首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bcl-2 is an anti-apoptotic oncoprotein and its protein levels are inversely correlated with prognosis in many cancers.However, the role of Bcl-2 in the progression of prostate cancer is not clear. Here we report that Bcl-2 is required for theprogression of LNCaP prostate cancer cells from an androgen-dependent to an androgen-independent growth stage. ThemRNA and protein levels of Bcl-2 are significantly increased in androgen-independent prostate cancer cells. shRNA-medi-ated gene silencing of Bcl-2 in androgen-independent prostate cancer cells promotes UV-induced apoptosis and suppressesthe growth of prostate tumors in vivo. Growing androgen-dependent cells under androgen-deprivation conditions resultsin formation of androgen-independent colonies; and the transition from androgen-dependent to androgen-independentgrowth is blocked by ectopic expression of the Bcl-2 antagonist Bax or Bcl-2 shRNA. Thus, our results demonstratethat Bcl-2 is not only critical for the survival of androgen-independent prostate cancer cells, but is also required for theprogression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage.  相似文献   

2.
3.
Survivin, a member of inhibitor of apoptosis family protein, has become an attractive therapeutic target in cancer due to its selective expression in tumor cells and its important roles for tumor cell viability. Here, we show that vector-based small interfering RNAs (siRNAs) silenced survivin expression in prostate cancer cells, resulting in significantly reduced cell proliferation and enhanced apoptosis, and increased the sensitivity of prostate cancer cells (PC-3) to the apoptosis-inducing agent, platinol. Furthermore, PC-3 cells transfected with the siRNA-expressing vector showed lower tumor formation in nude mice xenografts in vivo. These results demonstrated that inhibition of survivin expression by siRNA attenuated the malignant phenotypes of prostate cancer cells, and may provide a novel approach for gene therapy of androgen-independent prostate cancer.  相似文献   

4.
The prostate-specific antigen (PSA), which plays an important role during the liquefaction process of semen, is a differentiation marker for human prostate. It has become the most sensitive marker for monitoring and detecting prostate cancer. PSA as a serine protease can activate some growth factors that might be related to the advancement of prostate cancer by hydrolyzing growth factor-binding protein. The PSA gene is expressed specifically in prostate epithelial cells. The ex-pression of…  相似文献   

5.
The identification of novel biomarkers for early prostate cancer diagnosis is highly important because early detection and treatment are critical for the medical management of patients. Disruption in the continuity of both the basal cell layer and basement membrane is essential for the progression of high-grade prostatic intraepithelial neoplasia (HGPIN) to invasive adenocarcinoma in human prostate. The molecules involved in the conversion to an invasive phenotype are the subject of intense scrutiny. We have previously reported that matrix metalloproteinase-26 (MMP-26) promotes the invasion of human prostate cancer cells via the cleavage of basement membrane proteins and by activating the zymogen form of MMP-9. Furthermore, we have found that tissue inhibitor of metalloproteinases-4 (TIMP-4) is the most potent endogenous inhibitor of MMP-26. Here we demonstrate higher (p〈0.0001) MMP-26 and TIMP-4 expression in HGPIN and cancer, compared to non-neoplastic acini. Their expression levels are highest in HGPIN, but decline in invasive cancer (p〈0.001 for each) in the same tissues. Immunohistochemical staining of serial prostate cancer tissue sections suggests colocalization of MMP-26 and TIMP-4. The present study indicates that MMP-26 and TIMP-4 may play an integral role during the conversion of HGPIN to invasive cancer and may also serve as markers for early prostate cancer diagnosis.  相似文献   

6.
Selenoprotein expression is regulated at multiple levels in prostate cells   总被引:2,自引:0,他引:2  
Selenium supplementation in a population with low basal blood selenium levels has been reported to decrease the incidence of several cancers including prostate cancer. Based on the clinical findings, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect, although low molecular weight seleno-compounds have also been posited to selectively induce apoptosis in transformed cells. To address the effects of selenium supplementation on selenoprotein expression in prostate cells, we have undertaken an analysis of antioxidant selenoprotein expression as well as selenium toxicity in non-tumorigenic prostate epithelial cells (RWPE- 1 ) and prostate cancer cells (LNCaP and PC-3). Our results show that two of the glutathione peroxidase family members (GPX1 and GPX4) are highly induced by supplemental selenium in prostate cancer cells but only slightly induced in RWPE-1 cells. In addition, GPX 1 levels are dramatically lower in PC-3 cells as compared to RWPE- 1 or LNCaP cells. GPX2 protein and mRNA, however, are only detectable in RWPE-1 cells. Of the three selenium compounds tested (sodium selenite, sodium selenate and selenomethionine), only sodium selenite shows toxicity in a physiological range of selenium concentrations. Notably and in contrast to previous studies, RWPE-1 cells were significantly more sensitive to selenite than either of the prostate cancer cell lines. These results demonstrate that selenoproteins and selenium metabolism are regulated at multiple levels in prostate cells.  相似文献   

