首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At concentrations of CO2 less than saturating, carbonic anhydrase(EC 4.2.1.1 [EC] ) stimulates the carboxylation of ribulose bisphosphatecatalysed by ribulose bisphosphale carboxylase (EC 4.1.1.3 [EC] .9)in vitro. This is not through any beneficial association ofthe two enzymes but is a consequence of the increased rate ofconversion of HCO3 ion to CO2, the substrate for thecarboxylation. Carbonic anhydrase should always be includedin reaction mixtures used to determine the Michaelis constantof ribulose bisphosphate carboxylase for CO2 where fixationof radioactive CO2 into phosphoglycerate is the basis of rateestimation. The effect is to decrease the value obtained forthe Michaelis constant.  相似文献   

2.
Rintamäki, E. and Aro, E.-M. 1985. Photosynthetic and photorespiratoryenzymes in widely divergent plant species with special referenceto the moss Ceratodon purpureus: Properties of ribulose bisphosphatecarboxylase/oxygenase, phosphoenolpyruvate carboxylase and glycolateoxidase.—J. exp. Bot. 36: 1677–1684. Km(CO2) values and maximal velocities of ribulose bisphosphatecarboxylase/oxygenase (E.C. 4.1.1.39 [EC] ) were determined for sixplant species growing in the wild, consisting of a moss, a fernand four angiosperms. The maximum velocities of the RuBP carboxylasesvaried from 0.13 to 0.;62 µmol CO2 fixed min–1 mg–1soluble protein and the Km(CO2) values from 15 to 22 mmol m–3CO2. The highest Km(CO2) values found were for the moss, Ceratodonpurpureus, and the grass, Deschampsia flexuosa. These plantsalso had the highest ratios of the activities of RuBP carboxylaseto RuBP oxygenase. Glycolate oxidase (E.C. 1.1.3.1 [EC] ) activitieswere slightly lower in D.flexuosa, but not in C. purpureus,than for typical C3 species. Phosphoenolpyruvate carboxylase(E.C. 4.1.1.31 [EC] ) was not involved in the photosynthetic carboxylationby these two plants. However, another grass, Phragmites australis,was intermediate in PEP carboxylase activity between C3 andC4 plants The properties of RuBP carboxylase/oxygenase are discussedin relation to the activities of PEP carboxylase and glycolateoxidase and to the internal CO2 concentration. Key words: RuBP carboxylase, oxygenase, Km(CO2), moss  相似文献   

3.
A sulfite-dependent ATPase [EC 3.6.1.3 [EC] ] of Thiobacillus thiooxidanswas activated and solubilized by treatment with trypsin [EC3.4.4.4 [EC] ], and purified 84-fold with a 32% recovery. It requiredboth Mg2+ and SO32– for full activity, and its optimumpH was found at 7.5–8.0. Mn2+, Co2+, and Ca2+ could partiallysubstitute for Mg2+, while SeO32– and CrO42– couldpartially substitute for SO32–. The enzyme hydrolyzed ATP and deoxy-ATP most rapidly and otherphosphate esters were poorer substrates. The apparent Km valuefor ATP was 0.33 mM. The enzyme activity was strongly inhibitedby 0.2 mM NaN3 and 10 mM NaF. (Received July 27, 1977; )  相似文献   

4.
The metabolic transformation of glycine into serine in the photosyntheticbacterium Chromatium vinosum was accompanied by the evolutionof CO2 due to decarboxylation of glycine. Isonicotinylhydrazideinhibited both 14CO2 evolution and the formation of 14C-serinefrom 14C-glycine. The results indicate that a glycine-serinetransformation reaction takes place which is analogous to thatoccurring in green leaf tissues. Glycine may be metabolisedthrough serine by this reaction. The light stimulation of 14CO2evolution and 14C-serine formation from 14C-glycine by the Chromatiumcells are judged to be results of the light-induced enhancementof 14C-glycine uptake by the bacterial cells. 1This is paper 53 in the series "Structure and Function of ChloroplastProteins" and paper 7 of the series "Biosynthetic Mechanismof Glycolate in Chromatium". Paper 6 of the latter series isRef. 3 by Asami and Akazawa (1978). 2This study was aided by research grants from the Ministry ofEducation, Science and Culture of Japan and the Nissan ScienceFoundation (Tokyo). 3Postdoctoral Fellow (1980) of the Japan Society for the Promotionof Science. (Received May 20, 1980; )  相似文献   

