首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用基于生理生态学过程的EALCO模型,对玉米农田生态系统的蒸散(ET)过程进行了模拟,在模型检验基础上,使用该模型模拟了玉米农田生态系统ET过程对未来气候变化的响应。结果表明,EALCO模型中能量与水过程的动态耦合机制使模型能够较好地模拟农田蒸散过程,基于涡度相关法的观测值与模型模拟值在小时、日尺度上均吻合较好,模型可以解释67%的日蒸散的变化特征。对土壤蒸发与冠层蒸腾的分别模拟显示,生长季土壤蒸发约占ET的36%。温度的升高会引起ET与冠层蒸腾的增加,同时土壤蒸发减少;ET对降水减少的响应较为敏感,主要表现在土壤蒸发的下降。大气CO2浓度升高对冠层蒸腾影响显著,该情景下冠层蒸腾下降幅度最大。研究所假设的2100年气候情景下,该农田生态系统生长季蒸散将减少,然而相对于降水的减少而言,蒸散的减少量较小,即水分支出项相对增加,因此,发生土壤水分匮乏的可能性加大,这可能会加剧该地区的暖干化趋势,给作物产量及生态环境带来威胁。  相似文献   

2.
基于改进SW模型的千烟洲人工林蒸散组分拆分及其特征   总被引:4,自引:0,他引:4  
沈竞  张弥  肖薇  温学发  刘寿东  李旭辉 《生态学报》2016,36(8):2164-2174
蒸散组分拆分是准确评估陆地生态系统生产力以及估算水分利用效率的重要基础。利用改进后的Shuttleworth-Wallace模型,将蒸散拆分为植被蒸腾、土壤蒸发和冠层截留蒸发,并采用Monte Carlo随机参数化方案对模型参数进行优化。将模型与千烟洲亚热带人工针叶林站点的2011年涡度相关及小气候观测资料结合,对千烟洲人工林蒸散及其组分进行模拟。研究结果表明:半小时尺度上蒸散量模拟值与实测值的一致性在晴天和雨天都较高。半小时尺度上全年蒸散模拟值与实测值的决定系数、均方根误差和平均偏差为0.73、1.55 mmol m~(-2)s~(-1)和0.21 mmol m~(-2)s~(-1)。蒸散是该生态系统水分输出的最主要贡献项,占全年降水的80%。在蒸散中,植被蒸腾约占总蒸散量的85%,可推测2011年千烟洲人工林生态系统有较高的水分利用效率。该生态系统的蒸腾量季节变化明显,主要受饱和水汽压差和气温两种环境因素以及植被的叶面积指数影响且与三者均呈正相关;土壤蒸发约占总蒸散量的5%,季节变化平缓;模拟的冠层截留蒸发量约占总蒸散量的10%,季节变化大,与降水量呈正相关,与暴雨频次呈负相关,说明冠层无法有效截留强降水。该模型参数较少、时间分辨率高且可以有效模拟蒸散及其组分特征,是陆地生态系统水分循环过程研究有力的模型工具。  相似文献   

3.
王海波  马明国 《生态学报》2014,34(19):5617-5626
遥感数据具有很好的时空连续性,它是区域蒸散发通量估算的有效方法。引入了一个简单的具有生物物理基础的Penman-Monteith(P-M)模型,分别利用黑河流域高寒草地阿柔站和干旱区农田盈科站2008—2009年的气象数据和MODIS(Moderate Resolution Imaging Spectroradiometer)叶面积指数(LAI),实现了2008—2009年日蒸散发的估算,并同时实现了对植被蒸腾和土壤蒸发的分别估算。结果表明,利用P-M公式模拟的蒸散发与实测的蒸散发具有较好的一致性,日蒸散发模拟的决定系数(R2)超过0.8。估算的高寒草甸和干旱区农田玉米全年平均的蒸腾分别为0.78 mm/d和1.20 mm/d,分别占总蒸散发的60%和61%,土壤蒸发分别为0.53和0.77 mm/d,占总蒸发的40%和39%。可见两种生态系统的作物蒸腾均强于土壤蒸发,同时农田玉米蒸腾强于高寒草甸蒸腾。研究结果证明了基于遥感的P-M公式可以很好地实现对高寒草地和干旱区农田生态系统蒸散发的估算。通过考虑土壤水分变化对气孔导度的影响,可以提高模型对农田蒸散发的模拟精度。  相似文献   

