首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
骨髓基质干细胞向心肌细胞诱导分化的实验研究   总被引:1,自引:0,他引:1  
目的探讨大鼠骨髓基质干细胞在体外和体内向心肌细胞诱导分化的能力,为下一步的细胞移植治疗心肌梗死提供实验基础.方法体外诱导实验中,将不同浓度的5-氮胞苷作用于不同培养时间的骨髓基质干细胞,摸索5-氮胞苷的最佳诱导时机和浓度,观察诱导后细胞形态变化,并用免疫细胞化学染色检测心肌特异性肌钙蛋白T的表达;在体内实验中,培养扩增的骨髓基质干细胞经BrdU标记后,自体移植于正常心肌内,分别通过BrdU和心肌特异性肌钙蛋白T免疫组织化学染色检测移植细胞的存活和分化情况.结果体外诱导实验中,5-氮胞苷的诱导作用以10μmol/L的浓度对传代细胞进行两次诱导,效果最好,不仅能诱导出表达心肌特异蛋白的心肌样细胞,而且这些细胞在体外能够自发搏动.体内诱导实验中,移植的细胞在正常心肌微环境中能够存活并分化为心肌细胞.结论骨髓基质干细胞在体外化学诱导和体内心肌微环境诱导时均能分化为心肌细胞,可用于细胞移植治疗心肌梗死的实验.  相似文献   

2.
近年来, 在细胞治疗和再生医学领域, 自体或异体细胞移植治疗疾病正在成为现实. 骨髓间充质干细胞具有分化成多种细胞的潜能, 已被广泛用于各种疾病的研究和治疗. 活体追踪移植细胞, 检测移植细胞的生存及功能状态对于评价移植治疗效果至关重要. 目前, 利用磁共振对比剂超顺磁性氧化铁颗粒(SPIO), 活体追踪和监测标记细胞已被广泛用于动物实验研究和一些临床疾病诊断. 但 MRI 信号不能显示移植细胞在体内的生物学特征. 本研究中, 对食蟹猴骨髓间充质干细胞体外标记Molday ION rhodamine-BTM(MIRB), 探讨MIRB 标记后cMSCs 的细胞生物学特性, 以及脑内移植后的活体MRI 影像学及组织学追踪. 结果表明, MIRB 具有生物组织相容性, 能高效标记cMSCs, 可用于体内多模式追踪移植细胞, 为利用MIRB 追踪和检测移植细胞, 以及干细胞移植治疗机制的研究提供资料.  相似文献   

3.
中枢神经系统损伤后的再生修复问题一直是神经科学领域关注的重点之一,骨髓间充质干细胞移植治疗拓宽了人类中枢神经系统损伤的治疗前景,而非侵入性的磁共振成像能活体追踪移植细胞,评价移植效果。应用菲立磁标记食蟹猴骨髓来源的间充质干细胞,在脑立体定位仪引导下,自体脑内移植。结果显示,菲立磁标记间充质干细胞的有效率高达90%以上,移植区磁共振影像呈明显的低信号改变。标记的间充质干细胞移植后在脑内存活,并向周围的脑实质内迁移。移植8周后,发现移植细胞通过血管向对侧脑部迁移,但并未发现移植细胞向神经细胞分化。这些结果提示,菲立磁可用于标记、追踪脑内移植的食蟹猴骨髓间充质干细胞,标记的移植细胞可在脑内存活、迁移。  相似文献   

