首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelin-1 (ET-1) increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs); however, the mechanisms for Ca(2+) mobilization are not clear. We determined the contributions of extracellular influx and intracellular release to the ET-1-induced Ca(2+) response using Indo 1 fluorescence and electrophysiological techniques. Application of ET-1 (10(-10) to 10(-8) M) to transiently (24-48 h) cultured rat PASMCs caused concentration-dependent increases in [Ca(2+)](i). At 10(-8) M, ET-1 caused a large, transient increase in [Ca(2+)](i) (>1 microM) followed by a sustained elevation in [Ca(2+)](i) (<200 nM). The ET-1-induced increase in [Ca(2+)](i) was attenuated (<80%) by extracellular Ca(2+) removal; by verapamil, a voltage-gated Ca(2+)-channel antagonist; and by ryanodine, an inhibitor of Ca(2+) release from caffeine-sensitive stores. Depleting intracellular stores with thapsigargin abolished the peak in [Ca(2+)](i), but the sustained phase was unaffected. Simultaneously measuring membrane potential and [Ca(2+)](i) indicated that depolarization preceded the rise in [Ca(2+)](i). These results suggest that ET-1 initiates depolarization in PASMCs, leading to Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from ryanodine- and inositol 1,4,5-trisphosphate-sensitive stores.  相似文献   

2.
Stimulation of Dictyostelium discoideum with cAMP evokes a change of the cytosolic free Ca(2+) concentration ([Ca(2+)](i)). We analyzed the role of the filling state of Ca(2+) stores for the [Ca(2+)] transient. Parameters tested were the height of the [Ca(2+)](i) elevation and the percentage of responding amoebae. After loading stores with Ca(2+), cAMP induced a [Ca(2+)](i) transient in many cells. Without prior loading, cAMP evoked a [Ca(2+)](i) change in a few cells only. This indicates that the [Ca(2+)](i) elevation is not mediated exclusively by Ca(2+) influx but also by Ca(2+) release from stores. Reducing the Ca(2+) content of the stores by EGTA preincubation led to a cAMP-activated [Ca(2+)](i) increase even at low extracellular [Ca(2+)]. Moreover, the addition of Ca(2+) itself elicited a capacitative [Ca(2+)](i) elevation. This effect was not observed when stores were emptied by the standard technique of inhibiting internal Ca(2+) pumps with 2,5-di-(t-butyl)-1,4-hydroquinone. Therefore, in Dictyostelium, an active internal Ca(2+)-ATPase is absolutely required to allow for Ca(2+) entry. No influence of the filling state of stores on Ca(2+) influx characteristics was found by the Mn(2+)-quenching technique, which monitors the rate of Ca(2+) entry. Both basal and cAMP-activated Mn(2+) influx rates were similar in control cells and cells with empty stores. By contrast, determination of extracellular free Ca(2+) concentration ([Ca(2+)](e)) changes, which represent the sum of Ca(2+) influx and efflux, revealed a higher rate of [Ca(2+)](e) decrease in EGTA-treated than in control amoebae. We conclude that emptying of Ca(2+) stores does not change the rate of Ca(2+) entry but results in inhibition of the plasma membrane Ca(2+)-ATPase. Furthermore, the activities of the Ca(2+) transport ATPases of the stores are of crucial importance for the regulation of [Ca(2+)](i) changes.  相似文献   

