共查询到20条相似文献,搜索用时 0 毫秒
1.
贵阳市表层土壤中多环芳烃的分布特征及来源解析 总被引:3,自引:0,他引:3
运用高效液相色谱仪对贵阳市区及近郊的表层土壤中16种多环芳烃(PAHs)进行了定量分析,对其分布特征、污染水平以及来源进行了探讨.结果表明:土壤中PAHs含量为61~ 1560 μg·kg-1,城区土壤样品中PAHs含量为247~1560 μg·kg-1,郊区土壤样品中PAHs含量为61 ~339 μg· kg-1,土壤中4环、5环PAHs含量较高,在土壤PAHs含量中占有绝对优势;参照国外环境标准,对区域表层土壤PAHs的污染现状进行了评价,结果显示,贵阳市表层土壤受到一定程度的PAHs污染.利用相关系数法和典型源三角图法对PAHs的可能来源进行了解析,发现贵阳市的土壤主要受到燃煤排放以及混合污染源——燃煤与汽车尾气排放PAHs的联合污染. 相似文献
2.
太子河水体中多环芳烃分布与污染源解析 总被引:3,自引:0,他引:3
利用振荡提取-硅胶柱净化-HPLC荧光(FLD)/二级阵列检测器(DAD)检测法测定了太子河水中USEPA16种优控多环芳烃(PAHs)的含量。结果表明,枯水期(4月)、丰水期(7月)和平水期(10月)太子河水中PAHs总浓度分别为454.5~1379.7、1801.6~5868.9和367.0~5794.5ng.L-1,同国内外河流相比,太子河水中PAHs污染较严重,且具有明显的季节分布特征,丰水期PAHs浓度远高于枯水期。丰水期、平水期和枯水期太子河水中均以2~3环PAHs为主,但不同季节代表性PAHs的种类不同。污染来源分析表明,枯水期太子河水中PAHs主要来源于石油污染,丰水期和平水期主要来源于石油源和燃烧源的混合源。 相似文献
3.
多环芳烃类化合物在土壤上的吸附 总被引:31,自引:0,他引:31
研究了几种多环芳烃化合物在土壤上的吸附行为.通过一个连续投药-取样试验装置,在没有任何其它有机试剂干扰的情况下,测定了荧蒽与菲在土壤上的吸附量.研究表明,这两种多环芳烃化合物在土壤上的吸附量与土壤有机质含量之间呈显著相关.对多环芳烃化合物的分子结构及理化特性,如辛醇-水分配系数、溶解度等参数与LogKoc关系的研究发现多环芳烃化合物的LogKoc与化合物的水溶性、辛酸-水分配系数以及分子结构中的苯环数线性相关. 相似文献
4.
表面活性剂对土壤中多环芳烃生物有效性影响的研究进展 总被引:9,自引:5,他引:9
表面活性剂能够改变多环节烃(Polycyclic aromatic hydrocarbons,PAHs)在土壤中的溶解度、吸附/解吸平衡和与土壤微生物的相互作用,从而改变PAHs的生物有效性,表面活性剂主要通过降低土壤-水之间的界面张力,增加PAHs的溶解度、促进PAHs的运输等方式来加强PAHs的生物有效性,但由于表面活性剂本身对微生物的毒害作用或无毒的表面活性剂优先作为微生物的生长基质,可能会对PAHs的生物有效性起到抑制作用,另外,表面活性剂对土壤中不同形态的PAHs生物有效性的影响不同,表面活性剂、PAHs和土壤微生物的类型浓度以及土壤的物理化学条件等都对PAHs的生物有效性有影响。 相似文献
5.