4.
不同类型的细胞核移植效率不同,原因之一可能是不同类型细胞核移植后进行重编程的潜力不同.本实验对猪骨髓间充质干细胞(porcine bone marrow mesenchymal stem cells,pMSCs)体外分离培养的方法进行了优化.对猪骨髓间充质干细胞的增殖及生长特性进行了观察分析,并以其作为供体细胞进行核移植,对此类型细胞进行重编程的潜力进行了评估.结果表明用密度梯度离心法分离猪骨髓间充质干细胞优于全骨髓贴壁法:猪骨髓间充质干细胞数目在培养第6天达到峰值,传代培养10 h时,贴壁率达到78.50%;传代培养后第4天分裂指数最高,为24.00‰;以猪骨髓间充质干细胞(pMSCs)和猪胎儿成纤维细胞(PF)分别作为供核细胞构建核移植胚胎,其体外囊胚发育率分别为14.63%与15.07%(P>0.05),孤雌对照组囊胚发育率为30.91%(P<0.05);而三组囊胚细胞数分别为30.67±17.7、24.1±6.5和25.8±11.4(P>0.05).实验表明,体外培养的猪骨髓间充质干细胞生长增殖旺盛,生物学性状稳定.并适合作为核移植供体细胞.  相似文献   

5.
目的随着干细胞研究的推进,大鼠干细胞的研究日趋迫切。本研究旨在为活体荧光影像系统、干细胞归巢、细胞移植体内示踪研究,提供绿色荧光蛋白EGFP转基因大鼠模型。方法通过显微注射方式获得EGFP转基因大鼠,采用活体荧光影像系统、激光共聚焦显微镜,对EGFP转基因大鼠各个组织的荧光表达水平进行比较;采用流式细胞术检测转基因大鼠血液和骨髓细胞、骨髓干细胞的荧光标记率,筛选骨髓干细胞高效标记绿色荧光的转基因大鼠。结果建立了心脏、肝脏、肌肉、肺、胰腺、脑、膀胱、胃、肾脏、肠和脾脏组织中,系统性表达EGFP的SD-TgN(ACT-EGFP-1)ZLFILAS转基因大鼠;流式细胞术检测表明,该品系血液细胞绿色荧光标记率为94.4%,骨髓干细胞绿色荧光标记率为97.8%。结论建立了多组织系统性高表达绿色荧光,骨髓干细胞荧光标记率高达95%以上的转基因大鼠,为影像分析,造血干细胞的归巢等研究提供了大鼠模型。  相似文献   

6.
目的:比较骨髓间充质细胞(Bone Marrow Mesenchymal Stem Cells,BM/MSC)和骨髓源内皮祖细胞(Bone Marrow Endothelialprogenitor cells,BM/EPC)移植促进血流重建的效果,为进一步优化骨髓干细胞移植治疗肢体缺血提供理论基础。方法:获取Lewis大鼠骨髓单个核细胞,在体外培养分化为MSC和EPC。采用Lewis大鼠建立单侧后肢缺血模型。在模型建立后3天,将0.8mlD-Hanks液注入大鼠缺血侧后肢,为对照组(n=6);将8×106个骨髓MSC植入大鼠缺血侧后肢,为MSC组(n=6);将体外培养的8×106个EPC植入大鼠缺血侧后肢,为EPC组(n=6)。细胞移植后3周行缺血大鼠后肢动脉造影,检测缺血侧后肢侧支血管数;获取缺血侧后肢腓肠肌,分别行CD31和α-SMA免疫组化染色,计算毛细血管密度和小动脉密度。结果:MSC组与EPC组侧支血管数无显著性差异,二者均高于对照组;EPC组毛细血管密度明显高于MSC组,二者均高于对照组;MSC组与EPC组小动脉密度无显著性差异,二者均高于对照组。结论:骨髓间充质干细胞移植和内皮祖细胞移植均能够明显促进血流重建,而且骨髓间充质干细胞在治疗肢体缺血性疾病中的优势应该受到重视。  相似文献   

7.
目的:从脂肪组织中获取间充质干细胞(ADMSCs)并验证其多向分化潜能,探讨ADMSCs在肝再生中的作用。方法:获取大鼠脂肪组织,用胶原酶消化法获取干细胞,并进行体外扩增、传代,取第3代细胞分别用不同诱导培养液进行成骨、成脂诱导,诱导后通过细胞形态学和特殊染色观察诱导效果。用PKH26标记细胞,制作部分肝切除模型,将标记的自体ADMSCs经门静脉植入体内,2周后切下取肝脏制成冰冻切片,荧光显微镜观察植入细胞在肝脏的定位,免疫荧光染色观察其白蛋白的表达。结果:从脂肪组织中分离出的细胞能在体外大量扩增,能被诱导分化为成骨细胞、脂肪细胞,ADMSCs移植2周后,可见PKH26标记细胞散在分布于肝内,免疫荧光染色显示标记细胞白蛋白染色阳性。结论:大鼠脂肪组织中可以获取具有多向分化潜能的间充质干细胞,该细胞在肝再生环境中能向肝细胞分化,参与肝再生。  相似文献   