3.
4.
Store-operated Ca(2+) channels (SOC) are expressed in cultured human mesangial cells and activated by epidermal growth factor through a pathway involving protein kinase C (PKC). We used fura-2 fluorescence and patch clamp experiments to determine the role of PKC in mediating the activation of SOC after depletion of internal stores by thapsigargin. The measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) revealed that the thapsigargin-induced Ca(2+) entry pathway was abolished by calphostin C, a protein kinase C inhibitor. The PKC activator, phorbol 12-myristate 13-acetate (PMA), promoted a Ca(2+) influx that was significantly attenuated by calphostin C and La(3+) but not by diltiazem. Neither PMA nor calphostin C altered the thapsigargin-induced initial transient rise in [Ca(2+)](i). In cell-attached patch clamp experiments, the thapsigargin-induced activation of SOC was potentiated by PMA and abolished by both calphostin C and staurosporine. However, SOC was unaffected by thapsigargin when clamping [Ca(2+)](i) with 1,2-bis (o-Aminophenoxy)ethane-N,N,N',N'tetraacetic acid tetra(acetoxymethyl)ester. In the absence of thapsigargin, PMA and phorbol 12, 13-didecanoate evoked a significant increase in NP(O) of SOC, whereas calphostin C did not affect base-line channel activity. In inside-out patches, SOC activity ran down immediately upon excision but was reactivated significantly after adding the catalytic subunit of 0.1 unit/ml of PKC plus 100 microm ATP. Neither ATP alone nor ATP with heat-inactivated PKC rescued a rundown of SOC. Metavanadate, a general protein phosphatase inhibitor, also enhanced SOC activity in inside-out patches. Bath [Ca(2+)] did not significantly affect the channel activity in inside-out patch. These results indicate that the depletion of Ca(2+) stores activates SOC by PKC-mediated phosphorylation of the channel proteins or a membrane-associated complex.  相似文献   

5.
Transient influx of Ca(2+) constitutes an early element of signaling cascades triggering pathogen defense responses in plant cells. Treatment with the Phytophthora sojae-derived oligopeptide elicitor, Pep-13, of parsley cells stably expressing apoaequorin revealed a rapid increase in cytoplasmic free calcium ([Ca(2+)](cyt)), which peaked at approximately 1 microM and subsequently declined to sustained values of 300 nM. Activation of this biphasic [Ca(2+)](cyt) signature was achieved by elicitor concentrations sufficient to stimulate Ca(2+) influx across the plasma membrane, oxidative burst, and phytoalexin production. Sustained concentrations of [Ca(2+)](cyt) but not the rapidly induced [Ca(2+)](cyt) transient peak are required for activation of defense-associated responses. Modulation by pharmacological effectors of Ca(2+) influx across the plasma membrane or of Ca(2+) release from internal stores suggests that the elicitor-induced sustained increase of [Ca(2+)](cyt) predominantly results from the influx of extracellular Ca(2+). Identical structural features of Pep-13 were found to be essential for receptor binding, increases in [Ca(2+)](cyt), and activation of defense-associated responses. Thus, a receptor-mediated increase in [Ca(2+)](cyt) is causally involved in signaling the activation of pathogen defense in parsley.  相似文献   

6.
Epidermal growth factor (EGF) is a multifunctional factor known to influence proliferation and function of a variety of cells. The actions of EGF are mediated by EGF receptor tyrosine kinase pathways, including stimulation of phospholipase Cgamma and mobilization of intracellular Ca(2+) ([Ca(2+)](i)). Generally, agonist-mediated Ca(2+) mobilization involves both Ca(2+) release from internal stores and Ca(2+) influx activated by store depletion (i.e. capacitative or store-operated Ca(2+) influx). However, the role of capacitative Ca(2+) entry in EGF-mediated Ca(2+) mobilization is still largely unknown. In this study, we compared [Ca(2+)](i) signals elicited by EGF with those induced by agents (the muscarinic receptor agonist carbachol and thapsigargin (Tg)) known to activate capacitative Ca(2+) entry. Unlike carbachol and Tg, EGF (5 nm) elicited a transient [Ca(2+)](i) signal without a plateau phase in the presence of extracellular Ca(2+) and also failed to accelerate Mn(2+) entry. Repletion of extracellular Ca(2+) to cells stimulated with EGF in the absence of Ca(2+) elicited an increase in [Ca(2+)](i), indicating that EGF indeed stimulates Ca(2+) influx. However, the influx was activated at lower EGF concentrations than those required to stimulate Ca(2+) release. Interestingly, the phospholipase C inhibitor completely inhibited Ca(2+) release induced by both EGF and carbachol and also reduced Ca(2+) influx responsive to carbachol but had no effect on Ca(2+) influx induced by EGF. EGF-induced Ca(2+) influx was potentiated by low concentrations (<5 ng/ml) of oligomycin, a mitochondrial inhibitor that blocks capacitative Ca(2+) influx in other systems. Transient expression of the hTRPC3 protein enhanced Ca(2+) influx responsive to carbachol but did not increase EGF-activated Ca(2+) influx. Both EGF and carbachol depleted internal Ca(2+) stores. Our results demonstrate that EGF-induced Ca(2+) release from internal stores does not activate capacitative Ca(2+) influx. Rather, EGF stimulates Ca(2+) influx via a mechanism distinct from capacitative Ca(2+) influx induced by carbachol and Tg.  相似文献   

