, superoxide dismutase, and malondialdehyde in pulmonary homogenate enhanced by MCT. DCDDP also significantly inhibited the increase in numbers of 5-hydroxytryptamine (5-HT) and 5-HT receptor-positive cells in pulmonary tissue of PH rats induced by MCT. The proliferation and contraction of pulmonary arterial smooth muscle cells and the increase in concentration of free Ca(2+) in them evoked by 5-HT were inhibited significantly by DCDDP. The results suggest that DCDDP reduces the production of free radicals and content of 5-HT and 5-HT receptor and the increase in NO in pulmonary tissue, which underlies the mechanisms of DCDDP against MCT-induced PH.  相似文献   

5.
The purpose of this study was to determine the effects of an extract from Moringa oleifera (MO) on the development of monocrotaline (MCT)-induced pulmonary hypertension (PH) in Wistar rats. An ethanol extraction was performed on dried MO leaves, and HPLC analysis identified niaziridin and niazirin in the extract. PH was induced with a single subcutaneous injection of MCT (60 mg/kg) which resulted in increases in pulmonary arterial blood pressure (Ppa) and in thickening of the pulmonary arterial medial layer in the rats. Three weeks after induction, acute administration of the MO extract to the rats decreased Ppa in a dose-dependent manner that reached statistical significance at a dose of 4.5 mg of freeze-dried extract per kg body weight. The reduction in Ppa suggested that the extract directly relaxed the pulmonary arteries. To assay the effects of chronic administration of the MO extract on PH, control, MCT and MCT+MO groups were designated. Rats in the control group received a saline injection; the MCT and MCT+MO groups received MCT to induce PH. During the third week after MCT treatment, the MCT+MO group received daily i.p. injections of the MO extract (4.5 mg of freeze-dried extract/kg of body weight). Compared to the control group, the MCT group had higher Ppa and thicker medial layers in the pulmonary arteries. Chronic treatments with the MO extract reversed the MCT-induced changes. Additionally, the MCT group had a significant elevation in superoxide dismutase activity when normalized by the MO extract treatments. In conclusion, the MO extract successfully attenuated the development of PH via direct vasodilatation and a potential increase in antioxidant activity.  相似文献   

6.
We investigated the endogenous production of ghrelin as well as cardiac and pulmonary vascular effects of its administration in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). Adult Wistar rats randomly received a subcutaneous injection of MCT (60 mg/kg) or an equal volume of vehicle. One week later, animals were randomly assigned to receive a subcutaneous injection of ghrelin (100 mug/kg bid for 2 wk) or saline. Four groups were analyzed: normal rats treated with ghrelin (n=7), normal rats injected with saline (n=7), MCT rats treated with ghrelin (n=9), and MCT rats injected with saline (n=9). At 22-25 days, right (RV) and left ventricular (LV) pressures were measured, heart and lungs were weighted, and samples were collected for histological and molecular analysis. Endogenous production of ghrelin was almost abolished in normal rats treated with ghrelin. In MCT-treated animals, pulmonary expression of ghrelin was preserved, and RV myocardial expression was increased more than 20 times. In these animals, exogenous administration of ghrelin attenuated PH, RV hypertrophy, wall thickening of peripheral pulmonary arteries, and RV diastolic disturbances and ameliorated LV dysfunction, without affecting its endogenous production. In conclusion, decreased tissular expression of ghrelin in healthy animals but not in PH animals suggests a negative feedback in the former that is lost in the latter. A selective increase of ghrelin mRNA levels in the RV of animals with PH might indicate distinct regulation of its cardiac expression. Finally, ghrelin administration attenuated MCT-induced PH, pulmonary vascular remodeling, and RV hypertrophy, indicating that it may modulate PH.  相似文献   