5.
NADP malic enzyme (EC 1.1.1.40 [EC] ) from leaves of two C4 speciesof Cyperus (C. rotundus and C. brevifolius var leiolepis) exihibiteda low level of activity in an assay mixture that contained lowconcentrations of Cl. This low level of activity wasmarkedly enhanced by increases in the concentration of NaClup to 200 mM. Since the activity of NADP malic enzyme was inhibitedby Na2SO4 and stimulated by relatively high concentration ofTris-HCl (50–100 mM, pH 7–8), the activation ofthe enzyme by NaCl appears to be due to Cl. Variationsin the concentration of Mg2+ affected the KA (the concentrationof activator giving half-maximal activation) for Cl,which decreased from 500 mM to 80 mM with increasing concentrationsof Mg2+ from 0.5 mM to 7 mM. The Km for Mg2+ was decreased from7.7 mM to 1.3 mM with increases in the concentration of NaClfrom zero to 200 mM, although the increase of Vmax was not remarkable.NADP malic enzyme from Cyperus, being similar to that from otherC4 species, was able to utilize Mn2+. The Km for Mn2+ was 5mM, a value similar to that for Mg2+. The addition of 91 mMNaCl markedly decreased the Km for Mn2+ to 20 +M. NADP malicenzyme from Setaria glauca, which contains rather less Clthan other C4 species, was inactivated by concentrations ofNaCl above 20 mM, although slight activation of the enzyme wasobserved at low concentrations of NaCl at pH7.6. (Received February 20, 1989; Accepted June 12, 1989)  相似文献   

6.
  1. In the presence of NADP+ and Mg++, the bundle sheath strandsisolated from corn (Zea mays) leaves by cellulase treatmentsdecarboxylated malate in the light at an initial rate (200 µmoles/mgchl.hr), which was sufficient to account for photosyntheticCO2 fixation in intact leaves. This rate gradually slowed downand then stopped. The final level of the malate decarboxylatedwas approximately equal to the amount of NADP+ added.
  2. Rapidand continued decarboxylation of malate was observed whenNADP+,3-phosphoglyceric acid and ATP (and Mg++) were addedtogether.The addition of ADP instead of ATP showed a similareffect.Light did not show any effect on the malate decarboxylationin the presence of ATP or ADP.
  3. When malate was added to thebundle sheath strands in the presenceof exogenous NADP+ NADP+was rapidly reduced. The reductionstopped after 2 min when,73% of the added NADP+ was reduced.The further addition of3-phosphoglyceric acid and ATP broughtabout a decrease in theNADPH-level, which rose again to attaina new steady level.
  4. The transfer of radioactivity from (1-14C-3-phosphoglycericacid to dihydroxyacetone phosphate in the bundle sheath strandsin the presence of ATP and NADP+ was greatly enhanced by theaddition of malate.
  5. In the presence of ribose 5-phosphateand ATP, the rate of 14C-transferfrom (4-14C)-malate to theintermediates of the reductive pentosephosphate cycle was equalto that of 14CO2 fixation in the light.
All these results support the current view that in the bundlesheath cells of C4 plants belonging to the NADP-malic enzyme-group,the decarboxylation of malate is coupled to the fixation ofthe released CO2 and the reduction of 3-phosphoglyceric acidformed as a result of CO2 fixation. 1 Part of this research was reported at the 40th Annual Meetingof the Botanical Society of Japan Osaka, December, 1975. 3 Present address: Laboratory of Chemistry, Faculty of Medicine,Teikyo University, 359 Otsuka, Hachioji-City, Tokyo 173, Japan. (Received April 30, 1977; )  相似文献   