7.
The mechanism by which GnRH increases sperm-zona pellucida binding in humans was investigated in this study. We tested whether GnRH increases sperm-zona binding in Ca(2+)-free medium and in the presence of Ca(2+) channel antagonists. We also examined the GnRH effect on the intracellular free Ca(2+) concentration ([Ca(2+)](i)). Sperm treatment with GnRH increased sperm-zona binding 300% but only when Ca(2+) was present in the medium. In Ca(2+)-free medium or in the presence of 400 nM nifedipine, 80 microM diltiazem, or 50 microM verapamil, GnRH did not influence sperm-zona binding. GnRH increased the [Ca(2+)](i) in the sperm in a dose-dependent manner. The maximum effect was reached with 75 nM GnRH. The GnRH-induced increase in [Ca(2+)](i) was fast and transient, from a basal [Ca(2+)](i) of 413 +/- 22 nM to a peak value of 797 +/- 24 nM. The GnRH-induced increase in [Ca(2+)](i) was entirely due to a Ca(2+) influx from the extracellular medium because the increase in [Ca(2+)](i) was blocked by the Ca(2+) chelator EGTA and by the Ca(2+) channel antagonists nifedipine and diltiazem. These antagonists, however, were not able to inhibit the progesterone-activated Ca(2+) influx. On the contrary, T-type calcium channel antagonists pimozide and mibefradil did not affect GnRH-activated Ca(2+) influx but inhibited the progesterone-activated Ca(2+) influx. Finally, the GnRH-induced Ca(2+) influx was blocked by two specific GnRH antagonists, Ac-D-Nal(1)-Cl-D-Phe(2)-3-Pyr-D-Ala(3)-Arg(5)-D-Glu(AA)(6)-GnRH and Ac-(3,4)-dehydro-Pro(1),-p-fluoro-D-Phe(2), D-Trp(3,6)-GnRH. These results suggest that GnRH increases sperm-zona binding via an elevation of [Ca(2+)](i) through T-type, voltage-operated calcium channels.  相似文献   

8.
Full muscarinic stimulation in bovine tracheal smooth muscle caused a sustained contraction and increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) that was largely resistant to inhibition by nifedipine. Depletion of internal Ca(2+) stores with cyclopiazonic acid resulted in an increased efficacy of nifedipine to inhibit this contraction and the associated increase in [Ca(2+)](i). Thus internal Ca(2+) store depletion promoted electromechanical coupling between full muscarinic stimulation and muscle contraction to the detriment of pharmacomechanical coupling. A similar change in coupling mode was induced by ryanodine even when it did not significantly modify the initial transient increase in [Ca(2+)](i) induced by this stimulation, indicating that depletion of internal stores was not necessary to induce the change in excitation-contraction coupling mode. Blockade of the Ca(2+)-activated K(+) channel by tetraethylammonium, charybdotoxin, and iberiotoxin all induced the change in excitation-contraction coupling mode. These results suggest that in this preparation, Ca(2+) released from the ryanodine-sensitive Ca(2+) store, by activating Ca(2+)-activated K(+) channels, plays a central role in determining the expression of the pharmacomechanical coupling mode between muscarinic excitation and the Ca(2+) influx necessary for the maintenance of tone.  相似文献   