4.
童雅琴  王佩  李小雁  张赐成  白岩 《生态学报》2018,38(20):7400-7411
水分收支是对水循环要素降水、蒸发蒸腾、径流以及土壤贮储水量变化等的定量刻画,对水资源的可持续开发及利用至关重要。基于黑河流域阿柔观测站2014和2015年水文气象观测数据,运用水量平衡理论,定量的评估了高寒草甸生态系统的水分收支动态,并结合双源模型对高寒草甸生态系统蒸散发(植被蒸腾和土壤蒸发)进行拆分及评价。研究结果表明(1)在生长季(5—9月)植被蒸腾是高寒草甸生态系统主要的耗水形式,2014和2015年生长季平均蒸散比(T/ET)分别为0.74和0.79;(2)土壤水分的剧烈变化主要发生在0—40 cm处,且受冻融过程影响显著;(3)在降水较多的年份(2014)高寒草甸生态系统水分收支基本平衡,且不受冻融影响的月份(6—9)有地表径流产生约42 mm;在正常年份(2015),生态系统呈现水分亏缺,亏缺量约为134 mm,6—9月约亏缺26 mm;(4)模型估算蒸散发(ET)与实测蒸散发具有很好的一致性,相关系数可达0.90,敏感性分析表明模型输入变量对蒸散发(ET)及蒸散比(T/ET)产生的误差较小,双源模型可以很好地实现对高寒草甸生态系统蒸散发(ET)的拆分。  相似文献   

5.
赵丽雯  赵文智  吉喜斌 《生态学报》2015,35(4):1114-1123
利用中国生态系统研究网络临泽内陆河流域研究站绿洲农田2009年小气候、湍流交换、土壤蒸发和叶片气孔导度等综合观测试验数据,应用Shuttleworth-Wallace(S-W)双源模型以半小时为步长估算了绿洲农田玉米生长季实际蒸散量,并利用涡动相关与微型蒸渗仪实测数据对田间蒸散发量和棵间土壤蒸发量计算结果进行了检验。结果表明:S-W模型较好地估算研究区的蒸散量,并能有效区分农田作物蒸腾和土壤蒸发;全生育期玉米共耗水640 mm,其中作物蒸腾累积量为467 mm,土壤蒸发累积量为173 mm,分别占总量的72.9%和27.1%;日时间尺度上,作物蒸腾和土壤蒸发分别在0—6.3 mm/d和0—4.3 mm/d之间变化,其日平均分别为2.9和1.0 mm/d;田间供水充足,作物蒸腾与土壤蒸发比值明显受作物生长过程影响,播种—出苗期、出苗—拔节期、拔节—抽雄期、抽雄—灌浆期、灌浆—成熟期,其比值分别为0.04、0.8、7.0、5.2和1.4,不同阶段的比值差异主要受叶面积指数影响。  相似文献   

6.
 利用内蒙古羊草草原(Leymus chinensis)生态系统通量观测站的气象数据、野外实测和MODIS叶面积指数(Leaf area index, LAI), 应用基于生态系统过程的VIP(Vegetation interface process)模型, 以半小时为步长, 模拟分析了羊草草原生态系统2003~2005年(分别为平水年、平水年和干旱年)蒸散及其分量的变化过程。通过与通量数据对比, VIP模型能够很好地模拟羊草草原生态系统的蒸散过程(R2 = 0.80), 在峰值大小和变化趋势上, 模拟值与实测值有较好的一致性。模拟结果显示: 3年蒸散量分别为337、338和223 mm; 在降水相对充沛的2003和2004年, 蒸腾量为192和171 mm, 而降水相对较少的2005年, 蒸腾量仅为96 mm; 年平均蒸腾和蒸发对蒸散的贡献基本持平; 生长季蒸散占全年的83%, 6月开始, 蒸腾大于蒸发, 蒸散和蒸腾的月总值均在7、8月达到最大值,两月蒸散占全年的43%。LAI是影响蒸散的主要因素, 其次是降水, 而净辐射对蒸散的影响较小。在生长季, 蒸发的季节变化平缓, 蒸散的差异主要体现在蒸腾的差异。  相似文献   