8.
目的:探究Periostin(骨膜蛋白)表达上调对雌性去势大鼠骨髓间充质干细胞(BMSCs)成骨分化、细胞增殖与凋亡特性的作用。方法:通过去势手术建立雌性大鼠骨质疏松模型,待建模成功后分离培养并鉴定BMSCs,利用含有增强型绿色荧光蛋白(EGFP)和大鼠Periostin基因的重组慢病毒转染P3代BMSCs,成骨诱导后鉴定其成骨分化能力改变,流式细胞仪检测其细胞周期以及细胞凋亡率的变化。结果:成功建立骨质疏松模型;荧光显微镜下观察到绿色荧光提示慢病毒载体实现转染并表达目的蛋白;慢病毒转染组BMSCs成骨诱导后ALP及茜素红染色较去势组BMSCs染色加深;慢病毒转染组BMSCs的S期细胞比例为(17.07±0.56)%,显著高于去势组BMSCs的S期细胞比例(8.42±0.02)%,差异具有统计学意义(P0.05);慢病毒转染组BMSCs的细胞凋亡率为(7.3±0.1)%,显著低于去势组BMSCs的凋亡率(12.05±0.55)%,其差异具有统计学意义(P0.05)。结论:Periostin表达上调可提高去势骨髓间充质干细胞的成骨分化及细胞增殖能力,并对其凋亡有抑制作用。  相似文献   

9.
骨髓间质干细胞定向分化的研究进展   总被引:4,自引:0,他引:4  
Gao B  Liu C  Wang HX 《生理科学进展》2000,31(3):249-252
骨髓间质干细胞是多能细胞 ,可分化成为间质组织 ,包括骨、软骨、脂肪、肌腱、肌肉和骨髓基质。在体外培养时 ,细胞贴附生长 ,呈成纤维样细胞表型 ,通过诱导可分化为成骨细胞、软骨细胞、脂肪细胞或肌肉细胞等。本文综述间质干细胞在体内和体外定向分化的研究进展 ,并探讨其应用前景。  相似文献   

10.
目的建立四氯化碳诱导的兔肝纤维化动物模型,观察体外分离标记的自体骨髓单核细胞(ABM-MNCs)经肠系膜上静脉自体移植至肝纤维化区及周边区后的存活、定植状况。方法将40只普通级日本大耳家兔随机分为细胞移植组和对照组各20只,实验组腹腔注射40%CCl4橄榄油溶液建立肝纤维化模型,对照组腹腔注射等量生理盐水。细胞移植组于模型稳定后自体髂骨处抽取骨髓,采用氯化氨红细胞溶解法分离得到单核细胞,以5溴-2脱氧尿嘧啶核苷(BrdU)标记体外ABM-MNCs及鉴定;分离培养ABM-MNCs,将3×10^9个ABM-MNCs经肠系膜上静脉回输体内,对照组回输等量生理盐水,移植前、移植后3、7、14、21 d分别取肝组织固定,进行免疫组织化学检测。结果BrdU体外标记ABM-MNCs的免疫组织化学表现示:20μmol/L BrdU孵育ABM-MNCs 72 h的阳性标记率达95%;肝组织20μmol/L BrdU免疫组化染色切片显示:自体骨髓单核细胞移植后第3天,肝小叶中央静脉周围BrdU染色阳性,随着时间的推移,阳性染色逐渐增强,并逐步向肝组织内部延伸。阳性染色主要分布于肝组织汇管区周围组织,而对照组BrdU染色则阴性。结论ABM-MNCs经肠系膜上静脉移植后,可在纤维化区及周边区存活,定植。  相似文献   