9.
Bradykinin (1 microM) and histamine (100 microM) evoked an initial transient increase and a subsequent sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura-2-loaded human gingival fibroblasts, which may be attributed to Ca(2+) release from intracellular stores and Ca(2+) entry from extracellular sites, respectively. In fibroblasts pretreated with tyrosine kinase inhibitors such as herbimycin A (1 microM) and tyrphostin 47 (20 microM), the sustained level of [Ca(2+)](i) induced by bradykinin and histamine increased, but not the initial peak level. In the absence of external Ca(2+), bradykinin and histamine induced only the transient increase in [Ca(2+)](i), but a subsequent addition of Ca(2+) to the medium resulted in a sustained increase in [Ca(2+)](i) caused by Ca(2+)entry. Thapsigargin, an inhibitor of Ca(2+)-ATPase in inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores, mimicked the effect of bradykinin and histamine. In the fibroblasts pretreated with tyrosine kinase inhibitors, the bradykinin-, histamine- and thapsigargin-induced Ca(2+) entry was clearly enhanced, but not the transient [Ca(2+)](i) increase. Tyrosine phosphatase inhibitor benzylphosphonic acid (200 microM) had no effect on Ca(2+)entry or transient [Ca(2+)](i) increase. These results suggest that tyrosine phosphorylation is involved in Ca(2+) entry in human gingival fibroblasts.  相似文献   

10.
Cell suspensions obtained from Nicotiana plumbaginifolia plants stably expressing the apoaequorin gene were used to analyze changes in cytosolic free calcium concentrations ([Ca(2+)](cyt)) in response to elicitors of plant defenses, particularly cryptogein and oligogalacturonides. The calcium signatures differ in lag time, peak time, intensity, and duration. The intensities of both signatures depend on elicitor concentration and extracellular calcium concentration. Cryptogein signature is characterized by a long-sustained [Ca(2+)](cyt) increase that should be responsible for sustained mitogen-activated protein kinase activation, microtubule depolymerization, defense gene activation, and cell death. The [Ca(2+)](cyt) increase in elicitor-treated cells first results from a calcium influx, which in turns leads to calcium release from internal stores and additional Ca(2+) influx. H(2)O(2) resulting from the calcium-dependent activation of the NADPH oxidase also participates in [Ca(2+)](cyt) increase and may activate calcium channels from the plasma membrane. Competition assays with different elicitins demonstrate that [Ca(2+)](cyt) increase is mediated by cryptogein-receptor interaction.  相似文献   

11.
Plants respond to a large variety of environmental signals, including changes in the gravity vector (gravistimulation). In Arabidopsis (Arabidopsis thaliana) seedlings, gravistimulation is known to increase the cytoplasmic free calcium concentration ([Ca(2+)](c)). However, organs responsible for the [Ca(2+)](c) increase and the underlying cellular/molecular mechanisms remain to be solved. In this study, using Arabidopsis seedlings expressing apoaequorin, a Ca(2+)-sensitive luminescent protein in combination with an ultrasensitive photon counting camera, we clarified the organs where [Ca(2+)](c) increases in response to gravistimulation and characterized the physiological and pharmacological properties of the [Ca(2+)](c) increase. When the seedlings were gravistimulated by turning 180 degrees, they showed a transient biphasic [Ca(2+)](c) increase in their hypocotyls and petioles. The second peak of the [Ca(2+)](c) increase depended on the angle but not the speed of rotation, whereas the initial peak showed diametrically opposite characters. This suggests that the second [Ca(2+)](c) increase is specific for changes in the gravity vector. The potential mechanosensitive Ca(2+)-permeable channel (MSCC) inhibitors Gd(3+) and La(3+), the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), and the endomembrane Ca(2+)-permeable channel inhibitor ruthenium red suppressed the second [Ca(2+)](c) increase, suggesting that it arises from Ca(2+) influx via putative MSCCs in the plasma membrane and Ca(2+) release from intracellular Ca(2+) stores. Moreover, the second [Ca(2+)](c) increase was attenuated by actin-disrupting drugs cytochalasin B and latrunculin B but not by microtubule-disrupting drugs oryzalin and nocodazole, implying that actin filaments are partially involved in the hypothetical activation of Ca(2+)-permeable channels. These results suggest that the second [Ca(2+)](c) increase via MSCCs is a gravity response in the hypocotyl and petiole of Arabidopsis seedlings.  相似文献   