7.
叶片水平的气孔导度组合模型已被成功扩展到冠层水平,并被应用于冬小麦生态系统潜热通量的模拟研究,但该研究仅基于1a的数据,有必要研究模型在更长时间尺度和其它生态系统类型的适用性.以长白山阔叶红松林(CBS)为研究对象,将组合模型进一步应用于Shuttleworth-Wallace双源模型,模拟了CBS 3a生长季内的潜热通量,利用涡度相关系统观测的潜热通量数据对模型进行验证,并对比了双源模型与单源模型的模拟结果.结果显示,双源模型较单源模型能取得更高的模拟精度,生长季不同时期的潜热通量模拟值和实测值的日变化较一致.对双源模型模拟值和实测潜热通量的相关分析显示,二者直线回归斜率和R2分别为0.96和0.72.对长白山阔叶红松林生态系统的蒸散和植被蒸腾的季节和年际变异分析发现,影响冠层蒸散和植被蒸腾季节动态的主要因素是饱和差和辐射,而影响它们年际动态的主要因素则是饱和差和温度.  相似文献   

8.
陆面蒸散发在气候调节和维持区域水量平衡中起关键作用.量化蒸散发及其各组分项,对深刻揭示干旱半干旱地区的生态水文过程具有重要意义.本研究基于科尔沁沙地流动半流动沙丘2017年生长季气象监测系统的原位监测数据,利用Shuttleworth-Wallace(S-W)模型对沙丘蒸散发进行模拟,在此基础上,对蒸散各组分进行拆分,并利用涡度相关对模拟蒸散发值进行验证.结果表明: 整个生长季模型模拟蒸散发值为308 mm,涡度相关实测值为296 mm,偏差较小,证明S-W模型适用于该地区的蒸散发模拟.蒸散发整体呈生长旺盛期>生长后期>生长初期,分别为192、71和45 mm,分别占总量的62.3%、23.1%和14.6%.日尺度上模型模拟值与实测蒸散发值一致性较高,模型模拟精度大体表现为: 晴天>阴天>雨天,且阴雨天模型模拟值较涡度相关实测值偏低.经拆分,土壤蒸发和植被蒸腾分别为176和132 mm,分别占总量的57.1%和42.9%,表明沙地水分利用效率较低.持续干旱和降水后,蒸散发规律明显不同,且土壤蒸发对降水的敏感性强于植被蒸腾.  相似文献   

9.
白岩  朱高峰  张琨  马婷 《生态学报》2015,35(23):7821-7831
针对西北干旱区绿洲经济作物葡萄树冠层蒸腾及蒸散发特征的相关问题,在甘肃省敦煌市南湖绿洲开展无核白葡萄树液流速率及蒸散发观测试验,采用基于热平衡原理的包裹式茎流计,详细分析了典型生长季7—9月份葡萄树蒸腾耗水规律,使用"单位叶面积上的平均液流速率SF×叶面积指数LAI"的方法,实现了从单株到林分冠层蒸腾的尺度扩展,并通过与涡动相关技术所测蒸散发数据对比,详细研究了葡萄地冠层蒸腾及蒸散发规律。结果表明:典型生长季中葡萄树液流速率日变化为单峰型曲线,日均耗水量从2.76 kg到10 kg不等,胸径越大的葡萄树日均耗水量越大;冠层蒸腾及蒸散发日变化曲线亦为单峰型,白天8:00—12:00与17:00—20:00期间,葡萄冠层蒸腾与蒸散发曲线均比较吻合,该时间段葡萄地蒸散发绝大部分来源于葡萄冠层蒸腾,而12:00—17:00之间由于午后太阳辐射强烈土壤蒸发量增加,葡萄蒸散发大于冠层蒸腾;典型生长季3个月中,葡萄冠层蒸腾量的变化范围在1.88—8.12 mm/d之间,日均冠层蒸腾量为6.12 mm/d,蒸散发在1.74 mm/d至10.78 mm/d之间,日均蒸散发量为7.13 mm/d;日均土壤蒸发量约为1.01 mm/d,只占总蒸散发量的14.2%,日均冠层蒸腾占日均蒸散发的比重达到85.8%,说明该生长阶段冠层蒸散发以作物蒸腾为主。  相似文献   