11.
Bone remodelling after the implantation of freeze-dried autogenous bone in rat parietal bone was compared with fresh autogenous bone transplantation, using a scanning electron and light microscope revealed the time intervals after transplantation/implantation. The light microscope revealed the time delay of the bone remodelling in the implantation, compared with the transplantations. The scanning electron microscope showed that the differences between the two groups were in the states of bone union and bone resorption. In the fresh bone group, the newly-formed bone filled the spaces between host and the transplanted bones at 2 to 3 weeks after the transplantation: the newly-formed bone fused and melted into the transplanted bone. New bone formation was more dominant on the bone surface in the dura mater side than in the skin side. The union was almost completed at 5 weeks. In freeze-dried bone implantation, the bone union in the contact space was very poor and the implanted bone was mainly covered by the new bone, which developed from the host bone surface in the dura mater side at 2 to 3 weeks after the implantation. What is noteworthy is that bone resorbed areas showing numerous Howship's lacunae were mainly observed on the host bone surface in the vicinity of newly-formed bone. However in freeze-dried bone implantation, the bone resorption was greater on the host and implanted bone surface than that of fresh bone transplantation: the resorption of host bone was considerably larger at certain periods after freeze-dried bone implantation. The present results show that the healing process of freeze-dried bone implantation, even though autogenous bone was used, differed from that of fresh autogenous bone transplantation, and the differences are concerned not only with time sequences but also with qualitative changes. This suggests that the host would have some different responses to the freeze-dried autogenous bone from fresh materials.  相似文献   

12.
Mesenchymal stem cells (MSCs) have generated a great deal of promise as a potential source of cells for cell-based therapies. Various labeling techniques have been developed to trace MSC survival, migration, and behavior in vitro or in vivo. In the present study, we labeled MSCs derived from rat bone marrow (rMSCs) with florescent membrane dyes PKH67 and DiI, and with nuclear labeling using 5 μM BrdU and 10 μM BrdU. The cells were then cultured for 6 d or passaged (1–3 passages). The viability of rMSCs, efficacy of fluorescent expression, and transfer of the dyes were assessed. Intense fluorescence in rMSCs was found immediately after membrane labeling (99.3?±?1.6% PKH67+ and 98.4?±?1.7% DiI+) or after 2 d when tracing of nuclei was applied (91.2?±?4.6% 10 μM BrdU+ and 77.6?±?4.6% 5 μM BrdU+), which remained high for 6 d. Viability of labeled cells was 91?±?3.8% PKH67+, 90?±?1.5% DiI+, 91?±?0.8% 5 μM BrdU+, and 76.9?±?0.9% 10 μM BrdU+. The number of labeled rMSCs gradually decreased during the passages, with almost no BrdU+ nuclei left at final passage 3. Direct cocultures of labeled rMSCs (PKH67+ or DiI+) with unlabeled rMSCs revealed almost no dye transfer from donor to unlabeled recipient cells. Our results confirm that labeling of rMSCs with PKH67 or DiI represents a non-toxic, highly stable, and efficient method suitable for steady tracing of cells, while BrdU tracing is more appropriate for temporary labeling due to decreasing signal over time.  相似文献   

13.
目的:应用自体骨髓基质干细胞(Bone Marrow Stromal Cells,BMSCs)复合经低晶态羟基磷灰石(Low Crystalline Hydroxyap- atite,LcHA)涂层的双相陶瓷(Biphasic Calcium Phosphate,BCP)构建的组织工程化骨(LcBCP)修复兔桡骨节段性缺损。方法:体外分离培养、诱导扩增兔BMSCs,取第三代细胞复合LcBCP(实验组)后修复15只兔左侧桡骨15mm缺损;右侧桡骨缺损处植入复合BMSCs的BCP(对照组),于植入后4、8和12周处死动物,通过大体形态、组织学、影像学和扫描电镜检测骨缺损修复效果。结果:BMSCs-LcBCP复合物生长良好,随时间延长,X线显示实验组连接处骨痂形成,对照组连接处始终愈合稍差,12周大体观察实验组骨修复良好,髓腔再通;组织学显示板层骨形成,连接处骨性愈合,实验对照组连接处虽然也为骨性愈合,但尚有较多编织骨形成。结论:自体BMSCs复合LcBCP形成的组织工程化骨可修复兔桡骨节段性缺损,低晶态羟基磷灰石涂层能够增强双相陶瓷的早期成骨。  相似文献   