12.
Pancreatic acini secrete digestive enzymes in response to a variety of secretagogues including CCK and agonists acting via proteinase-activated receptor-2 (PAR2). We employed the CCK analog caerulein and the PAR2-activating peptide SLIGRL-NH(2) to compare and contrast Ca(2+) changes and amylase secretion triggered by CCK receptor and PAR2 stimulation. We found that secretion stimulated by both agonists is dependent on a rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and that this rise in [Ca(2+)](i) reflects both the release of Ca(2+) from intracellular stores and accelerated Ca(2+) influx. Both agonists, at low concentrations, elicit oscillatory [Ca(2+)](i) changes, and both trigger a peak plateau [Ca(2+)](i) change at high concentrations. Although the two agonists elicit similar rates of amylase secretion, the rise in [Ca(2+)](i) elicited by caerulein is greater than that elicited by SLIGRL-NH(2). In Ca(2+)-free medium, the rise in [Ca(2+)](i) elicited by SLIGRL-NH(2) is prevented by the prior addition of a supramaximally stimulating concentration of caerulein, but the reverse is not true; the rise elicited by caerulein is neither prevented nor reduced by prior addition of SLIGRL-NH(2). Both the oscillatory and the peak plateau [Ca(2+)](i) changes that follow PAR2 stimulation are prevented by the phospholipase C (PLC) inhibitor U73122, but U73122 prevents only the oscillatory [Ca(2+)](i) changes triggered by caerulein. We conclude that 1) both PAR2 and CCK stimulation trigger amylase secretion that is dependent on a rise in [Ca(2+)](i) and that [Ca(2+)](i) rise reflects release of calcium from intracellular stores as well as accelerated influx of extracellular calcium; 2) PLC mediates both the oscillatory and the peak plateau rise in [Ca(2+)](i) elicited by PAR2 but only the oscillatory rise in [Ca(2+)](i) elicited by CCK stimulation; and 3) the rate of amylase secretion elicited by agonists acting via different types of receptors may not correlate with the magnitude of the [Ca(2+)](i) rise triggered by those different types of secretagogue.  相似文献   

13.
The mechanisms of Ca(2+) handling and sensitization were investigated in human small omental arteries exposed to norepinephrine (NE) and to the thromboxane A(2) analog U-46619. Contractions elicited by NE and U-46619 were associated with an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), an increase in Ca(2+)-independent signaling pathways, or an enhancement of the sensitivity of the myofilaments to Ca(2+). The two latter pathways were abolished by protein kinase C (PKC), tyrosine kinase (TK), and Rho-associated protein kinase (ROK) inhibitors. In Ca(2+)-free medium, both NE and U-46619 elicited an increase in tension that was greatly reduced by PKC inhibitors and abolished by caffeine or ryanodine. After depletion of Ca(2+) stores with NE and U-46619 in Ca(2+)-free medium, addition of CaCl(2) in the continuous presence of the agonists produced increases in [Ca(2+)](i) and contractions that were inhibited by nitrendipine and TK inhibitors but not affected by PKC inhibitors. NE and U-46619 induced tyrosine phosphorylation of a 42- or a 58-kDa protein, respectively. These results indicate that the mechanisms leading to contraction elicited by NE and U-46619 in human small omental arteries are composed of Ca(2+) release from ryanodine-sensitive stores, Ca(2+) influx through nitrendipine-sensitive channels, and Ca(2+) sensitization and/or Ca(2+)-independent pathways. They also show that the TK pathway is involved in the tonic contraction associated with Ca(2+) entry, whereas TK, PKC, and ROK mechanisms regulate Ca(2+)-independent signaling pathways or Ca(2+) sensitization.  相似文献   