7.
Cell-free extracts of peanut (Arachis hypogaea L., cv. Shulamit)seeds, incubated with various substrates, synthesized ATP. Significantsynthesis occurred in the presence of AMP + PEP, NADH2 + PEPand NAD + PEP. When the activities were examined in extractsprepared with 0.3 M mannitol, the rates were 0.6, 0.1 and 0.04nmol min–1 mg–1 protein, respectively. The activitiesunder such conditions were linear with time up to 90 min incubationat 30 °C. In the presence of PEP + NADH2 there was a higherspecific activity in extracts from non-dormant seeds than fromdormant seeds. No such difference was found when PEP + AMP orNAD + PEP was used as the substrate. The temperature dependenceof the activity showed a relatively high energy of activation(Ea) for AMP + PEP and a low one if NADH2 + PEP or NAD + PEPwas used as substrate. In buffer extracts of seeds ATP was synthesizedin the presence of the above-mentioned substrate combinationsbut the rate of activity exhibited a lag phase at the earlytime of incubation, after which higher rates of activities (ascompared with mannitol extracts) were obtained. The activitieswere Co+-dependent, with a Km of about 0.7 mM. In the bufferextracts relatively high activities of adenylate kinase (EC2.7.4.3 [EC] (AK) and pyruvate kinase (EC 2.7.1.50 [EC] ) (PK) were found.AK was stimulated by ethephon (ethylene). This effect is temperature-dependentand occurs in both directions: in the presence of ADP (ATP +AMP) as well as if ATP + AMP is used as substrate to synthesizeADP. PK is Co+-dependent, and unaffected by ethephon. Both activitieswere stimulated by malonate. Key words: Adenylate Kinase, Arachis hypogaea, ATP synthesis, Peanut, Pyruvate kinase, Seed  相似文献   

8.
Chlorella vulgaris 11h cells grown in air enriched with 4% CO2(high-CO2 cells) had carbonic anhydrase (CA) activity whichwas 20 to 90 times lower than that of algal cells grown in ordinaryair (containing 0.04% CO2, low-CO2 cells). The CO2 concentrationduring growth did not affect either ribulose 1,5-bisphosphate(RuBP) carboxylase activity or its Km for CO2. When high-CO2 cells were transferred to low CO2 conditions,CA activity increased without a lag period, and this increasewas accompanied by an increase in the rate of photosynthetic14CO2 fixation under 14CO2-limiting conditions. On the otherhand, CA activity as well as the rate of photosynthetic 14CO2fixation at low 14CO2 concentrations decreased when low-CO2cells were transferred to high CO2 conditions. Diamox, an inhibitor of CA, at 0.1 mM did not affect photosynthesisof low-CO2 cells at high CO2 concentration (0.5%). Diamox inhibitedphotosynthesis only under low CO2 concentrations, and the lowerthe CO2 concentration, the greater was the inhibition. Consequently,the CO2 concentration at which the rate of photosynthesis attainedone-half its maximum rate (Km) greatly increased in the presenceof this inhibitor. When CO2 concentration was higher than 1%, the photosyntheticrate in low-CO2 cells decreased, while that in high-CO2 cellsincreased. Fractionation of the low-CO2 cells in non-aqueous medium bydensity showed that CA was fractionated in a manner similarto the distribution of chlorophyll and RuBP carboxylase. These observations indicate that CA enhances photosynthesisunder CO2-limiting conditions, but inhibits it at CO2 concentrationshigher than a certain level. The mechanism underlying the aboveregulatory functions of CA is discussed. 1This work was reported at the International Symposium on PhotosyntheticCO2-Assimilation and Photorespiration, Sofia, August, 1977 (18).Requests for reprints should be addressed to S. Miyachi, RadioisotopeCentre, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. (Received December 11, 1978; )  相似文献   