10.
华北平原冬小麦农田蒸散量   总被引:2,自引:3,他引:2  
以华北平原冬小麦农田为研究对象,采用涡度相关技术和热红外遥感技术,研究了不同环境条件下土壤含水量与农田蒸散量及作物冠层温度的关系.结果表明,冬小麦在农田郁闭(LAI≥3)、晴天和土壤相对含水量低于田间持水量65%的情况下,蒸发比值日变化正午前后出现相对较低且平稳的变化趋势.在晴天情况下,农田潜热通量与作物冠层温度日变化和季节变化均呈极显著的非线性相关关系,而冠气温差、农田相对蒸散量则与0~100 cm土层的土壤相对含水量密切相关.以13:30~14:00的平均冠层温度值Tc、日最高气温Ta max和日净辐射总量Rnd为统计数据,确立了冬小麦农田日蒸散量ETd (mm)估算简化模式参数.  相似文献   

11.
张梦迪  张立锋  陈之光  张翔  赵亮  李奇  唐艳鸿  古松 《生态学报》2021,41(18):7138-7152
蒸散(ET)主要由土壤蒸发(E)和植被蒸腾(T)组成,然而难以把E与T从陆地生态系统ET中区分开。为阐明位于青海省境内的三江源区(89°24′—102°23′E, 31°39′—36°16′N)高寒草甸E和T对生态系统ET的影响,利用小型蒸渗仪和微气象系统定量研究了三江源退化高寒草甸ET、E和T的变化,以及植被和环境因子对其的影响。结果表明:2017和2018年的ET分别为467.7 mm和479.2 mm,其中生长季(5—9月)约占72%,且E对生态系统ET的贡献(56%)大于T(44%),年降水量(P)的90%以上通过ET返回大气(ET/P> 90%)。根据生长季中不同植被覆盖度的蒸渗仪观测结果发现,ET随植被覆盖度的降低而增加。逐步回归分析表明,净辐射(Rn)是驱动生态系统ET、E、T最主要的因子;另外,E对饱和水汽压差(VPD)的响应更敏感,而T受空气温度(Ta)的影响更大;土壤含水量(SWC5)对蒸散的影响相对较小,可能由于研究区降水相对较多的原因。结果说明,草甸退化将加剧土壤蒸发,进而导致生态系统散失更...  相似文献   

12.
灌丛化是干旱半干旱草原一种常见的全球性变化现象,由于野外土壤、灌丛和草本的蒸散耗水难于拆分的限制,关于灌丛化蒸散耗水效应的研究较少。该文将已有的二源模型应用于我国内蒙古灌丛化草原估算其蒸散发,并用波文比系统观测结果对模型进行了率定。研究结果表明改进的模型可以较好地重建灌丛化草地的蒸散发特征;敏感性分析结果表明模型输入变量及参数对蒸散发组分拆分结果产生的误差较小。在此基础上进行了灌丛化的情景模拟,研究其耗水效应。结果表明:灌丛化对蒸散发总量影响较小,而对蒸散发组分影响较大。灌丛化初期盖度5%、中期盖度15%及后期盖度为30%的情境下,对应的生长季内蒸散发(ET)平均值分别为182.97、180.38和176.72 W·m~(–2);土壤蒸发(E)占蒸散发比率(E/ET)平均值分别为52.9%、53.9%和55.5%。灌丛化从初期到中期、中期至后期,蒸散发降幅平均值分别为0.34%和0.44%,E/ET升幅分别达2.04%及3.25%。该研究结果表明在内蒙古太仆寺旗站点灌丛化导致的土壤水分差异并不明显,但随着灌丛化加剧,灌丛逐渐替代草本,改变了原有的生态系统结构,植被叶面积指数变小,导致冠层导度降低。研究结果强调我国半干旱草原区灌丛化加剧对生态系统总蒸散耗水量影响不大,但其土壤蒸发无效损耗快速增加会导致系统水分利用效率降低。  相似文献   

13.
几个主要地面因子对草原群落蒸发蒸腾的影响   总被引:16,自引:0,他引:16       下载免费PDF全文
 在中国科学院内蒙古草原生态系统定位研究站,采用“土柱称重法”,观测了几个主要地面因子对草原群落蒸发蒸腾的影响。主要研究结果如下:1.土壤因子的影响:(1)在通常情况下,草原群落蒸发、蒸腾及蒸散均随土壤水分增加而增大;当土壤水分过多时,群落蒸腾由于植物受涝而降低。(2)在低土壤含水量条件下,群落蒸发随土壤粘粒含量增加呈线性降低;在高土壤含水量条件下,群落蒸发随土壤粘粒含量增加而升高。(3)不同土壤含水量的群落蒸发,均随土壤紧实度增大而升高,并先后达最高值。土壤含水量愈低,蒸发达最高值愈滞后。 2.放牧因素的影响:群落蒸腾与牧压呈线性负相关;群落蒸发与牧压呈线性正相关。群落生物量随牧压增大而降低是导致群落蒸发和蒸腾与牧压呈正、负相关的主要原因。 3.退化群落及其恢复群落的蒸发蒸腾:群落退化导致群落蒸发升高,蒸腾降低;相应的群落恢复导致群落蒸发降低,蒸腾升高。在—定程度上,群落退化及其恢复演替虽然能明显改变群落T/E值1),但却不会引起群落蒸散值的明显变化。  相似文献   