7.
HMG-CoA-reductase inhibitors (statins) influence lipid metabolism and have pleiotropic effects. Several statins reduce various forms of pulmonary hypertension (PH) in animal models. The relationship between atorvastatin and expression of serotonin transporter protein (5-HTT) remains unknown. This study focused on the effects of atorvastatin on the course of monocrotaline (MCT)-induced PH and its relation to 5-HTT expression. Male Sprague-Dawley rats were challenged with MCT with or without subsequent daily oral treatment with 0.1, 1, and 10 mg/kg of atorvastatin for 28 days. Over the 4-wk course, the progression of PH was followed by transthoracic echocardiography [pulmonary artery pressure was assessed by pulmonary artery flow acceleration time (PAAT), an estimate reciprocal to pulmonary artery pressure], and, at the end of the 4-wk course, invasive right ventricular pressure, right ventricular weight, quantitative morphology, and 5-HTT expression were measured. MCT caused significant PH as early as 7 days after injection. Atorvastatin treatment increased PAAT and reduced right ventricular pressure, right ventricular hypertrophy, and vascular remodeling over the 4-wk course. MCT challenge was associated with increased pulmonary vascular 5-HTT expression, and atorvastatin treatment reduced the 5-HTT expression. MCT-induced PH over the course of 4 wk can be easily followed by transthoracic echocardiography, and atorvastatin is effective in reducing the PH. Atorvastatin's effects are associated with a decrease of 5-HTT expression.  相似文献   

8.
Adrenomedullin (AM) is a potent vasodilator peptide. We investigated whether inhalation of aerosolized AM ameliorates monocrotaline (MCT)-induced pulmonary hypertension in rats. Male Wistar rats given MCT (MCT rats) were assigned to receive repeated inhalation of AM (n = 8) or 0.9% saline (n = 8). AM (5 mug/kg) or saline was inhaled as an aerosol using an ultrasonic nebulizer for 30 min four times a day. After 3 wk of inhalation therapy, mean pulmonary arterial pressure and total pulmonary resistance were markedly lower in rats treated with AM than in those given saline [mean pulmonary arterial pressure: 22 +/- 2 vs. 35 +/- 1 mmHg (-37%); total pulmonary resistance: 0.048 +/- 0.004 vs. 0.104 +/- 0.006 mmHg.ml(-1).min(-1).kg(-1) (-54%), both P < 0.01]. Neither systemic arterial pressure nor heart rate was altered. Inhalation of AM significantly attenuated the increase in medial wall thickness of peripheral pulmonary arteries in MCT rats. Kaplan-Meier survival curves demonstrated that MCT rats treated with aerosolized AM had a significantly higher survival rate than those given saline (70% vs. 10% 6-wk survival, log-rank test, P < 0.01). In conclusion, repeated inhalation of AM inhibited MCT-induced pulmonary hypertension without systemic hypotension and thereby improved survival in MCT rats.  相似文献   

9.
The aim of this study was to explore the changes of the Doppler flow spectra of the superior vena cava (SVC) in a rat model of chronic pulmonary hypertension (PH). Thirty-two rats were injected with monocrotaline (MCT) to establish a model of chronic PH. Eight rats from the control group had a sham operation by injecting Dulbecco's phosphate-buffered solution. Serial echocardiographic parameters of the SVC were analysed four weeks after treating with MCT or placebo, and the relationship was analysed between the Doppler flow spectra of SVC and the pulmonary arterial systolic pressure (PASP). PH models were successfully established in 29 rats. The right ventricular systolic pressure, mean pulmonary arterial pressure and PASP in the PH group were significantly higher than those in the sham group at 28 days (P < 0.001). The ratios of SVC maximum reverse peak flow velocity/maximum systolic peak flow velocity (VAr/VS) and maximum reverse peak velocity time integral/maximum systolic peak velocity time integral (VTIAr/VTIS) increased significantly (P < 0.05) after MCT injection. These results demonstrate that echocardiography can be used to monitor the haemodynamic changes in SVC in MCT-induced chronic PH rat models. The ratios of VAr/VS and VTIAr/VTIS may be sensitive indices for evaluating PH.  相似文献   