14.
刘蕾  胡建  董凤  徐晔  夏炎  吴铮 《现代生物医学进展》2019,19(11):2041-2045
目的:探讨骨髓基质干细胞(bone marrow stormal cells, BMSCs)静脉移植对慢性酒精中毒大鼠脑保护作用的相关机制。方法:体外分离、培养、扩增SD大鼠BMSCs。成年雄性SD大鼠随机分为慢性酒精中毒组、BMSCs回输组、磷酸缓冲盐溶液(phosphate buffer saline,PBS)回输组和对照组,每组7只。前三组用酒精灌胃8周建立慢性酒精中毒动物模型,对照组不造模(给予蔗糖灌胃),BMSCs回输组和PBS回输组于造模7周时一次性经尾静脉回输BMSCs或PBS。免疫印迹法检测海马Bcl-2、Bax、NGF、BDNF以及信号转导分子p-Akt的表达;反转录PCR检测海马神经生长因子(nerve growth factor, NGF)和脑源性神经营养因子(brain derived neurotrophic factor, BDNF)。结果:BMSCs回输组海马抗凋亡蛋白Bcl-2表达高于其余三组(P0.05);促凋亡蛋白Bax表达低于慢性酒精中毒组(P0.01),与对照组无统计学差异(P=0.989)。BMSCs回输组鼠海马内NGF和BDNF m RNA和蛋白表达、p-Akt蛋白表达均高于其余三组(P0.05)。结论:静脉移植BMSCs能够明显改善慢性酒精中毒大鼠海马的细胞凋亡;其可能与自或旁分泌BDNF和NGF营养因子有关,且可能部分是通过激活PI3K/Akt通路实现。  相似文献   

15.
目的:探讨玻璃体腔内注射移植体外培养的骨髓间充质干细胞(Bone marrow mesenchymal stem cells, BMSCs)对家猫视神经损伤后视网膜神经节细胞(Retinal ganglion cells, RGCs)的影响及其可能的作用机制。方法:参照标准化家猫外伤性视神经损伤动物模型建立的方法建立右眼视神经夹伤家猫模型,然后将其分为以下四组:(1)A组:右眼BMSCs注射移植组,玻璃体腔内接受注射移植BMSCs浓度为1×10~5细胞/μL的单细胞悬液0.1 m L;(2)B组:右眼PBS注射组,玻璃体腔内注射PBS缓冲液0.1 mL;(3)C组:假损伤控制组,BMSCs左眼组,仅暴露视神经而不损伤,不接受治疗;(4)D组:正常对照组,PBS左眼组,正常眼,不做任何处理。分别在移植后的3、7、14及28天,用免疫荧光染色双十八烷基四甲基吲哚羰基花青高氯酸盐染色标记法观察分离视网膜的RGCs存活率,用双抗体一步夹心法酶联免疫吸附试验方法检测分离视网膜的脑源性神经营养因子(Brain derived neurotrophic factor, BDNF)的含量。结果:术后3、7、14及28天,在周边区及中央区视网膜上RGCs密度均显著减少(周边区:P3d=0.0446, P7d=0.0011, P14d 0.001, P28d0.001;中央区:P3d=0.0437, P7d=0.0067, P14d0.001, P28d0.001)。7天、14天、28天后,A组RGCs密度及BDNF含量均显著高于B组(P0.05)。结论:BMSCs移植可以减缓外伤性视神经损伤家猫RGCs凋亡,可能与其增加BDNF表达有关。  相似文献   