7.
Peaking of MMP-26 and TIMP-4 marks invasive transition in prostate cancer   总被引:1,自引:0,他引:1  
Li D 《Cell research》2006,16(9):741-741
Prostate cancer is one of the leading health threats to man,and like many other cancers,early detection and treatment iscrucial to improving the prognosis of patients.Progression of the disease from noninvasive high-grade prostatic intraepi-thelial neoplasia (HGPIN) to invasive adenocarcinoma is linked to the action of a group of proteolytic enzymes calledmatrix metalloproteinases (MMPs),which digest various components of the extracellular matrix and thus open waysfor tumor metastasis.Previous studies have shown that one MMP,MMP-26,is expressed at a significantly higher levelin human prostate carcinoma than in normal prostate tissues,and that it appears to play an important role in promotinginvasion of prostate cancer cells [1].In this issue of Cell Research,Lee et al.report detailed analyses of the expressionpattern of MMP-26,along with its most potent endogenous inhibitor,TIMP-4 (TIMP stands for tissue inhibitor ofmetal-loproteinases),in a number of prostate cancer samples derived from human patients [2].Interestingly,they found that  相似文献   

8.
9.
Prostate cancer is one of the most common malignancies.The development and progression of prostate cancer are driven by a series of genetic and epigenetic events including gene amplification that activates oncogenes and chromosomal deletion that inactivates tumor suppressor genes.Whereas gene amplification occurs in human prostate cancer,gene deletion is more common,and a large number of chromosomal regions have been identified to have frequent deletion in prostate cancer,suggesting that tumor suppressor inactivation is more common than oncogene activation in prostatic carcinogenesis (Knuutila et al.,1998,1999;Dong,2001).Among the most frequently deleted chromosomal regions in prostate cancer,target genes such as NKX3-1 from 8p21,PTENfrom 10q23 andATBF1 from 16q22 have been identified by different approaches (He et al.,1997;Li et al.,1997;Sun et al.,2005),and deletion of these genes in mouse prostates has been demonstrated to induce and/or promote prostatic carcinogenesis.For example,knockout of Nkx3-1 in mice induces hyperplasia and dysplasia (Bhatia-Gaur et al.,1999;Abdulkadir et al.,2002) and promotes prostatic tumorigenesis (Abate-Shen et al.,2003),while knockout of Pten alone causes prostatic neoplasia (Wang et al.,2003).Therefore,gene deletion plays a causal role in prostatic carcinogenesis (Dong,2001).  相似文献   

10.
11.
12.
Mechanisms of cancer metastasis to the bone   总被引:14,自引:0,他引:14  
Some of the most common human cancers, including breast cancer, prostate cancer, and lung cancer, metastasize with avidity to bone. What is the basis for their preferential growth within the bone microenvironment? Bidirectional interactions between tumor cells and cells that make up bone result in a selective advantage for tumor growth and can lead to bone destruction or new bone matrix deposition. This review discusses our current understanding of the molecular components and mechanisms that are responsible for those interactions.  相似文献   

13.
NKX3.1 is an androgen-regulated prostate-specific homeobox gene that is thought to play an important role in prostate development and cancerogenesis. NKX3.1 acts as a tumor suppressor gene specifically in the prostate. Up-regulation of NKX3.1 gene offers a promising gene therapy for prostate cancer. The decoy strategy has been developed and is considered a useful tool for regulating gene expression and gene therapy. In our previous studies, we identified a 20 bp inhibitory element upstream of the NKX3.1 promoter.In this study, we focused on using the 20 bp inhibitory element decoy to block negative regulation of the NKX3.1 gene and to up-regulate NKX3.1 expression using synthetic double-stranded oligodeoxynucleotides of the 20 bp inhibitory element. We found in an electrophoretic mobility shift assay experiment that the 20 bp inhibitory decoy presented competitive binding to a specific binding protein of the 20 bp inhibitory element in prostate cancer cell line LNCaP. In luciferase reporter gene assays, we found that the 20 bp inhibitory decoy could enhance NKX3.1 promoter activity, and RT-PCR and Western blot analysis revealed that NKX3.1 expression was up-regulated effectively by the transfection with the 20 bp inhibitory decoy. Furthermore,cell proliferation was inhibited by up-regulated NKX3.1 expression induced by the 20 bp inhibitory decoy.  相似文献   