14.
灌溉和施肥措施对农田水文循环具有重要影响,根系吸水是联系植物蒸腾和土壤水分运动的关键水文过程,定量识别灌溉施肥影响下作物根系吸水来源对农业用水优化管理具有重要意义。氘氧稳定同位素(D和18O)是追溯农田水分运移过程的理想天然示踪剂。基于2013—2015年北京市典型农田不同灌溉施肥处理冬小麦水分运移试验,利用D和18O双稳定同位素和MixSIAR贝叶斯混合模型,量化冬小麦主要根系吸水深度及其贡献比例,阐明作物水分来源的季节变化及不同处理间的差异,分析根系吸水与土壤水分分布变化的相互关系。研究结果表明:两季冬小麦返青-拔节、拔节-抽穗、抽穗-灌浆和灌浆-收获期主要根系吸水深度均值分别为0—20 cm(67.0%)、20—70 cm(42.0%)、0—20 cm(38.7%)和20—70 cm(34.9%),但季节变化差异显著,2014季主要吸水深度随作物的生长发育而逐渐增加,2015季则主要集中于浅层土壤(0—70 cm)。返青-抽穗期仅灌水20 mm或施肥105 kg/hm2N促使拔节-抽穗期深层(70—200 cm)土壤水分利用率平均增加29%,而前期充分灌水且大量施肥(≥当地施肥量210 kg hm-2N)时拔节-抽穗期根系吸水深度为土壤表层0—20 cm。在干旱少雨的冬小麦生长季内作物吸水来源与土壤水分消耗变化基本一致。  相似文献   

15.
 运用涡度相关(Eddy covariance)开路系统、树干液流(Sap flow)、土壤水分以及微气象观测系统, 于2006年生长季(5~10月)对北京大兴区永定河沿河沙地杨树(Populus euramericana)人工林生态系统的水量和能量平衡进行了连续测定; 分析了该系统能量平衡闭合水平及其组分分配特征, 不同水分条件下蒸发散及其各组分变化过程和分配特征, 以及影响蒸发散的主要环境因子; 并对组分求和法、土壤水分平衡法与涡度相关法测得该生态系统生长季蒸发散总量的结果进行了对比。结果表明: 生长季内该生态系统的能量闭合水平较高, 能量平衡各组分在不同土壤水分环境条件下所占比例变化较大; 在水分充足的条件下, 潜热通量在可利用能量分配过程中占优势, 显热通量在水分胁迫条件下占可提供能量的比例比潜热通量大。雨季到来之前, 土壤蒸发与植被蒸腾强度相差较小; 进入雨季后, 土壤深层水分得到补偿, 植被蒸腾显著增强而土壤蒸发强度减弱。涡度相关法所得的总蒸发散量与基于树干液流法等组分求和法得到的蒸发散结果较接近, 分别为513和492 mm。土壤水分平衡法的观测结果略高于前二者的观测结果, 雨季研究界面以下的土体也有水分交换是该方法高估蒸发散的主要原因。与环境因子的响应关系表明, 蒸发散以及蒸腾的变化过程对净辐射的响应程度比对饱和水汽压差高; 水分条件较好情况下, 蒸发散以及蒸腾的变化过程与水汽压差关系不明显, 说明水分充足时, 水汽压差不是蒸散强弱的限制因子。  相似文献   

16.
作物农田蒸散计算模型的研究   总被引:8,自引:1,他引:7  
农田蒸散是指田间条件下,作物棵间蒸发和蒸腾之和,它涉及土壤作物大气系统,受气象、作物和土壤等多种因素的制约。本文从田间试验出发,综合考虑影响农田蒸散的各种因素,建立了不同作物(棉花、玉米和冬小麦)农田蒸散的计算模型,为今后农业生产中的合理灌溉、节...  相似文献   