16.
It has been well accredited that the neural stem cells (NSCs) derived from bone marrow stroma cells (BMSCs) can be used as the therapeutic application. However, their efficacy and safety in therapeutic application are uncertain. In this experiment, the trace marking and oncogenicity of NSCs derived from BMSCs (BMSCs-D-NSCs) were studied. The BMSCs were harvested by gradient centrifugation and cultured in "NSCs medium" in vitro. The verified CD133/Nestin-positive BMSCs-D-NSCs were then transplanted into nude mice to detect the oncogenicity, into the right lateral cerebral ventricle or right caudae putamen and substantia nigra to examine, whether the symptoms were improved in Parkinson's Disease (PD) models after transplantation, by both SPECT image assay of dopamine transporter (DAT) in corpus striatum and its average standard uptake value (SUVave) in corpus striatum and thalamus. Tissue samples and surviving model animals were studied at 1, 3, and 6 months post-transplantation. Before transplantation, the cells were labeled with BrdU or rAAV-GFP for the pathological sections, and with Feridex for the in vivo trace by MRI assay. The concanavalin A (ConA) agglutination test, stop-dependence test with soft agar, karyotype analysis of chromosome G zone in BMSCs-D-NSCs, and the nude mouse neoplasia test were also performed. The BrdU, rAAV-GFP or Feridex can be used as trace markers of BMSCs-D-NSCs during transplantation. The transplanted BMSCs-D-NSCs displayed neither toxicity nor neoplasia up to 6 months in vivo, but could play an important role in improving the symptoms of the animals with degenerative diseases like PD.  相似文献   

17.
目的:评价富血小板血浆联合同种异体骨治疗非感染性骨不连的临床疗效。方法:回顾性分析我院创伤骨科2010年2月-2015年1月的非感染性骨不连患者,比较同种异体骨加富血小板血浆混合物与自体髂骨植骨治疗非感染性骨不连的疗效。结果:两组共随访非感染性骨不连患者69例,全部进行了术中断端植骨,其中富血小板血浆联合同种异体骨植骨组(PRP组)21例,其中愈合19例,未愈合2例,临床愈合率90.5%。自体髂骨植骨组(自体骨组)48例,愈合44例,4例未愈合,临床愈合率91.6%。PRP组平均手术持续时间为(108.73±13.91),自体骨组为(120.54±13.87)min,两组间有统计学意义(P0.05)。术后3月,PRP组患者X线骨痂评价标准平均评分值为(2.54±0.43)分,自体骨组为(2.62±0.45)分,两组间差异无统计学意义(P0.05)。结论:富血小板血浆混合同种异体骨植骨治疗骨不连较传统自体髂骨植骨可缩短手术时间,避免供骨区并发症,修复效果良好,为骨不连的治疗提供了一个新的方法。  相似文献   

18.
Background and Purpose: The in vivo cardiac differentiation and functional effects of unmodified adult bone marrow mesenchymal stem cells (BMSCs) after myocardial infarction (MI) is controversial. Our previous results suggested that hypergravity promoted the cardiomyogenic differentiation of BMSCs, and thus we postulated that ex vivo pretreatment of BMSCs using hypergravity and 5‐azacytidine (5‐Aza) would lead to cardiomyogenic differentiation and result in superior biological and functional effects on cardiac regeneration of infarcted myocardium. Methods: We used a rat MI model generated by ligation of the coronary artery. Homogeneous rat BMSCs were isolated, culture expanded, and differentiated into a cardiac lineage by adding hypergravity (2G) for 3 days and 5‐Aza (50 lmol/L, 24 h). Rats underwent BMSCs (labeled with DAPI) injection after the infarction and were randomized into five groups. Group A rats received the control medium, Group B rats received unmodified BMSCs, Group C rats received BMSCs treated with hypergravity, Group D rats received BMSCs treated with 5‐Aza, and Group E rats received BMSCs treated with 5‐Aza and hypergravity (n = 6). Results: After hypergravity and 5‐Aza treatment, BMSCs showed positive for the early muscle and cardiac markers GATA‐4, MEF‐2, and Nkx2‐5 with RT‐PCR. We also found that hypergravity could enhance the activities of MEF‐2 via promoting the nuclear export of HDAC5. The frozen section showed that the implanted BMSCs labeled with DAPI survived and angiogenesis was identified at the implantation site. In Groups B, C, D, and E rats, pre‐treated BMSCs colocalized with α‐actinin, and Group E rats showed a significantly larger increase in left ventricular function. Conclusions: The biological ex vivo cardiomyogenic differentiation of adult BMSCs with hypergravity and 5‐Aza prior to their transplantation is feasible and appears to improve their in vivo cardiac differentiation as well as the functional recovery in a rat model of the infarcted myocardium. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

