首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微生物发酵产光学纯度D-乳酸研究进展   总被引:2,自引:0,他引:2  
D-乳酸作为一种重要的手性中间体和聚乳酸合成的原料,其生产已越来越受到人们的重视。然而,低光学纯度D-乳酸在很多领域的应用都受到限制。微生物发酵法能够生产高光学纯度的D-乳酸。除了乳酸生产的传统菌株-乳酸细菌,研究者们还通过基因工程的手段不断探索其它种属菌株利用更廉价的可再生资源高产光学纯度D-乳酸的可行性。介绍了D-乳酸的物化性质及其在工业生产、化学加工和聚乳酸合成中的应用,并详细综述了国内外发酵法生产光学纯度D-乳酸的最新研究进展,着重介绍了采用基因工程育种策略提高菌株的D-乳酸产量、转化率、生产强度以及光学纯度,降低副产物的合成,扩大底物利用范围的研究成果。所涉及的菌株包括:乳酸细菌、大肠杆菌、谷氨酸棒杆菌以及酵母等。这些研究表明,应用基因工程手段改造生产菌株的代谢途径是选育D-乳酸发酵生产菌株的发展趋势。最后还对D-乳酸发酵生产的前景进行了展望。  相似文献   

2.
发酵初期在米根霉菌发酵培养基中添加L-乳酸可以调控发酵产物乳酸的光学纯度。随着L-乳酸添加量的增加,所产L-乳酸的光学纯度随之增加,当L-乳酸的添加量≥1.5g/L时,D-乳酸不再产生。同时,L-乳酸的产量、生物量、糖转化率也随之降低。该调控方法对乳酸菌调控产L-乳酸光学纯度影响不大,对大肠杆菌发酵调控产D-乳酸光学纯度没有效果。  相似文献   

3.
聚乳酸由可再生原料L-乳酸合成,是目前应用的最环保的生物塑料之一。鼠李糖乳杆菌JCM1553中的L-乳酸和D-乳酸,它们是由代谢途径中的L-乳酸脱氢酶和D-乳酸脱氢酶分别催化丙酮酸而生成。L-乳酸的光学纯度对于L-乳酸的应用至关重要。因此,为了获取光学纯的L-乳酸,需要敲除该鼠李糖乳杆菌编码D-乳酸脱氢酶的基因ldhD以阻断相关的D-乳酸代谢途径。本研究采用pK18mobsacB自杀质粒运用重叠延伸PCR和同源重组技术成功构建得到重组鼠李糖乳杆菌菌株JCM1553-△ldhD。构建的缺失突变体JCM1553-△ldhD菌株没有引入外源基因,完全符合食品、药品安全要求,发酵液中检测到的L-乳酸含量为99.92%,光学纯度达到99.84%,显著优于野生型菌株。  相似文献   

4.
乳酸菌基因组学研究进展   总被引:1,自引:0,他引:1  
乳酸菌(Lactic acid bacteria LAB)是指一类能够通过同型发酵或异型发酵而产生乳酸的细菌。它们一般呈革兰阳性,厌氧,无芽孢,耐酸。根据发酵形式的不同,乳酸菌可以分为两类:同型发酵的菌主要产物为乳酸,而异型发酵的菌除了乳酸还同时产生乙酸、乙醇、二氧化碳及甲酸等。乳酸菌广泛分布于自然界,与人类生活关系密切。在人类的胃肠道、口腔以及生殖道都能够找到一些正常生存的乳酸菌,它们被认为是胃肠道的正常菌群,对于维持肠道的完整性、免疫调节及抑制致病菌、抗感染方面具有重要作用。最近有证据显示乳酸菌还能够加强特异性及非特异性免疫。目前乳酸菌广泛应用于食品发酵、工业乳酸发酵以及医疗保健领域。对于乳酸菌的研究已经从最初的形态学研究发展为细胞水平和分子水平的研究。  相似文献   

5.
信息库     
1.由乳酸菌和芽孢杆菌生产L(+)— 乳酸 乳酸中含有羟基和羰基可以转化成聚酯。由乳酸生产的聚乳酸酯塑料工艺简单,具有强度高,透明度好,热塑性,易加工等优点。这种聚合物可以水解成乳酸再由土壤中的细菌代谢分解成二氧化碳和水。因此它是一种对环境有利的聚合物。如果能用发酵方法生产出廉价的乳酸,作为生物可降解塑料的生产原料,它的需求量将是很大的。化学合成方法生产乳酸的缺点是产品为D-和L-乳酸的混合物。旋光纯度高的L-乳酸能聚合成高结晶的聚合物,适合制造纤维和定向膜。L-乳酸作为旋光性材料还可以用来生产液晶。因此,最要紧的就是要用发酵法生产出旋光纯度高的L-乳酸。  相似文献   