9.
Some enzymic Properties of a partially purified preparationof sucrose phosphate synthetase (E.C.2.4.1.14) from germinatingrice seed scutella were studied. Examination of the reactionkinetics revealed that the rate of synthesis of sucrose phosphatefollows the Michaelis-Menten equation at an optimum PH of 7.5,having Km of 25 mM for UDP-glucose, and of 4.9 mM for fructose6-phosphate. UDP inhibited the enzyme reaction competitively;K1 of 3.3 mM. Fe++ and Fe+++ activated the enzyme reaction about2-fold; Ka, 0.3 mM and 2.0 mM, respectively. Co++, Co(NH3)6+++,Mg++ and Mn++ also activated the enzyme reaction. At high concentrationK+ activated the enzyme reaction with the maximum activationof 24% at 400 mM. The molecular weight and S20,w value of theenzyme were determined as 4.5 ? 105 and 10.4S, respectively. 1Part IV of this series is Ref. (5). 2California Foundation for Biochemical Research Fellow (1973). (Received December 20, 1973; )  相似文献   

10.
The activation of ribulose–1, 5-bisphosphate carb-oxylase/oxygenase(Rubisco, EC 4.1.1.39 [EC] ) from the floating angiosperm Spirodelapolyrhiza (L.) Schleid. (giant duckweed) grown at a photon irradianceof 200 or 400 mol photons m–2 s–1 was consistentlylow, in the range of 56–62%. Similarly low values wereobserved with four other emergent aquatic species growing underfull sun irradiance. Transference of Spirodela plants for short(minutes) or long (days) periods to the higher or lower irradianceincreased or decreased, respectively, the activation by onlyabout 15%. Activation was not greatly altered by exposure ofthe plants to full sun irradiance of >2000 mol photons m–2s–1 or CO2 concentrations in air of 0 and 1170 mol mor–1but darkness caused a slow decline to 20% activation. Transientoscillations were observed following a change in irradianceor CO2 concentration indicating that Rubisco was responsiveto environmental perturbations. The low Rubisco activation wasnot due to the tight binding of inhibitors such as carboxyarabinitol-1-phosphate.It is concluded that a substantial proportion of the Rubiscoprotein in these naturally-occurring species may not be usedfor CO2-fixation at any given moment. Key words: Rubisco  相似文献   

11.
Time courses of photosynthetic 14CO2 fixation and its simulationare presented for Chlorella cells grown under low CO2 concentration(low-CO2 cells) and subsequently exposed to 0.2 mM NaH14CO3or 130 ppm 14CO2 in the presence or absence of carbonic anhydrase(CA) in the suspending medium. It was shown that Chlorella cells utilized only free CO2 whenNaHCO3 was given in the presence or absence of CA, or when CO2was bubbled in the absence of CA. However, the present simulationindicated that both CO3 and HCO3 were utilized when CO2was given in the presence of CA. Based on these results, weconcluded that 1) Chlorella cells absorb only free CO2 and 2)this gas is provided to algal cells in two ways, i.e., by directand indirect CO2 supply. Usually, the dissolved CO2 is directlyutilized by the algal cells (direct supply of CO2). However,when the concentration of dissolved CO2 is extremely low andwhen there is CA, CO2 reconverted from HCO3 is also utilizedby Chlorella cells (indirect supply of CO2). The utilizationof HCO3 indicated by the above simulation was explainedby the indirect supply of CO2. We further assumed that the indirectsupply of CO2 to ribulose 1,5-bisphosphate carboxylase occursmainly in the chloroplasts of low-CO2 cells containing highCA. Thus, under low CO2 concentrations, low-CO2 cells can carryout more efficient CO2 fixation than high-CO2 cells, resultingin the lower apparent Km(CO2). 3Department of Biology, Faculty of Science, Niigata University,Niigata, Japan. (Received April 2, 1980; )  相似文献   

12.
An investigation was made to determine the effective time forCO2 treatment in overcoming self-incompatibility in Brassica.CO2 was effective when supplied to a self-pollinated flowerwhile hundreds of pollen grains were germinating on the stigma.Since the effective time coincides with the attachment of pollentubes to papilla cells, it is thought that CO2 produces a metabolicchange in these cells during attachement. 1Part of a thesis submitted for the Dr. of Agr. degree by thesenior author at Tohoku University. 2Present address: Faculty of Agriculture, Kobe University, Nada-ku,Kobe, Japan. (Received December 7, 1972; )  相似文献   