多环芳烃污染土壤微生物修复研究进展 总被引:7,自引:1,他引:7
多环芳烃是我国土壤环境质量标准中要求严格管控的一类持久性有机污染物,利用微生物技术修复有机污染土壤具有绿色、经济等突出特点,应用前景广泛。目前多学科的协同发展和新技术的研究应用,为多环芳烃土壤微生物转化机制与污染生态过程等方面带来了新的认识,同时对修复技术的实际应用与调控提供了新的思考方向。本文以多环芳烃污染土壤微生物修复为主体,从污染土壤微生物修复应用技术、多环芳烃微生物降解特征、土壤体系污染物归趋规律与微生物作用及土壤污染微生物群落响应与研究技术等方面进行综合评述,并针对现存应用技术瓶颈和理论空白作进一步思考和展望。 相似文献
6.
7.
污染土壤中多环芳烃的共代谢降解过程 总被引:22,自引:0,他引:22
1 前 言多环芳烃是一类普遍存在于环境中的重要有机污染物 ,因其致癌性、致畸性、致突变性而被认为是危险物质。由于其水溶性低 ,辛醇 水分配系数高 ,因此 ,该类化合物易于从水中分配到生物体内、沉积层中。土壤成为多环芳烃的重要载体 ,多环芳烃污染土壤的生物修复也因此倍受关注。多环芳烃在土壤中有较高的稳定性 ,其苯环数与其生物可降解性明显呈负相关关系。很少有能直接降解高环数多环芳烃的微生物。研究表明 ,高分子量的多环芳烃的生物降解一般均以共代谢方式开始[1 3] 。共代谢作用可以提高微生物降解多环芳烃的效率 ,改变微生物碳… 相似文献
8.
9.
白洋淀土壤中多环芳烃的分布特征及来源 总被引:4,自引:0,他引:4
采用气相色谱质谱联用仪检测了白洋淀表层(0~20 cm)和亚表层(20~30或农田30~40 cm)土壤中16种多环芳烃的含量。结果表明:表层土壤中多环芳烃总量的变化范围为146.0~645.9 ng·g-1,平均含量为417.4 ng·g-1;亚表层土壤中多环芳烃总量的变化范围为43.0~394.5 ng·g-1,平均含量为152.4 ng·g-1。表层土壤中多环芳烃含量与有机碳含量相关性不显著,亚表层土壤中多环芳烃含量与有机碳含量呈显著正相关(P<0.01),这可能表明了土壤埋藏改造过程中PAHs与土壤有机相结合程度不断加强,以及土壤中不同环数多环芳烃的环境行为差异,总体上看,与高环(≥4环)多环芳烃相比,萘、菲等低环(2~3环)多环芳烃更容易向下层迁移。PAHs的源解析分析表明,白洋淀表层土壤的多环芳烃表现出显著的以生物质和煤燃烧为主的源特征,这与淀区的人为活动,如秸秆燃烧等相关。 相似文献
10.
11.
土壤,植物样品中多环芳烃(PAHs)分析方法研究 总被引:59,自引:5,他引:59
土壤、植物和籽实样品分别用四氢呋喃、甲醇、乙酸乙酯以超声技术提取。提取液经旋转浓缩蒸发仪浓缩,经硅胶柱净化后,由高效液相色谱(HPLC)分离,萤光检测分析。对于土壤、植物和籽实样品,其方法回收率根据各个PAH化合物的理化性质不同分别为45.68-93.42、77.59-108.13和79.11-98.96%,结果表明,二氯甲烷、四氢呋喃适合作为土壤样品的提取剂;甲醇、乙酸乙酯分别适合于植物和籽实样 相似文献
12.
13.
污灌土壤中多环芳烃(PAHs)的积累与动态变化研究 总被引:43,自引:5,他引:43
对污灌土壤中 1 4种多环芳烃的分析表明 ,各灌区土壤中 PAHs的积累一般以渠首最高 ,渠中次之 ,渠尾含量与对照相当 .但在沈抚石油灌区上、中和下游土壤中均有PAHs的积累 .此外 ,水稻生长期污灌可明显增加土壤中 PAHs的总量 ,各单一污染物的增、减趋势有所不同 . 相似文献
14.
15.