17.
王靖  于强  李湘阁  孙晓敏 《应用生态学报》2004,15(11):2077-2082
从SPAC理论出发,建立了一个冬小麦光合和蒸散的耦合模型.感热通量和潜热通量采用Shuttleworth-Wallace的双层模型计算,并通过冠层阻力的参数化,将光合作用与蒸腾作用耦合起来.用涡度相关方法,观测了感热通量和潜热通量,对模型进行了验证.结果表明,模拟值与观测值比较一致,模型可以很好地模拟感热通量和潜热通量的日变化过程.对模型的敏感性分析发现,冬小麦蒸腾比较敏感的参数有凋萎点、气孔导度参数、叶对红外辐射的反射率和光响应曲线凸度;土壤蒸发只对土壤阻力参数的敏感性较强.本模型对水热通量与环境因子作用过程的理论研究和指导农田的灌溉制度等有一定的意义.  相似文献   

18.
黄土高原春小麦农田蒸散及其影响因素   总被引:2,自引:0,他引:2  
蒸散与水循环、能量平衡密切相关,是黄土高原雨养农田生态系统最重要的水通量之一。准确测定半干旱区农田生态系统蒸散,对增强陆气相互作用的理解以及科学应对气候变化有重要意义。采用涡度相关技术对黄土高原春小麦农田生态系统蒸散进行了观测,利用气象梯度系统进行环境因子观测;分析了春小麦农田生态系统蒸散日、季动态及其环境影响因子。结果表明,黄土高原半干旱区春小麦农田生态系统蒸散呈早晚低、中午高的"单峰型"日变化特征;最大日峰值出现在8月(0.22mm/h)。生长季蒸散日峰值高于非生长季。春小麦农田最大日蒸散率值相对较低,这可能与该地区干旱少雨的气候特征有关。农田蒸散且具有明显的季节动态,与降水季节分布密切相关。7、8月份降水较多,月蒸散量较高。全年蒸散量(318.0 mm)略低于年降水量(332.3 mm);蒸散量与降水量比值为95.7%。非生长季蒸散量显著低于生长季(4—9月);二者之比为0.26。农田蒸散随土壤含水量和空气温度(低于26℃)增大呈指数增长趋势;随空气相对湿度、太阳辐射、风速增大呈先增大后降低的二次曲线变化趋势。净辐射是黄土高原半干旱区农田生态系统蒸散主要环境控制因子,土壤含水量次之。  相似文献   

19.
孙丽  宋长春 《应用生态学报》2008,19(9):1925-1930
2006年5—9月,利用涡度相关技术对三江平原典型沼泽湿地蒸散发进行了连续观测,在分析生长季内沼泽湿地蒸散发时间动态的基础上,采用Penman-Monteith(PM)和Priestley-Taylor(PT)模型分别模拟了沼泽湿地的日蒸散发,并利用实测值对两种模型的模拟精度进行了验证.结果表明:生长季内(5—9月),研究区沼泽湿地蒸散发具有明显的季节变化,月均日蒸散量在5月最低、7月最高;生长季内平均蒸散发为1.94 mm·d-1,总蒸散量293 mm.生长季前期和后期,与蒸散发实测值相比,PM模型的模拟值存在明显低估现象;PT模型模拟值与实测值在整个生长季内的一致性较好,且PT模型的形式简单、所需参数少,更适于沼泽湿地的蒸散发模拟.  相似文献   

20.
气候变化对长白山阔叶红松林冠层蒸腾影响的模拟   总被引:2,自引:0,他引:2  
应用基于过程的碳水耦合多层模型对长白山阔叶红松林冠层蒸腾量进行了模拟和模型验证,并模拟了冠层蒸腾量对未来气候变化的响应.结果表明:多层模型可以较好地模拟长白山阔叶红松林冠层蒸腾量,模拟值与涡动相关技术观测的实测值拟合较好.冠层蒸腾对气候变化响应的模拟显示,气温升高,潜热通量(LE)增加;土壤含水量减少,LE减少;大气CO2浓度增加,LE减少.在研究假定的气候变化情景下,LE对0~20 cm土壤含水量减少10%、CO2浓度增加190μmol·mol-1的联合变化的响应最敏感,对气温增加3.6℃、土壤含水量减少10%的联合变化的响应不敏感.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号