13.
The development of the lipid synthesizing system in Avena leafsections was examined in connection with carbon fixation duringthe greening of etiolated seedlings under light. During theinitial 2 h illumination there was a low level of CO2 fixationby PEP carboxylation, but its products, malate and citrate,did not serve as a carbon source for lipid synthesis, althoughlipid synthesis from acetate had already been established. Withthe initiation of Calvin cycle activity after the initial 2h illumination, lipid synthesis began, with CO2 fixed by RuBPcarboxylation serving exclusively as the carbon source. Fattyacid synthesis in the leaves during the initial 3 h illumination,unlike the fatty acid synthesis thereafter, was insensitiveto thiolactomycin, an inhibitor of type II fatty acid synthetasecontained in the plastids, and was not dependent on light, incontrast to light-dependent activity in greened leaves. The distribution of 14C incorporated into lipid molecules fromNaH14CO3 showed an equal ratio of 14C in fatty acid, glyceroland choline moieties of labeled phosphatidylcholine, but a denserradioactivity in the galactose moiety than in the residual moietyof mono- and di-galactosyldiacylglycerols. This suggests a regulatedsupply of glycerol, choline and fatty acid moieties for phosphatidylcholinesynthesis, and an excess supply of galactose to diacylglycerolmoiety for galactosyldiacylglycerol synthesis in Avena leaves. (Received October 31, 1984; Accepted January 25, 1985)  相似文献   

14.
Glutamate dehydrogenase (GDH) (EC 1.4.1.3 [EC] .) purified from greentobacco callus mitochondria was activated markedly by Ca2$ inthe amination reaction. This activation was detectable evenat concentrations below 5 µM Ca2$. Saturation curves for the three substrates of the aminationreaction showed normal Michaelis-Menten kinetics in the presenceof 1 mM of Ca2$, but pronounced substrate inhibition occurredwithout Ca2$. The effect of Ca2$ was chiefly on the maximalvelocity. The saturation curve for NH4Cl in the presence of Ca2$ was modulatedby a change in pH. The apparent Km value for NH4Cl markedlydecreased whereas that for -ketoglutarate increased slightlywhen the pH was raised from 7.3 to 9.0. In contrast, the Kmfor NADH was little affected by raising the pH. The characteristicof GDH which increases its affinity for NH4Cl when the pH israised may be compatible with the detoxification of ammonia. 1 Present address: Mochida Pharmaceutical Co., Ltd. (Received August 24, 1981; Accepted November 28, 1981)  相似文献   

15.
We constructed a mathematical model for simulating the relationshipsof extracellular concentration of dissolved inorganic carbon(DIC), the rates of photosynthetic CO2 fixation and glycolatesynthesis, and the concentrations of intrachloroplast CO2 andO2 in Chlamydomonas reinhardtii. When we compared the photosyntheticrates of I0W-CO2 (air)-grown C. reinhardtii measured experimentallyand the rates simulated with the incubation conditions in themodel, the model was found to function well. The calculatedrates for glycolate synthesis also matched the measured ratesbetween 80 to 200 µM extracellular DIC, found in the presenceof 1 mM aminooxyacetate. The conformity of the calculated ratesto the measured ones of the glycolate synthesis encouraged usto estimate the O2 concentration at the active site of ribulosebisphosphate carboxylase/oxygenase; the results were 0.36 and0.40 mM at 80 and 200 µM extracellular DIC, respectively.These high concentrations of O2 were due to stimulation of photosyntheticCO2 fixation and further O2 evolution by a CO2- concentratingmechanism in the low-CO2-grown cells. These cells were calculatedto consume 43% of ATP formed photosynthetically for CO2 concentrationat 200 µM extracellular DIC. The model modified to simulatethese relationships in high-CO2 (3 to 5% CO2)-grown C. reinhardtiipredicted O2 concentration in chloroplasts to be 0.36 mM ina 1% CO2 atmosphere. This high concentration of O2 caused activeglycolate synthesis at the measured rate in the high-CO2-growncells even in the presence of 1% CO2. The comparisons of themeasured and simulated rates of photosynthesis in low- and high-CO2-grownC. reinhardtii indicated that no matter how the CO2 accumulatedin the chloroplasts, it increased the O2 concentration in theorganelles, and consequently enhanced glycolate synthesis. 1This paper is the twenty-first in a series on glycolate metabolismin Euglena gracilis. (Received March 11, 1987; Accepted August 17, 1987)  相似文献   