10.
Phosphodiesterases (PDEs) modulate the cellular proliferation involved in the pathophysiology of pulmonary hypertension (PH) by hydrolyzing cAMP and cGMP. The present study was designed to determine whether any of the recently identified PDEs (PDE7-PDE11) contribute to progressive pulmonary vascular remodeling in PH. All in vitro experiments were performed with lung tissue or pulmonary arterial smooth muscle cells (PASMCs) obtained from control rats or monocrotaline (MCT)-induced pulmonary hypertensive (MCT-PH) rats, and we examined the effects of the PDE10 inhibitor papaverine (Pap) and specific small interfering RNA (siRNA). In addition, papaverine was administrated to MCT-induced PH rats from day 21 to day 35 by continuous intravenous infusion to examine the in vivo effects of PDE10A inhibition. We found that PDE10A was predominantly present in the lung vasculature, and the mRNA, protein, and activity levels of PDE10A were all significantly increased in MCT PASMCs compared with control PASMCs. Papaverine and PDE10A siRNA induced an accumulation of intracellular cAMP, activated cAMP response element binding protein and attenuated PASMC proliferation. Intravenous infusion of papaverine in MCT-PH rats resulted in a 40%-50% attenuation of the effects on pulmonary hypertensive hemodynamic parameters and pulmonary vascular remodeling. The present study is the first to demonstrate a central role of PDE10A in progressive pulmonary vascular remodeling, and the results suggest a novel therapeutic approach for the treatment of PH.  相似文献   

11.
Pulmonary hypertension (PH) is a severe disease affecting both the pulmonary and systemic circulation. One of possible factors of these disturbances can be nitric oxide (NO) overproduction by inducible NO synthase (iNOS). To examine the effect of iNOS on systemic vascular reactivity, we used aminoguanidine (AG), a selective iNOS inhibitor. Using the model of monocrotaline-induced pulmonary hypertension, we demonstrated that chronic AG administration restores the decreased arterial pressure responses to NO donor and to nonspecific inhibitor of NO synthase as well as the decreased endothelium-dependent relaxation of isolated systemic artery. This points to an important role of iNOS in systemic pathogenesis of PH.__________Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No.3, 2005, pp. 316–322.Original Russian Text Copyright © 2005 by Bonartsev, D’yakonov, Postnikov, Medvedeva.  相似文献   

12.
In monocrotaline (MCT)-induced pulmonary hypertension (PH), only the right ventricle (RV) endures overload, but both ventricles are exposed to enhanced neuroendocrine stimulation. To assess whether in long-standing PH the left ventricular (LV) myocardium molecular/contractile phenotype can be disturbed, we evaluated myocardial function, histology, and gene expression of autocrine/paracrine systems in rats with severe PH 6 wk after subcutaneous injection of 60 mg/kg MCT. The overloaded RV underwent myocardial hypertrophy (P < 0.001) and fibrosis (P = 0.014) as well as increased expression of angiotensin-converting enzyme (ACE) (8-fold; P < 0.001), endothelin-1 (ET-1) (6-fold; P < 0.001), and type B natriuretic peptide (BNP) (15-fold; P < 0.001). Despite the similar upregulation of ET-1 (8-fold; P < 0.001) and overexpression of ACE (4-fold; P < 0.001) without BNP elevation, the nonoverloaded LV myocardium was neither hypertrophic nor fibrotic. LV indexes of contractility (P < 0.001) and relaxation (P = 0.03) were abnormal, however, and LV muscle strips from MCT-treated compared with sham rats presented negative (P = 0.003) force-frequency relationships (FFR). Despite higher ET-1 production, BQ-123 (ET(A) antagonist) did not alter LV MCT-treated muscle strip contractility distinctly (P = 0.005) from the negative inotropic effect exerted on shams. Chronic daily therapy with 250 mg/kg bosentan (dual endothelin receptor antagonist) after MCT injection not only attenuated RV hypertrophy and local neuroendocrine activation but also completely reverted FFR of LV muscle strips to positive values. In conclusion, the LV myocardium is altered in advanced MCT-induced PH, undergoing neuroendocrine activation and contractile dysfunction in the absence of hypertrophy or fibrosis. Neuroendocrine mediators, particularly ET-1, may participate in this functional deterioration.  相似文献   