6.
高效利用木糖发酵生产D-乳酸或其他生物质产品,是充分利用木质纤维素的一个关键问题。以高效利用木糖产L-乳酸的Escherichia coli WL204为出发菌株,采用RED基因置换技术将ldhL基因置换为ldhA基因,获得一株能利用木糖产D-乳酸的大肠杆菌工程菌株Escherichia coli LHY02,该菌株利用10%木糖发酵,D-乳酸产量达到84.4 g/L,产物光学纯度达到99.5%。此外,该菌株仍然具有较好的利用葡萄糖产D-乳酸的能力。  相似文献   

7.
以薏苡仁作为发酵基质,确定利于提高发酵液体外活性的较优乳酸菌种,并分析优势乳酸菌种薏苡仁发酵液对斑马鱼胚体黑色素生成的抑制作用。通过比较分析乳酸乳球菌(Lactococcus lactis)、嗜热链球菌(Streptococcus thermophilus)和保加利亚乳杆菌(Lactobacillus bulgaricus)3种单一乳酸菌和三者复合乳酸菌的薏苡仁发酵液的还原糖、总酚、游离氨基酸、蛋白、总酸和乳酸含量等理化指标及体外羟自由基清除能力和酪氨酸酶活抑制率确定较优发酵菌种,采用高通量测序测定发酵过程中微生物菌群结构;利用斑马鱼模型研究发酵液对黑色素生成的抑制作用。研究结果表明,采用乳酸乳球菌、嗜热链球菌和保加利亚乳杆菌3种乳酸菌复合发酵比单一乳酸菌发酵更具优势。使用以上菌种复合发酵薏苡仁过程中,乳酸乳球菌和嗜热链球菌为发酵前期优势菌群,发酵中后期则以保加利亚乳杆菌为优势菌群。经复合乳酸菌发酵后,薏苡仁发酵液的羟自由基清除率和酪氨酸酶活抑制率分别提高了20.82%和87.26%;斑马鱼模型实验结果表明,薏苡仁发酵液可以显著减少斑马鱼体表黑色素分布,当使用含量为2.0%时,对黑色素...  相似文献   

8.
本文提出了利用海藻酸钙凝胶包埋固定化乳酸菌生产乳酸,用离子交换树脂从发酵液中分离出乳酸的新方法。该法成功地消除了产物乳酸对乳酸菌生长和产物乳酸形成的抑制作用,使发酵时间由120小时缩短到96小时,乳酸的体积生产率由0.328g/L·h提高到0.432g/L·h。  相似文献   

9.
手性在自然界中普遍存在,与生命现象密切相关,也显著影响物质的性能。手性医药化学品的化学合成存在原子经济性、过程经济性差、环境污染和资源浪费严重等问题。生物合成技术具有过程绿色、选择性好等优势。近年来,生物合成技术在手性医药化学品合成关键酶的选择、催化机制解析、光学纯手性中间体合成途径构建、工艺开发及放大生产等方面均取得长足进步,有望解决手性中心构筑复杂、光学纯度低、污染大等手性化学品制造的瓶颈问题,推动我国医药行业的绿色可持续发展。本文主要总结了中国科学院天津工业生物技术研究所成立以来在手性医药化学品生物催化合成方面的一些研究进展。  相似文献   

10.
乳杆菌属(Lactobacillus)菌为革兰阳性无芽胞杆菌,细胞形态呈多样性,一般形成链杆状或球杆状。DNA的G+C为32~53mol%,因能发酵糖类产生大量乳酸而得名。在自然界中分布广泛,有些菌株是人和动物口腔、肠道及阴道的正常菌群之一。乳杆菌与乳酸菌(Lactic acid bacteria,LA.B)不同,乳酸菌指的是一类可发酵碳水化合物产乳酸的细菌通称,  相似文献   