16.
Carbonic anhydrase (CA, EC. 4.2.1.1 [EC] ) activity in air-grown Characorallina was detected mainly in the intracellular fraction,most of which composed of chloroplasts and cytoplasmic gel,and not on the cell surface. Only minor levels of CA activity,on the basis of equivalent volumes, were detected in the cellsap and the cytoplasmic sol. The maximum rate of photosynthetic O2 evolution by air-grownChara corallina at pH 6.0 was twice that at pH 7.6, while theapparent Km for external inorganic carbon (Ci) at pH 7.6 wasabout three times that at pH 6.0. However, the apparent Km(CO2)was about three times larger at pH 6.0 than at pH 7.6. The Km(Ci)-valueat pH 7.6 increased severalfold in the presence of acetazolamide(AZA), an inhibitor of CA, but no inhibition was observed atpH 6.0. The pH-dependence may be due to differences in the permeabilityof AZA at the given pH values. Fixation of 14CO2 at 20 µMand of H14CO3 at 200 µM over the course of 5 swas very similar at pH 7.4. Addition of CA significantly suppressedthe photosynthetic 14CO2-fixation but it stimulated the H14CO3-fixation.This result indicates that free CO2 is an active species ofCi that is incorporated into the cell during photosynthesis. These results together suggest the following: (1) Free CO2 isutilized for photosynthesis, (2) CA is mainly located insidethe cell and functions to increase the affinity for CO2 in photosynthesisby facilitating the supply of CO2 from the plasmalemma to thesite of CO2-fixation. 3Present address: Biological Laboratory, The University of theAir, Wakaba 2-11, Chiba, 260 Japan. (Received December 9, 1988; Accepted March 22, 1989)  相似文献   

17.
Permeability coefficients (PS values) for CO2 of the plasmamembrane (PM) of the unicellular green algae Eremosphaera viridis,Dunaliella parva, and Dunaliella acidophila, and of mesophyllprotoplasts isolated from Valerianella locusta were determinedfrom 14CO2 uptake experiments using the rapid separation ofcells by the silicone oil layer centrifugation technique. Theexperimental PS values were compared with calculated numbersobtained by interpolation of Collander plots, which are basedon lipid solubility and molecular size, for D. parva cells,mesophyll protoplasts isolated from Spinacia oleracea, mesophyllcells and guard cells of Valerianella, and guard cell protoplastsisolated from Vicia faba. The conductivity of algal plasma membranes for CO2 varies between0.1 and 9 ? 10–6 m s–1, whereas for the plasmalemmaof cells and protoplasts isolated from leaves of higher plantsvalues between 0.3 and 11 ? 10–6 m s–1 were measured.By assuming that these measurements are representative for plantsand algae in general, it is concluded that the CO2 conductivityof algal PM is of the same order of magnitude as that of thehigher plant cell PM. Ps values of plasma membranes for CO2are lower than those for SO2, but are in the same order of magnitudeas those measured for H2O. On the basis of these results itis concluded that theoretical values of about 3000 ? 10–6m s–1 believed to be representative for higher plant cells(Nobel, 1983) and which are frequently used for computer-basedmodels of photosynthesis, lack experimental confirmation andrepresent considerable overestimations. However, with severalsystems, including higher plant cells, the conductance of thePM for CO2 was significantly higher in light than in darkness.This suggests that in light, additional mechanisms for CO2 uptakesuch as facilitated diffusion or active uptake may operate inparallel with diffusional uptake. Key words: Conductivity, CO2, permeability coefficient, photosynthesis, plasmalemma  相似文献   