14.
Recent evidence indicates the existence of a putative novel phosphatidylinositol-linked D1 dopamine receptor in brain that mediates phosphatidylinositol hydrolysis via activation of phospholipase Cbeta. The present work was designed to characterize the Ca(2+) signals regulated by this phosphatidylinositol-linked D(1) dopamine receptor in primary cultures of hippocampal neurons. The results indicated that stimulation of phosphatidylinositol-linked D1 dopamine receptor by its newly identified selective agonist SKF83959 induced a long-lasting increase in basal [Ca(2+)](i) in a time- and dose-dependent manner. Stimulation was observable at 0.1 microm and reached the maximal effect at 30 microm. The [Ca(2+)](i) increase induced by 1 microm SKF83959 reached a plateau in 5 +/- 2.13 min, an average 96 +/- 5.6% increase over control. The sustained elevation of [Ca(2+)](i) was due to both intracellular calcium release and calcium influx. The initial component of Ca(2+) increase through release from intracellular stores was necessary for triggering the late component of Ca(2+) rise through influx. We further demonstrated that activation of phospholipase Cbeta/inositol triphosphate was responsible for SKF83959-induced Ca(2+) release from intracellular stores. Moreover, inhibition of voltage-operated calcium channel or NMDA receptor-gated calcium channel strongly attenuated SKF83959-induced Ca(2+) influx, indicating that both voltage-operated calcium channel and NMDA receptor contribute to phosphatidylinositol-linked D(1) receptor regulation of [Ca(2+)](i).  相似文献   

15.
Experiments were designed to differentiate the mechanisms of bradykinin receptors mediating the changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in canine cultured corneal epithelial cells (CECs). Bradykinin and Lys-bradykinin caused an initial transient peak of [Ca(2+)](i) in a concentration-dependent manner, with half-maximal stimulation (pEC(50)) obtained at 6.9 and 7.1, respectively. Pretreatment of CECs with pertussis toxin (PTX) or cholera toxin (CTX) for 24 h did not affect the bradykinin-induced [Ca(2+)](i) changes. Application of Ca(2+) channel blockers, diltiazem and Ni(2+), inhibited the bradykinin-induced Ca(2+) mobilization, indicating that Ca(2+) influx was required for the bradykinin-induced responses. Addition of thapsigargin (TG), which is known to deplete intracellular Ca(2+) stores, transiently increased [Ca(2+)](i) in Ca(2+)-free buffer, and subsequently induced Ca(2+) influx when Ca(2+) was readded to this buffer. Pretreatment of CECs with TG completely abolished bradykinin-induced initial transient [Ca(2+)](i), but had slight effect on bradykinin-induced Ca(2+) influx. Pretreatment of CECs with 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF96365) and 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) inhibited the bradykinin-induced Ca(2+) release and Ca(2+) influx, consistent with the inhibition of receptor-gated Ca(2+) channels and phospholipase C (PLC) in CECs, respectively. These results demonstrate that bradykinin directly stimulates B(2) receptors and subsequently Ca(2+) mobilization via a PTX-insensitive G protein in canine CECs. These results suggest that bradykinin-induced Ca(2+) influx into the cells is not due to depletion of these Ca(2+) stores, as prior depletion of these pools by TG has no effect on the bradykinin-induced Ca(2+) influx that is dependent on extracellular Ca(2+) in CECs.  相似文献   