11.
利用五碳糖产高纯度L-乳酸的大肠杆菌基因工程菌的构建   总被引:1,自引:0,他引:1  
[目的]本研究以已敲除多个产杂酸酶基因的大肠杆菌(Escherichia coli)乙醇工程菌SZ470(△frdBC △ldhA △ackA △focA-pflB △pdhR::pflBp6-pflBrbs-aceEF-lpd)为起始菌株,进一步敲除其乙醇脱氢酶(alcohol dehydrogenase,ADH)基因,同时插入带有自身启动子的乳酸片球菌(Pediococcus acidilactici)的L-乳酸脱氢酶(L-lactate dehydrogenase,LLDH)基因,构建可利用五碳糖同型发酵L-乳酸重组大肠杆菌.[方法]利用λ噬菌体Red重组系统构建乙醇脱氢酶基因(adhE)缺失菌株Escherichia coli JH01,并克隆P.acidilactici的ldhL基因,利用染色体插入技术将其整合到JH01基因组,构建产L-乳酸大肠杆菌基因工程菌Escherichia coli JH12,利用无氧发酵15 L发酵罐测定重组菌株L-乳酸产量.[结果]工程菌JH12在15 L发酵罐中以6%的葡萄糖为碳源进行发酵,发酵到36 h的过程中葡萄糖的消耗速率为1.46 g/(L·h),乳酸生产强度为1.14 g/(L·h),乳酸的产量达到41.13 g/L.发酵产物中未检测到琥珀酸、甲酸的生成,仅有少量乙酸生成,L-乳酸纯度达95.69%(L-乳酸在总发酵产物的比率).工程菌JH12以6%的木糖为碳源进行发酵,发酵到36 h的过程中葡萄糖的消耗速率为0.88 g/(L·h),乳酸生产强度为0.60 g/(L·h),乳酸的产量达到34.73 g/L.发酵产物中杂酸少,乳酸的纯度高达98%.[结论]本研究通过基因敲除、染色体插入及无氧进化筛选获得一株产L-乳酸的大肠杆菌工程菌JH12,该菌株不需利用外源质粒,稳定性好,可利用五碳糖进行发酵,发酵产物中杂酸少,L-乳酸的纯度高.本研究为L-乳酸大肠杆菌工程菌的构建提供一定的技术支持,同时也为大肠杆菌L-乳酸的工业化生产提供了参考依据.  相似文献   

12.
L-苯丙氨酸 (L-Phe) 是一种重要的必需氨基酸,广泛应用于食品、饲料添加剂以及医药等领域.L-Phe主要由化学合成法、酶法和微生物发酵法等3种方法来生产.其中,微生物发酵法由于具有原料廉价易得、环境污染较小、产物纯度高等优点成为目前国内外工业化生产L-Phe的主要方法.本文主要以大肠杆菌为例对L-Phe生物合成途...  相似文献   

13.
萜类化合物(terpenoids)是自然界中分布最广泛的天然产物,因其多样的生理活性和经济价值而被人们认识和开发。近年来,代谢工程及合成生物学的发展使得生物合成萜类化合物备受关注。本文中,笔者总结了萜类化合物合成的路线及其在大肠杆菌研究中取得的进展,探讨和展望了可能的发展方向,为大肠杆菌微细胞工厂合成萜类产物的研究提供参考和启示。  相似文献   

14.
为了强化厨余垃圾发酵L-乳酸的产量和光学纯度,研究了pH对米根霉AS3.819发酵厨余垃圾生产乳酸及其光学特性的影响。结果表明,在中温条件下(34℃),米根霉生长的最适pH为7,最适发酵条件为8。用米根霉发酵非灭菌的厨余垃圾生产乳酸,发酵液中还原糖浓度低,且呈先升高,后下降到最低的趋势。pH调节到近中性和偏碱性(pH6、7、8)的各组还原糖浓度高于偏酸性组(pH 5和对照组)。控制pH为8时,总乳酸产生速率达1 g/(L·h),L-乳酸是主要的异构体形式,L-乳酸在总乳酸中的比例在整个发酵时间段内都保持在0.75以上,L-乳酸浓度最高达到59.8 g/L,L-乳酸光学纯度可达到0.99。控制pH为8时,可以同时获得高的乳酸产量和光学纯度。  相似文献   

15.
L-丝氨酸是生物体内一种重要的中间代谢产物,为甘氨酸等多种氨基酸、核苷酸、胆碱、磷脂的合成前体,现已广泛应用于医药、食品、化妆品等领域。L-丝氨酸的生产方法有蛋白质水解提取法、化学合成法、转化法及微生物发酵法,其中微生物发酵法具有原料廉价、环境污染小、产物纯度高等优点。系统综述了微生物发酵法生产L-丝氨酸所涉及的代谢工程策略,包括微生物合成L-丝氨酸的各种代谢调控机制及相应采取的改造措施和效果,并探讨了L-丝氨酸育种技术未来的发展趋势。  相似文献   