14.
15.
Fibroblast growth factor receptor (FGFR), a member of tyro- sine kinase family, is composed of three domains, including a three-extracellular Ig-like domain, a transmembrane domain, and a tyrosine kinase domain. FGFR4 is a member of the FGFR family, which plays a pivotal role in tumorigenesis. It has been found that FGFR4 plays an important role in melan- oma, prostate cancer, head and neck cancer, and primary liver cancer malignant development [1,2]. The poor response of FGFR4 to chemotherapy has been associated with its over-expression [3].  相似文献   

16.
TMSG-1 (Tumor metastasis suppressor gene-1) is a cancer metastasis-related gene cloned by means of mRNA differential display from human prostate cancer cell lines with different metas-tatic potential[1], which has higher expression in non-metastatic cell line, whereas lower expres-sion in highly metastatic cell line. In samples of primary gastric carcinoma, the TMSG-1 expres-sion markedly decreased in gastric carcinoma with lymph node metastases. It was found that protein encoded by TMS…  相似文献   

17.
Breast and ovarian cancers exhibit several similar epidemiologic, genotypic and phenotypic characteristics suggesting that similar underlying genetic defects may contribute to the development of both tumor types. Phosphatidylinositol 3 kinase (PI3K) and the PTEN tumor suppressor gene product phosphorylate and dephosphorylate the same 3' site in the inositol ring of membrane phosphatidylinositols. Germline mutations in the PTEN tumor suppressor gene are causative of the Cowden's breast cancer predisposition syndrome and PTEN is frequently mutated or expressed at decreased levels in sporadic breast cancers. PTEN is also frequently mutated in gliomas, prostate cancer, endometrioid ovarian cancer and endometrial  相似文献   

18.
19.
目的 探讨基因甲基化在雄激素非依赖性前列腺癌(androgen-independent prostate cancer,AIPC)转化过程中可能的作用.方法 采用重亚硫酸盐测序PCR(bisulfite genomic sequencing PCR,BSP)联合TA克隆测序检测雄激素依赖性前列腺癌(androgen-dependent prostate cancer,ADPC)细胞株LNCaP和雄激素非依赖性前列腺癌细胞株LNCaP-AI(androgen independent)中生长因子受体结合蛋白10(growth factor receptor-bound protein 10,GRB10)和B细胞性淋巴瘤/白血病-2基因(B-cell lymphoma/leukaemia-2 gene,BCL2)的甲基化状态.结果 GRB10基因在LNCaP-AI细胞和LNCaP细胞中的甲基化率分别为9.6%、7.4%;BCL2基因在LNCaP-AI细胞和LNCaP细胞中的甲基化率分别为14.7%、25.3%,这两个基因在LNCaP细胞和LNCaP-AI细胞的甲基化率差异无统计学意义(P>0.05).结论 GRB10和BCL2基因的异常表达与基因甲基化无明显相关,而二者是否参与到前列腺癌激素非依赖性到转化过程以及具体机制有待进一步研究.  相似文献   

20.
Lin PH  Pan Z  Zheng L  Li N  Danielpour D  Ma JJ 《Cell research》2005,15(3):160-166
NRP-154 is a tumorigenic epithelial cell line derived from the preneoplastic dorsal-lateral prostate of rats. These cells are exquisitely sensitive to TGF-β induced apoptosis. In contrast, we find that NRP-154 cells can sustain overexpression of exogenous Bax protein, which is different from non-tumor cells where Bax functions as a ubiquitous stimulator of apoptosis. NRP-154 cells stably overexpressing Bax show increased sensitivity to TGF-β induced apoptosis. The degree of TGF-β induced apoptosis displays high correlation with cleavage of Bax at the amino-terminus. Our data indicate that prostate cancer cells can host high levels of latent Bax which can be activated through post-translational modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号