16.
In pulmonary arterial smooth muscle cells (PASMC), acute hypoxia increases intracellular Ca(2+) concentration ([Ca(2+)](i)) by inducing Ca(2+) release from the sarcoplasmic reticulum (SR) and Ca(2+) influx through store- and voltage-operated Ca(2+) channels in sarcolemma. To evaluate the mechanisms of hypoxic Ca(2+) release, we measured [Ca(2+)](i) with fluorescent microscopy in primary cultures of rat distal PASMC. In cells perfused with Ca(2+)-free Krebs Ringer bicarbonate solution (KRBS), brief exposures to caffeine (30 mM) and norepinephrine (300 μM), which activate SR ryanodine and inositol trisphosphate receptors (RyR, IP(3)R), respectively, or 4% O(2) caused rapid transient increases in [Ca(2+)](i), indicating intracellular Ca(2+) release. Preexposure of these cells to caffeine, norepinephrine, or the SR Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA; 10 μM) blocked subsequent Ca(2+) release to caffeine, norepinephrine, and hypoxia. The RyR antagonist ryanodine (10 μM) blocked Ca(2+) release to caffeine and hypoxia but not norepinephrine. The IP(3)R antagonist xestospongin C (XeC, 0.1 μM) blocked Ca(2+) release to norepinephrine and hypoxia but not caffeine. In PASMC perfused with normal KRBS, acute hypoxia caused a sustained increase in [Ca(2+)](i) that was abolished by ryanodine or XeC. These results suggest that in rat distal PASMC 1) the initial increase in [Ca(2+)](i) induced by hypoxia, as well as the subsequent Ca(2+) influx that sustained this increase, required release of Ca(2+) from both RyR and IP(3)R, and 2) the SR Ca(2+) stores accessed by RyR, IP(3)R, and hypoxia functioned as a common store, which was replenished by a CPA-inhibitable Ca(2+)-ATPase.  相似文献   

17.
1,25(OH)(2)-Vitamin D(3) [1,25(OH)(2)D(3)], PTH and 17beta-estradiol increase intracellular Ca(2+) levels ([Ca(2+)](i)) in rat enterocytes by stimulating inner Ca(2+) store mobilization and voltage-dependent Ca(2+) channels through non-genomic activation of second-messenger cascades. The participation of store-operated Ca(2+) (SOC) channels in 17beta-estradiol regulation of enterocyte [Ca(2+)](i) has also been suggested. The aim of this work was to investigate whether PTH and/or 17beta-estradiol exert additive or synergistic effects acting in concert with the classic intestinal calciotropic hormone 1,25(OH)(2)D(3). Fura-2-loaded rat duodenal cells were stimulated using rPTH (10 nM), 17beta-estradiol (0.1 nM) or 1,25(OH)(2)D(3) (0.1 nM). The resulting Ca(2+) signal was characterized by an almost immediate rise in [Ca(2+)](i) (within 30 s) rapidly reaching peak levels, followed by a plateau phase that remained sustained as long as the cells were exposed to the stimulus. The addition of PTH at the sustained phase induced by 1,25(OH)(2)D(3) or, conversely, the addition of the secosteroid after the PTH-induced effect, did not induce additional increases in [Ca(2+)](i). Simultaneous treatment with both hormones resulted in an elevation of [Ca(2+)](i) equivalent to the maximal level caused by either agonist alone, suggesting common components for [Ca(2+)]i stimulation by PTH and 1,25(OH)(2)D(3). Treatment with 17beta-estradiol at the sustained phase induced by 1,25(OH)(2)D(3) or, conversely, treatment with the secosteroid after the 17beta-estradiol effect, induced additional increments in [Ca(2+)](i) (58 % and 63 %, respectively). Simultaneous treatment of enterocytes with both steroids potentiated their individual effects to the same extent as when added sequentially, also indicative of additive actions mediated by different sources of calcium signaling cascades. Moreover, 17beta-estradiol failed to further increase the 1,25(OH)(2)D(3)-induced initial Ca(2+) elevation in Ca(2+)-free medium, thus suggesting that extracellular influx mechanisms rather than intracellular Ca(2+) mobilization account for estrogen potentiation of 1,25(OH)(2)D(3) modulation of [Ca(2+)](i) in duodenal cells.  相似文献   