19.
目的:探讨急性早幼粒细胞白血病(Acute promyelocytic leukemia,APL)合并中枢神经系统白血病的发病机制。方法:采用流式细胞术检测亚砷酸(Arsenious acid, ATO)诱导分化前后的APL细胞及人APL细胞株NB4细胞表面CD56、CXCR4的表达;用荧光染料-羧基荧光素二醋酸盐琥珀酰亚胺酯标记ATO分化的APL(APL/ATO)、NB4细胞(NB4/ATO);用微重力旋转培养法体外模拟APL细胞浸润人脑膜组织,观察组织学及超微结构。结果:ATO诱导后,APL/ATO细胞表面CXCR4的表达明显高于诱导前(35.2±9.5%vs. 18.6±4.9%);NB4/ATO细胞表面CXCR4的表达明显高于诱导前(39.6±2.6%vs. 21.0±7.3%);APL/ATO细胞表面CD56的表达明显高于诱导前(36.6±8.9%vs. 25.8±5.15%);NB4/ATO细胞表面CD56的表达明显高于诱导前(44.6±8.4%vs. 25.6±2.4%)。组织学实验结果显示对照组脑膜组织未见NB4、APL细胞浸润,实验组可见APL/ATO、NB4/ATO细胞浸润到人脑膜组织中;荧光显微镜下可见被标记的APL/ATO、NB4/ATO细胞浸润到人脑膜组织中,扫描电镜见APL/ATO、NB4/ATO细胞浸润到脑膜组织中。结论:本研究采用微重力旋转培养系统体外模拟了ATO诱导分化的异常早幼粒细胞浸润人脑膜组织,APL细胞和NB4细胞CXCR4、CD56的表达升高可能是ATO诱导治疗APL所致的中枢神经系统浸润的分子机制之一。  相似文献   

20.
OBJECTIVE: The aim of this study was to develop a feasible approach to promote bone healing in osteoporotic rats using autogenous bone tissue-engineering and gene transfection of human bone morphogenetic protein 2 (hBMP-2). METHODS: Bone marrow stromal cells (BMSCs) from the left tibia of osteoporotic rats were transfected with the hBMP-2 gene in vitro which was confirmed by immunohistochemistry, in situ hybridization and Western blotting. Autogenous transfected or untransfected BMSCs were seeded on macroporous coral hydroxyapatite (CHA) scaffolds. Each cell-scaffold construct was implanted into a defect site which was created in the ramus of the mandible of osteoporotic rats. Four or eight weeks after implantation in situ hybridization was performed in BMSCs transfected with hBMP-2, X-ray examinations, histological and histomorphological analyses were used to evaluate the effect of tissue-engineered bone on osseous defect repair. RESULTS: Newly formed bone was observed at the margin of the defect 4 weeks after implantation with BMSCs transfected with BMP-2. Mature bone was observed 8 weeks after treatment. In the control group there was considerably less new bone and some adipose tissue was observed at the defect margins 8 weeks after implantation. CONCLUSIONS: Autogenous cells transfected with hBMP-2 promote bone formation in osteoporotic rats. BMSC-mediated BMP-2 gene therapy used in conjunction with bone tissue engineering may be used to successfully treat bone defects in osteoporotic rats. This method provides a powerful tool for bone regeneration and other tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号