13.
Lung platelet-activating factor (PAF) levels increased in some rats at 1-3 wk after subcutaneous injection of monocrotaline (MCT). We tested the effect of specific PAF antagonists, WEB 2086 and WEB 2170, on MCT-induced lung injury and subsequent pulmonary hypertension and right ventricular hypertrophy. Treatment with either agent decreased MCT-induced pulmonary hypertension and right ventricular hypertrophy at 3 wk after injection. Treatment with WEB 2170 reduced MCT-induced pulmonary vascular leak at 1 wk after injection, and WEB 2086-treatment exclusively during the early leak phase also decreased MCT-induced right ventricular hypertrophy at 3 wk. Treatment with WEB 2170 between the 3rd and 4th wk after MCT injection inhibited the progression of right ventricular hypertrophy at 4 wk. These results suggest that PAF contributes to the early pulmonary vascular leak, and this leak phase is important for the development of pulmonary hypertension and right ventricular hypertrophy in MCT-treated rats. Furthermore, it appears that PAF action contributes to the maintenance of a chronic inflammatory process that involves the synthesis of other lipid mediators (prostaglandins and leukotrienes) and leads to pulmonary hypertension. We conclude that PAF has a role in the MCT-induced inflammatory lung injury and pulmonary hypertension.  相似文献   

14.
Monocrotaline (MCT) produces respiratory dysfunction, pulmonary hypertension (PH), and right ventricular hypertrophy (RVH) in rats. Tachykinins, such as substance P (SP) and neurokinin A (NKA), may mediate these effects. The purpose of this study was to investigate the length of tachykinin depletion (via capsaicin treatment) is needed to prevent (or attenuate) PH and/or RVH. Six groups of rats were injected subcutaneously with saline (3 ml/kg); capsaicin followed by saline or MCT (60 mg/kg); or MCT followed 7, 11, or 14 days later by capsaicin. Capsaicin (cumulative dose, 500 mg/kg) was given over a period of 4-5 days. Respiratory function, pulmonary vascular parameters, lung tachykinin levels, and tracheal neutral endopeptidase (NEP) activity were measured 21 days after MCT or saline injection. Capsaicin significantly decreased lung levels of SP but not NKA. Both capsaicin pretreatment and posttreatment blocked the following MCT-induced alterations: increases in lung SP and airway constriction; decreases in tracheal NEP activity and dynamic respiratory compliance. Administration of capsaicin before or 7 days after MCT blocked MCT-induced PH and RVH. The above data suggest that the early tachykinin-mediated airway dysfunction requires only transient elevated tachykinins, while progression of late tachykinin-mediated effects (PH and RVH) requires elevated tachykinins for more than one week.  相似文献   

15.
Rats with established monocrotaline (MCT)-induced pulmonary hypertension also exhibit a profound increase in lung resistance (RL) and a decrease in lung compliance. Because airway/lung dysfunction could precede and influence the evolution of MCT-induced pulmonary vascular disease, it is important to establish the temporal relationship between development of pulmonary hypertension and altered ventilatory function in MCT-treated rats. To resolve this issue, we segregated 47 young Sprague-Dawley rats into four groups: control (n = 13), MCT1 (n = 9), MCT2 (n = 11), and MCT3 (n = 14). Each MCT rat received a single subcutaneous injection of MCT (60 mg/kg) 1 MCT1), 2 (MCT2), or 3 (MCT3) wk before the functional study. At 1 wk after MCT, significant increases in RL and alveolar wall thickness were observed, as was a significant decrease in carbon monoxide diffusing capacity (DLCO). Medial thickness of pulmonary arteries (50-100 microns OD) and right ventricular hypertrophy were not observed until 2 and 3 wk post-MCT, respectively. Coincident with the right ventricular hypertrophy at 3 wk post-MCT were decreased DLCO and increased alveolar wall thickness and lung dry weight. Pressure-volume curves of air-filled and saline-filled lungs showed marked rightward shifts during the 1st and 2nd wk after MCT administration and then decreased at the 3rd wk. These data suggest that MCT-induced alterations in airway/lung function preceded those of pulmonary vasculature and, therefore, implicate airway/lung dysfunctions as potentially contributing to the later development of pulmonary vascular abnormalities.  相似文献   