18.
A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) due to Ca(2+) release from intracellular Ca(2+) stores and Ca(2+) influx through plasmalemmal Ca(2+) channels plays a critical role in mitogen-mediated cell growth. Depletion of intracellular Ca(2+) stores triggers capacitative Ca(2+) entry (CCE), a mechanism involved in maintaining Ca(2+) influx and refilling intracellular Ca(2+) stores. Transient receptor potential (TRP) genes have been demonstrated to encode the store-operated Ca(2+) channels that are activated by Ca(2+) store depletion. In this study, we examined whether CCE, activity of store-operated Ca(2+) channels, and human TRP1 (hTRP1) expression are essential in human pulmonary arterial smooth muscle cell (PASMC) proliferation. Chelation of extracellular Ca(2+) and depletion of intracellularly stored Ca(2+) inhibited PASMC growth in media containing serum and growth factors. Resting [Ca(2+)](cyt) as well as the increases in [Ca(2+)](cyt) due to Ca(2+) release and CCE were all significantly greater in proliferating PASMC than in growth-arrested cells. Consistently, whole cell inward currents activated by depletion of intracellular Ca(2+) stores and the mRNA level of hTRP1 were much greater in proliferating PASMC than in growth-arrested cells. These results suggest that elevated [Ca(2+)](cyt) and intracellularly stored [Ca(2+)] play an important role in pulmonary vascular smooth muscle cell growth. CCE, potentially via hTRP1-encoded Ca(2+)-permeable channels, may be an important mechanism required to maintain the elevated [Ca(2+)](cyt) and stored [Ca(2+)] in human PASMC during proliferation.  相似文献   

19.
The objective of this study was to examine the role of the actin cytoskeleton in the development of pressure-induced membrane depolarization and Ca(2+) influx underlying myogenic constriction in cerebral arteries. Elevating intraluminal pressure from 10 to 60 mmHg induced membrane depolarization, increased intracellular cytosolic Ca(2+) concentration ([Ca(2+)](i)) and elicited myogenic constriction in both intact and denuded rat posterior cerebral arteries. Pretreatment with cytochalasin D (5 microM) or latrunculin A (3 microM) abolished constriction but enhanced the [Ca(2+)](i) response; similarly, acute application of cytochalasin D to vessels with tone, or in the presence of 60 mM K(+), elicited relaxation accompanied by an increase in [Ca(2+)](i). The effects of cytochalasin D were inhibited by nifedipine (3 microM), demonstrating that actin cytoskeletal disruption augments Ca(2+) influx through voltage-sensitive L-type Ca(2+) channels. Finally, pressure-induced depolarization was enhanced in the presence of cytochalasin D, further substantiating a role for the actin cytoskeleton in the modulation of ion channel function. Together, these results implicate vascular smooth muscle actin cytoskeletal dynamics in the control of cerebral artery diameter through their influence on membrane potential as well as via a direct effect on L-type Ca(2+) channels.  相似文献   

20.
Multiple actions of dimethylsphingosine in 1321N1 astrocytes   总被引:2,自引:0,他引:2  
N,N-dimethyl-D-erythro-sphingosine (DMS) is an N-methyl derivative of sphingosine and an inhibitor of protein kinase C (PKC) and sphingosine kinase (SK). In the present study, we examined the effects of DMS on intracellular Ca2+ concentration, pH, and glutamate uptake in human 1321N1 astrocytes. DMS increased intracellular Ca2+ concentration and cytosolic pH in a concentration-dependent manner. Pretreatment of the cells with the Gi/o protein inhibitor PTX and the PLC inhibitor U73122 had no obvious effect. However, removal of extracellular Ca2+ with the Ca2+ chelator EGTA or depletion of intracellular Ca2+ stores with thapsigargin impeded the DMS-induced increase of intracellular Ca2+ concentration. Pretreatment of cells with NH4Cl or monensin reduced the DMS-induced Ca2+ increase. However, inhibition of the DMS-induced Ca2+ increase with BAPTA did not influence the DMS-induced pH increase. DMS also inhibited glutamate uptake by the 1321N1 astrocytes in a concentration-dependent manner. It also increased intracellular Ca2+ and pH in PC12 neuronal cells. Our observations on the effects of DMS on 1321N1 astrocytes and PC12 neuronal cells point to a physiological role of DMS in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号