18.
Changes in photosynthetic carbon metabolism during the glucosebleaching of Chlorella protothecoides cells were investigatedusing NaH14CO3 as tracer. Several hours after incubating thegreen algal cells in the glucose medium in the dark, the ratesof 14C-incorporation into glucose polymers and sucrose decreasedand the incorporation into the lipid fraction (fatty acids)greatly increased. At this stage, the rate of photosynthetic14CO2 fixation and the chlorophyll content were practicallythe same as in the starting green cells. Afterwards, the photosyntheticcapacity and chlorophyll content continued to decrease throughoutthe experimental period. In contrast, when photosynthetic 14CO2fixation of green cells was carried out in the medium containingglucose, the rate of 14C-incorporation into glucose polymersincreased, though there was no change in the incorporationsinto sucrose and the lipid fraction. 1Part of this investigation was reported at the Conference "ComparativeBiochemistry and Biophysics of Photosynthesis" (Japan-U.S. CooperativeScience Program) held at Hakone, Japan in 1967. 2Present address: Faculty of Agriculture, Tamagawa University,Machida-shi, Tokyo, Japan. (Received June 10, 1974; )  相似文献   

19.
Green Light Drives CO2 Fixation Deep within Leaves   总被引:5,自引:0,他引:5  
Maximal l4CO2-fixation in spinach occurs in the middle of thepalisade mesophyll [Nishio et al. (1993) Plant Cell 5: 953],however, ninety percent of the blue and red light is attenuatedin the upper twenty percent of a spinach leaf [Cui et al. (1991)Plant Cell Environ. 14: 493]. In this report, we showed thatgreen light drives 14CO2-fixation deep within spinach leavescompared to red and blue light. Blue light caused fixation mainlyin the palisade mesophyll of the leaf, whereas red light drovefixation slightly deeper into the leaf than did blue light.14CO2-fixation measured under green light resulted in less fixationin the upper epidermal layer (guard cells) and upper most palisademesophyll compared to red and blue light, but led to more fixationdeeper in the leaf than that caused by either red or blue light.Saturating white, red, or green light resulted in similar maximal14CO2-fixation rates, whereas under the highest irradiance ofblue light given, carbon fixation was not saturated, but itasymptotically approached the maximal 14CO2-fixation rates attainedunder the other types of light. The importance of green lightin photosynthesis is discussed. 1Supported in part by grants from Competitive Research GrantsOffice, U.S. Department of Agriculture (Nos. 91-37100-6672 and93-37100-8855).  相似文献   

20.
Stomatal Responses of Variegated Leaves to CO2 Enrichment   总被引:1,自引:0,他引:1  
The responses of stomatal density and stomatal index of fivespecies of ornamental plants with variegated leaves grown attwo mole fractions of atmospheric CO2 (350 and 700 µmolmol-1) were measured. The use of variegated leaves allowed anypotential effects of mesophyll photosynthetic capacity to beuncoupled from the responses of stomatal density to changesin atmospheric CO2 concentration. There was a decrease in stomataldensity and stomatal index with CO2 enrichment on both white(unpigmented) and green (pigmented) leaf areas. A similar responseof stomatal density and index was also observed on areas ofleaves with pigmentation other than green indicating that anydifferences in metabolic processes associated with colouredleaves are not influencing the responses of stomatal densityto CO2 concentrations. Therefore the carboxylation capacityof mesophyll tissue has no direct influence on stomatal densityand index responses as suggested previously (Friend and Woodward1990 Advances in Ecological Research 20: 59-124), instead theresponses were related to leaf structure. The stomatal characteristics(density and index) of homobaric variegated leaves showed agreater sensitivity to CO2 on green portions, whereas heterobaricleaves showed a greater sensitivity on white areas. These resultsprovide evidence that leaf structure may play an important rolein determining the magnitude of stomatal density and index responsesto CO2 concentrations.Copyright 1995, 1999 Academic Press Leaf structure, photosynthesis, stomatal conductance, CO2, stomatal density, stomatal index  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号