16.
Decreased right as well as left ventricular function can be associated with pulmonary hypertension (PH). Numerous investigations have examined cardiac function following induction of pulmonary hypertension with monocrotaline (MCT) assuming that MCT has no direct cardiac effect. We tested this assumption by examining left ventricular function and histology of isolated and perfused hearts from MCT-treated rats. Experiments were performed on 50 male Sprague-Dawley rats [348 +/- 6 g (SD)]. Thirty-seven rats received MCT (50 mg/kg sc; MCT group) while the remainder did not (Control group). Three weeks later, pulmonary artery pressure was assessed echocardiographically in 20 MCT and 8 Control rats. The hearts were then excised and perfused in the constant pressure Langendorff mode to determine peak left ventricular pressure (LVP), the peak instantaneous rate of pressure increase (+dP/dtmax) and decrease (-dP/dtmax), as well as the rate pressure product (RPP). Histological sections were subsequently examined. Pulmonary artery pressure was higher in the MCT-treated group compared with the Control group [12.9 +/- 6 vs. 51 +/- 35.3 mmHg (P < 0.01)]. Left ventricular systolic function and diastolic relaxation were decreased in the MCT group compared with the Control group (+dP/dtmax 4,178 +/- 388 vs. 2,801 +/- 503 mmHg/s, LVP 115 +/- 11 vs. 83 +/- 14 mmHg, RPP 33,688 +/- 1,910 vs. 23,541 +/- 3,858 beats x min(-1) x mmHg(-1), -dP/dtmax -3,036 +/- 247 vs. -2,091 +/- 389 mmHg/s; P < 0.0001). The impairment of cardiac function was associated with myocarditis and coronary arteriolar medial thickening. Similarly depressed ventricular function and inflammatory infiltration was seen in 12 rats 7 days after MCT administration. Our findings appear unrelated to the degree of PH and indicate a direct cardiotoxic effect of MCT.  相似文献   

17.
The purpose of this study was to determine the effects of an extract from Moringa oleifera (MO) on the development of monocrotaline (MCT)-induced pulmonary hypertension (PH) in Wistar rats. An ethanol extraction was performed on dried MO leaves, and HPLC analysis identified niaziridin and niazirin in the extract. PH was induced with a single subcutaneous injection of MCT (60 mg/kg) which resulted in increases in pulmonary arterial blood pressure (Ppa) and in thickening of the pulmonary arterial medial layer in the rats. Three weeks after induction, acute administration of the MO extract to the rats decreased Ppa in a dose-dependent manner that reached statistical significance at a dose of 4.5 mg of freeze-dried extract per kg body weight. The reduction in Ppa suggested that the extract directly relaxed the pulmonary arteries. To assay the effects of chronic administration of the MO extract on PH, control, MCT and MCT+MO groups were designated. Rats in the control group received a saline injection; the MCT and MCT+MO groups received MCT to induce PH. During the third week after MCT treatment, the MCT+MO group received daily i.p. injections of the MO extract (4.5 mg of freeze-dried extract/kg of body weight). Compared to the control group, the MCT group had higher Ppa and thicker medial layers in the pulmonary arteries. Chronic treatments with the MO extract reversed the MCT-induced changes. Additionally, the MCT group had a significant elevation in superoxide dismutase activity when normalized by the MO extract treatments. In conclusion, the MO extract successfully attenuated the development of PH via direct vasodilatation and a potential increase in antioxidant activity.  相似文献   

18.
Perinatal hypoxia has been observed to cause more aggressive pulmonary hypertension in human. Several mediators such as reactive oxygen species (ROS) and substance P are believed to be crucial in the mechanism of inducing pulmonary hypertension. This study was designed to test whether substance P and ROS play a role in perinatal hypoxia-exaggerated, monocrotaline (MCT)-induced pulmonary hypertension. Normoxic Wistar rats (weighing 258 ± 9 g, n = 31) were divided into two groups: control (n = 16) and MCT (n = 15). Perinatal hypoxia Wistar rats (weighing 260 ± 19 g, n = 49) were divided into six groups: Hypoxia (n = 8), Hypoxia+MCT (n = 8), Hypoxia+capsaicin (CP)+MCT (n = 7), Hypoxia+MCT+1,3-dimethyl-2-thiourea (DMTU)E (n = 10), Hypoxia+MCT+DMTUL (n = 9), and Hypoxia+MCT+ hexa(sulfobutyl) fullerenes (HSF) (n = 7). Rats in the control group received saline injections. MCT (60 mg/kg, s.c.) was given three weeks prior to the functional examination. Chronic capsaicin pretreatment was performed to deplete substance P. Hydroxyl radical scavenger DMTU (500 mg/kg) was intraperitoneally (i.p.) injected early (DMTUE ) or late (DMTUL ) after MCT. Antioxidant HSF (10 mg/kg, i.p.) was given once daily for three weeks following MCT. MCT treatment caused significant increases in pulmonary arterial pressure (Ppa) and substance P level in lung tissue in normoxic rats. The MCT-induced increase in pulmonary arterial blood pressure was exaggerated by perinatal hypoxia, but this exaggeration was attenuated by either capsaicin pretreatment or antioxidant administrations. These results suggest that both ROS and substance P are involved in perinatal hypoxia-augmented, MCT-induced pulmonary hypertension.  相似文献   