污染土壤中多环芳烃生物降解的调控研究 总被引:17,自引:6,他引:17
选用温度、湿度、表面活性剂TW80和CNP比4个因素为调控因子,采用正交法进行周期为150天的实验研究.结果表明,30天后,土壤中PAHs的降解率可达44.5~74.6%,60天后,达70.4~93.7%,降解率的不同与调控条件显著相关.在此期间,降解最佳条件为40℃,湿度25%,CNP比为120101,TW80分别为200~500mg·kg-1.实验结束时,土壤中PAHs的降解率达91.2~99.8%.降解的最佳条件是40℃,湿度15%.经R值判别表明,不同时期各因子对PAHs降解影响有所不同.温度对PAHs降解影响较大,表面活性剂对土壤中PAHs的生物降解有调控作用. 相似文献
16.
17.
油田区多环芳烃污染盐碱土壤活性微生物群落结构解析 总被引:2,自引:2,他引:2
多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)是土壤中广泛存在的、美国环保总署(USEPA)优先控制的一类有毒(致癌、致突变)的持久性污染物,主要来源于人类活动。土壤微生物多样性是表征土壤质量变化的敏感指标之一。磷脂脂肪酸(PLFAs)分析方法是基于活性微生物细胞膜的PLFAs组分的生化检测技术,克服了传统培养方法只能分离出少量微生物(1%)的缺点。采用PLFAs方法,解析了土壤活性微生物对PAHs污染胁迫的反应。结果表明,土壤微生物分布情况可分为4种类型:Ⅰ型,微生物PLFAs种类最多,占该区土壤微生物PLFAs种类总数的57.7%,PAHs对变量的解释量最小;Ⅱ型,微生物PLFAs占PLFAs总数的30.8%,PAHs对变量的解释量较小;Ⅲ型,微生物PLFAs种类占总数的7.68%,PAHs对变量的解释量较大;Ⅳ型,微生物PLFAs的种类仅占总数的3.85%,PAHs对变量的解释量最大。相关性分析表明:土壤微生物PLFAs的种类、生物量和生态多样性指数与土壤中萘(Nap)、芴(Flu)、蒽(Ant)、苯并[K]荧蒽(Bkf)、苯并[a]芘(Bap)、茚并[1,2,3-cd]芘(Ind)的相对含量呈负相关关系;与苊(Ace)、菲(Phe)、荧蒽(Fla)、芘(Pyr)、苯并[a]蒽(Baa)的相对含量呈正相关关系;与PAHs的种类和浓度呈负相关关系。结果将为开展PAHs污染土壤的生态风险评价和微生物生物修复技术研究提供理论依据。 相似文献
18.
利用气相色谱-质谱法(GC-MS)测定了白洋淀表层沉积物16种优控多环芳烃的含量,应用统计分析、分子异构体比值、空间插值等方法分析其组成特征、空间分布,进行了风险评价。结果表明,白洋淀表层沉积物中16种优控多环芳烃总量在1.79~1618.90 ng·g-1,均值为411.12 ng·g-1。多环芳烃组成以4环和5环为主,分别占总含量的42.22%和28.21%,单体含量最高的是苯并[b]荧蒽,占比为16.47%,最低的为苊,占比仅为0.26%。说明白洋淀多环芳烃来源于本地输入,较少受到气团输送的影响。多环芳烃空间分布为淀区中心浓度高,四周浓度低,污染尤以淀中心西北部和南部为重,包括安新大桥、烧车淀、采蒲台,其次是寨南和端村。源解析显示,白洋淀表层沉积物多环芳烃含量受木材秸秆等生物质燃烧、煤炭燃烧和石油燃烧的综合影响。生态风险评价结果显示,约1/3的采样点位超过效应区间低值,存在潜在的生态危害。比较2007、2008、2009、2016年的检测数据发现,多环芳烃的平均含量有所下降,可能与淀中村人口密度下降和煤改电有关。 相似文献
19.