16.
【目的】研究接种植物乳杆菌对小规模饲料稻品质的影响。【方法】以自然发酵的样品为对照,接种不同来源植物乳酸菌发酵饲料稻,发酵30 d后对饲料稻的感官进行评价;通过选择性平板对饲料稻青贮中的不同微生物进行计数;并采用V-Score评价法对发酵品质进行评定。【结果】相对自然发酵的样品而言,接种植物乳杆菌的青贮样品感官评分等级达到优良;乳酸菌为优势菌株,引起腐败变质的好氧菌、霉菌、大肠杆菌等受到抑制;接种发酵的样品中乳酸含量明显增加,氨态氮的产生量为对照的1/2左右,V-Score评分为满分。【结论】供试的植物乳杆菌,尤其是从青饲料和青贮材料中分离的菌株能有效改善饲料稻青贮的品质,可考虑用作青贮饲料稻发酵剂。  相似文献   

17.
以保加利亚乳杆菌Lactobacillus delbrueckii subsp. bulgaricus CICC21101为出发菌株,利用PCR扩增L-乳酸脱氢酶(ldhL)基因上下游序列ldhL1、ldhL2,获得ldhL基因缺失且包含上下游序列的片段,连接到乳酸菌专用温敏性基因敲除质粒pGhost4,将构建好的敲除载体电转入保加利亚乳杆菌CICC21101,低温筛选。结果表明,成功获得敲除ldhL基因的敲除突变株,敲除后的工程菌D-乳酸产量由30. 5g/L降为4. 8g/L,L-乳酸的产量由25. 4g/L增至58. 3g/L,光学纯度由54. 56%增至90%。同时发现ldhL-ldb0094基因的敲除致使ldhL-ldb1020表达的上调,D-乳酸脱氢酶(ldbD)基因表达量没有变化,ldhL基因敲除株的成功构建将为进一步研究该基因在保加利亚乳杆菌中的功能及后续高光学活性D-乳酸工程菌构建奠定基础。  相似文献   

18.
副干酪乳杆菌的功能特性及其应用研究进展   总被引:1,自引:0,他引:1  
副干酪乳杆菌(Lactobacillus paracasei)属于乳杆菌属,是一种革兰氏阳性细菌。它不仅具有抑菌和免疫调节性能,对人体有很好的益生作用,而且可以用于代谢合成重要的生物化学品,近几年引起了国内外的关注。本文对副干酪乳杆菌的菌株筛选鉴定、功能特性及其在微胶囊技术、L-乳酸生产、苯乳酸合成等方面的应用研究进展等进行了综述,同时对其研究发展方向进行了探讨。  相似文献   

19.
乳酸菌作为传统食品级微生物,长期应用于食品工业、生活保健、临床医学领域中。随着人们对乳酸菌特殊功能需求的提升,传统筛菌方法由于其技术繁复、周期长、成功率低等缺点,逐渐成为制约乳酸菌行业发展的瓶颈。合成生物学技术的出现,将具有特定功能的基因电路网络导入细胞基因组中,让细胞来完成设计者设想的各种任务,可为解决乳酸菌功能菌株开发难题提供新的机遇。探讨了乳酸菌的菌种特点及其作为合成生物学底盘的优势,综述了乳酸菌合成生物学中元件设计、载体选择、转化方法和基因编辑技术的发展现状,总结并展望了工程化乳酸菌在疾病诊断治疗、食品改善品质和生物能源等方面的应用,讨论了合成生物学在乳酸菌领域进一步应用所需实现的技术突破,旨为乳酸菌合成生物学的发展提供借鉴。  相似文献   

20.
【背景】耐受乙酸的乳酸菌是传统谷物醋醋酸发酵过程中产生乳酸及其风味衍生物的重要功能微生物。【目的】从镇江香醋醋醅中分离鉴定具有耐乙酸特性的乳酸菌,并评价不同条件下该菌株的产乳酸能力。【方法】利用4%(体积比)乙酸含量的MRS培养基分离耐乙酸乳酸菌;对其进行16S rRNA基因鉴定、基因组测序、形态观察以及生理生化特性研究;考察不同乙酸浓度、葡萄糖浓度、发酵温度和时间对菌株产乳酸能力的影响。【结果】分离得到一株可耐受6%乙酸的乳杆菌Lactobacillus sp. JN500903;在厌氧静置、接种量5%、乙酸浓度5%、葡萄糖浓度40 g/L、发酵温度37°C、发酵时间10 d条件下,该菌株乳酸产量为16.1 g/L。【结论】乳杆菌JN500903能够耐受6%乙酸浓度,具有在酸性环境下合成乳酸的能力,有一定的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号