首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
The discovery of RNA interference (RNAi), an evolutionary conserved gene silencing mechanism that is triggered by double stranded RNA, has led to tremendous efforts to use this technology for basic research and new RNA therapeutics. RNAi can be induced via transfection of synthetic small interfering RNAs (siRNAs), which results in a transient knockdown of the targeted mRNA. For stable gene silencing, short hairpin RNA (shRNA) or microRNA (miRNA) constructs have been developed. In mammals and humans, the natural RNAi pathway is triggered via endogenously expressed miRNAs. The use of modified miRNA expression cassettes to elucidate fundamental biological questions or to develop therapeutic strategies has received much attention. Viral vectors are particularly useful for the delivery of miRNA genes to specific target cells. To date, many viral vectors have been developed, each with distinct characteristics that make one vector more suitable for a certain purpose than others. This review covers the recent progress in miRNA-based gene-silencing approaches that use viral vectors, with a focus on their unique properties, respective limitations and possible solutions. Furthermore, we discuss a related topic that involves the insertion of miRNA-target sequences in viral vector systems to restrict their cellular range of gene expression. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

3.
Infection of AGMK or CV-1 cells by the early simian virus 40 mutant tsA58 at the permissive temperature (32 degrees C) followed by a shift to the nonpermissive temperature (41 degrees C) caused a substantial decrease in the levels of late viral RNA in the cytoplasm of AGMK cells but not CV-1 cells. At the translational level, this depression of late viral RNA levels was reflected by a decrease in late viral protein synthesis. Thus, in AGMK cells, an early region gene product (presumably large T-antigen) appeared to be continuously required for efficient expression of the late viral genes. In contrast, late simian virus 40 gene expression, once it is initiated in CV-1 cells, continued efficiently regardless of the tsA mutation. The difference in expression of the late simian virus 40 genes in these tsA mutant-infected monkey kidney cell lines may reflect a difference in host cell proteins which regulate viral gene expression in conjunction with early viral proteins.  相似文献   

4.
Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5' untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation.  相似文献   

5.
Both cis elements and host cell proteins can significantly affect HIV-1 RNA processing and viral gene expression. Previously, we determined that the exon splicing silencer (ESS3) within the terminal exon of HIV-1 not only reduces use of the adjacent 3' splice site but also prevents Rev-induced export of the unspliced viral RNA to the cytoplasm. In this report, we demonstrate that loss of unspliced viral RNA export is correlated with the inhibition of 3' end processing by the ESS3. Furthermore, we find that the host factor Sam68, a stimulator of HIV-1 protein expression, is able to reverse the block to viral RNA export mediated by the ESS3. The reversal is associated with a stimulation of 3' end processing of the unspliced viral RNA. Our findings identify a novel activity for the ESS3 and Sam68 in regulating HIV-1 RNA polyadenylation. Furthermore, the observations provide an explanation for how Sam68, an exclusively nuclear protein, modulates cytoplasmic utilization of the affected RNAs. Our finding that Sam68 is also able to enhance 3' end processing of a heterologous RNA raises the possibility that it may play a similar role in regulating host gene expression.  相似文献   

6.
7.
8.
9.
Short interfering RNA (siRNA)-mediated RNA silencing plays an important role in cellular defence against viral infection and abnormal gene expression in multiple organisms. Many viruses have evolved silencing suppressors for counter-defence. We have developed an RNA silencing system in the protoplasts of Nicotiana benthamiana to investigate the functions of viral suppressors at the cellular level. We showed that RNA silencing against a green fluorescent protein (GFP) reporter gene in the protoplasts could be induced rapidly and specifically by co-transfection with the reporter gene and various silencing inducers [i.e. siRNA, double-stranded RNA (dsRNA) or plasmid encoding dsRNA]. Using this system, we uncovered novel roles of some viral suppressors. Notably, the Cucumber mosaic virus 2b protein, shown previously to function predominantly by preventing the long-distance transmission of systemic silencing signals, was a very strong silencing suppressor in the protoplasts. Some suppressors thought to interfere with upstream steps of siRNA production appeared to also act downstream. Therefore, a viral suppressor can affect multiple steps of the RNA silencing pathway. Our analyses suggest that protoplast-based transient RNA silencing is a useful experimental system to investigate the functions of viral suppressors and further dissect the mechanistic details of the RNA silencing pathway in single cells.  相似文献   