19.
Nitric oxide (NO) has been suggested to play a key role in the pathogenesis of pulmonary hypertension (PH). To determine which mechanism exists to affect NO production, we examined the concentration of endogenous nitric oxide synthase (NOS) inhibitors and their catabolizing enzyme dimethylarginine dimethylaminohydrolase (DDAH) activity and protein expression (DDAH1 and DDAH2) in pulmonary artery endothelial cells (PAECs) of rats given monocrotaline (MCT). We also measured NOS and arginase activities and NOS protein expression. Twenty-four days after MCT administration, PH and right ventricle (RV) hypertrophy were established. Endothelium-dependent, but not endothelium-independent, relaxation and cGMP production were significantly impaired in pulmonary artery specimens of MCT group. The constitutive NOS activity and protein expression in PAECs were significantly reduced in MCT group, whereas the arginase, which shares l-arginine as a common substrate with NOS, activity was significantly enhanced in PAECs of MCT group. The contents of monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA), were increased in PAECs of MCT group. The DDAH activity and DDAH1, but not DDAH2, protein expression were significantly reduced in PAECs of MCT group. These results suggest that the impairment of cGMP production as a marker of NO production is possibly due to the blunted endothelial NOS activity resulting from the downregulation of endothelial NOS protein, accumulation of endogenous NOS inhibitors, and accelerated arginase activity in PAECs of PH rats. The decreased overall DDAH activity accompanied by the downregulation of DDAH1 would bring about the accumulation of endogenous NOS inhibitors.  相似文献   

20.
Mathew, Rajamma, Elizabeth S. Gloster, T. Sundararajan, Carl I. Thompson, Guillermo A. Zeballos, andMichael H. Gewitz. Role of inhibition of nitric oxide productionin monocrotaline-induced pulmonary hypertension. J. Appl. Physiol. 82(5): 1493-1498, 1997.Monocrotaline (MCT)-induced pulmonary hypertension (PH) isassociated with impaired endothelium-dependent nitric oxide(NO)-mediated relaxation. To examine the role of NO in PH,Sprague-Dawley rats were given a single subcutaneous injection ofnormal saline [control (C)], 80 mg/kg MCT, or the same doseof MCT and a continuous subcutaneous infusion of 2 mg · kg1 · day1of molsidomine, a NO prodrug (MCT+MD). Two weeks later, plasma NO3 levels, pulmonary arterialpressure (Ppa), ratio of right-to-left ventricular weights (RV/LV) toassess right ventricular hypertrophy, and pulmonary histology wereevaluated. The plasma NO3 level inthe MCT group was reduced to 9.2 ± 1.5 µM(n = 12) vs. C level of 17.7 ± 1.8 µM (n = 8; P < 0.02). In the MCT+MD group,plasma NO3 level was 12.3 ± 2.0 µM (n = 8). Ppa and RV/LV in theMCT group were increased compared with C [Ppa, 34 ± 3.4 mmHg(n = 6) vs. 19 ± 0.8 mmHg(n = 8) and 0.41 ± 0.01 (n = 9) vs. 0.25 ± 0.008 (n = 8), respectively;P < 0.001]. In the MCT+MDgroup, Ppa and RV/LV were not different when compared with C [19 ± 0.5 mmHg (n = 5) and 0.27 ± 0.01 (n = 9), respectively;P < 0.001 vs. MCT]. Medial wall thickness of lung vessels in the MCT group was increased comparedwith C [31 ± 1.5% (n = 9)vs. 13 ± 0.66% (n = 9);P < 0.001], and MDpartially prevented MCT-induced pulmonary vascular remodeling [22 ± 1.2% (n = 11);P < 0.001 vs. MCT and C].These results indicate that a defect in the availability of bioactive NO may play an important role in the pathogenesis of MCT-induced PH.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号