10.
RNA silencing in plants and insects can function as a defence mechanism against invading viruses. RNA silencing-based antiviral defence entails the production of virus-derived small interfering RNAs which guide specific antiviral effector complexes to inactivate viral genomes. As a response to this defence system, viruses have evolved viral suppressors of RNA silencing (VSRs) to overcome the host defence. VSRs can act on various steps of the different silencing pathways. Viral infection can have a profound impact on the host endogenous RNA silencing regulatory pathways; alterations of endogenous short RNA expression profile and gene expression are often associated with viral infections and their symptoms. Here we discuss our current understanding of the main steps of RNA-silencing responses to viral invasion in plants and the effects of VSRs on endogenous pathways. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

11.
12.
13.
RNA plant viruses use various translational regulatory mechanisms to control their gene expression. Translational enhancement of viral mRNAs that leads to higher levels of protein synthesis from specific genes may be essential for the virus to successfully compete for cellular translational machinery. The control elements have yet to be analyzed for members of the genus Carmovirus, a small group of plant viruses with positive-sense RNA genomes. In this study, we examined the 3' untranslated region (UTR) of hibiscus chlorotic ringspot virus (HCRSV) genomic RNA (gRNA) and subgenomic RNA (sgRNA) for its role in the translational regulation of viral gene expression. The results showed that the 3' UTR of HCRSV significantly enhanced the translation of several open reading frames on gRNA and sgRNA and a viral gene in a bicistronic construct with an inserted internal ribosome entry site. Through deletion and mutagenesis studies of both the bicistronic construct and full-length gRNA, we demonstrated that a six-nucleotide sequence, GGGCAG, that is complementary to the 3' region of the 18S rRNA and a minimal length of 180 nucleotides are required for the enhancement of translation induced by the 3' UTR.  相似文献   

14.
15.
16.
RNA sensors: novel regulators of gene expression   总被引:5,自引:0,他引:5       下载免费PDF全文
Kaempfer R 《EMBO reports》2003,4(11):1043-1047
  相似文献   

17.
M Groudine  S Das  P Neiman  H Weintraub 《Cell》1978,14(4):865-878
We have investigated the copy number, chromosomal subunit conformation and regulation of expression of integrated avian retrovirus genomes. Our results indicate that there are approximately two copies of the endogenous viral genomes (RAV-O) per haploid cell genome in uninfected chick embryo fibroblasts (CEF) and red blood cells (RBC). The copy number and subunit conformation (as measured by DNAasel sensitivity) of the RAV-O genomes are independent of the level of expression of these viral DNA sequences. In cells isolated from embryos of the V+, gs-chf- and gs+chf+ phenotypes, approximately one of the two viral genomes is in a DNAase l-sensitive conformation. Upon infection with an exogenous Rous sarcoma virus (PR-RSV-C), one new viral genome is integrated per haploid CEF genome. The newly integrated RSV genome is completely sensitive to DNAase l, and the subunit conformation of the endogenous viral genomes is not altered by the integration of additional exogenous proviruses. Both the endogenous and newly integrated exogenous viral genomes are present in "nu-body" structures, and the selective sensitivity of these proviral DNA sequences to DNAase l is maintained in isolated nucleosomes. Our experiments revealing the DNAase l sensitivity of one of the two RAV-O genomes in gs-chf-CEF led us to reexamine the level of viral specific RNA in CEF of various GS genotypes. We find that GS/GS CEF contain approximately 100 copies of viral RNA per cell, gs/gs CEF contain no detectable viral RNA, and the heterozygote GS/gs CEF contain approximately 50 copies of viral specific RNA per cell. These results suggest that the GS gene controls production of RAV-O RNA sequences in CEF in a "cis" fashion. In RBCs, however, the expression of the RAV-O genome is independent of the GS gene, with both GS/GS and gs/gs RBCs containing roughly equivalent amounts of viral specific RNA. Our results suggest that the chromosomal structure of the endogenous viral genes is independent of the GS gene, and that the GS gene is cis-acting and tissue-specific.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号