首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在麦芽糖苷基海藻糖合成酶(MTSase)和麦芽糖苷基海藻糖水解酶(MTHase)双酶的作用下,淀粉可转化为海藻糖,但是其转化率较低。中采用多种固定化载体进行酶固定化研究,发现通过经戊二醛与壳聚糖交联后的载体与酶液作用,可吸附与海藻糖合成无关的杂酶和杂质,从而提高海藻糖合成酶的活性。通过比较固定化过程中与反应条件中多个因素的影响,得到了如下最佳作用条件:将酶液与经3%戊二醛交联18h后的滤纸作用18h,再与10%的淀粉溶液反应9h,与未经固定化作用比较,海藻糖的产率提高10倍,达到27.22g/L转化率从5.33%提升到54.43%。  相似文献   

2.
张清刚  刘芳  冯慧 《昆虫学报》1964,(4):494-502
本文以蓖麻蚕蛹化前后各虫期为材料,通过对不同组织中海藻糖酶活力及其糖含量的测定,结果发现了:1)血淋巴海藻糖酶活力仅在眠期蜕皮过程显现,其它虫期该酶不表现活力;2)海藻糖酶抑制物仅存在于血淋巴中,抑制物的存在虽然使海藻糖酶经常处于不活动状态,但后者却具有一定的潜在活力;3)饥饿能促使对海藻糖酶抑制的解除,随着酶活力的显现,此血糖的含量水平不断下降;4)消化道中海藻糖酶的分布依次为中肠>后肠>前肠,酶活力随幼虫进食而增加,吐丝以后显著下降;5)血淋巴和脂肪体中糖代谢与海藻糖酶活力变化之间存在一定的联系。文中明确了不同组织中海藻糖酶活力变化在昆虫糖代谢中的作用,并讨论了它的生理意义。  相似文献   

3.
海藻糖微生物酶法合成机制的研究   总被引:5,自引:0,他引:5  
来源于嗜酸热古菌芝田硫化叶菌(Sulfolobus shibatae)B12的麦芽寡糖基海藻糖合酶(MTSase)和麦芽寡糖基海藻糖海藻糖水解酶(MTHase)基因在大肠杆菌中获得表达。将获得纯化的两个酶,分别以麦芽寡糖和淀粉为转化底物,在pH5.5,60℃条件下合成海藻糖。从反应产物分析结果可知,两个酶合成海藻糖时能利用的最小底物是麦芽四糖,海藻糖产率与麦芽寡糖链长正相关。同时还发现两个酶都具有轻微的α-1,4-葡萄糖苷酶活性,能在麦芽寡糖还原末端水解α-1,4糖苷键,生成葡萄糖分子,其反应最小底物分别是麦芽三糖和四糖。推测海藻糖合成酶可能有两个不同的催化活性中心。  相似文献   

4.
海藻糖合酶的分子生物学研究进展   总被引:3,自引:0,他引:3  
海藻糖合酶能够将麦芽糖转化为海藻糖,在海藻糖的工业生产中具有十分重要的意义。本文从海藻糖合酶的基因克隆、基因工程应用、结构和催化机制的研究以及其在微生物体内的功能等方面讨论了海藻糖合酶的研究进展。  相似文献   

5.
海藻糖微生物酶法合成机制的研究*   总被引:1,自引:0,他引:1  
来源于嗜酸热古菌芝田硫化叶菌 (Sulfolobusshibatae)B1 2的麦芽寡糖基海藻糖合酶(MTSase)和麦芽寡糖基海藻糖海藻糖水解酶 (MTHase)基因在大肠杆菌中获得表达。将获得纯化的两个酶 ,分别以麦芽寡糖和淀粉为转化底物 ,在pH5 5 ,6 0℃条件下合成海藻糖。从反应产物分析结果可知 ,两个酶合成海藻糖时能利用的最小底物是麦芽四糖 ,海藻糖产率与麦芽寡糖链长正相关。同时还发现两个酶都具有轻微的α 1 ,4 葡萄糖苷酶活性 ,能在麦芽寡糖还原末端水解α 1 ,4糖苷键  相似文献   

6.
目的:克隆玫瑰链霉菌海藻糖合成酶基因(Srt)使其在大肠杆菌XL10-Gold中高效表达,并对重组酶的酶学特性进行研究。方法:利用PCR技术从玫瑰链霉菌中克隆到一段长1 704bp的海藻糖合成酶基因(Srt),构建重组表达质粒pSE380-Srt-treS,将其转化大肠杆菌XL10-Gold中诱导表达,对重组纯酶进行SDS-PAGE分析及酶学特性测定。结果:SDS-PAGE显示在65kDa处有明显单一蛋白条带。该酶可催化麦芽糖和海藻糖之间的可逆反应,海藻糖得率达82%,且含有很低的副产物葡萄糖(5%左右)。最适反应温度和pH分别为30℃、7.5,Cu2+、Zn2+和Tris能明显抑制酶活力。该酶还可催化蔗糖生成一种无龋齿,适合糖尿病患者食用的糖类-海藻酮糖。结论:成功克隆表达了一个海藻糖合成酶基因,该酶转化率高,副产物较少,为工业酶法生产海藻糖奠定基础。  相似文献   

7.
用透性化细胞技术合成海藻糖   总被引:4,自引:0,他引:4  
建立了一种渗透处理微球菌细胞的方法,得到的透性化细胞可多批使用并能长时间保持胞内酶的活力,极大地提高了单位菌体的利用率,降低了成本,为海藻糖实现工业化开辟了新的思路。实验结果表明:菌悬液用5%(v/v)甲苯处理40min,得到的菌体即为透性化细胞,再以10%淀粉液化液为底物进行海藻糖转化实验,转化率可达70%;该透性化细胞至少可连续进行6批酶反应(12h/批),酶活基本保持稳定。  相似文献   

8.
亚栖热菌透性化细胞的耦合固定化研究   总被引:1,自引:0,他引:1  
将海藻酸盐凝胶包埋法与交联法和聚电解质静电自组装覆膜法相耦合,对含有海藻糖合酶活性的亚栖热菌的透性化细胞进行了固定化研究。结果表明,利用重氮树脂和聚苯乙烯磺酸钠对海藻酸凝胶微球交替覆膜,可以显著提高凝胶微球在磷酸盐缓冲液中的稳定性,以碳二亚胺对固定化细胞进行交联处理则可以提高固定化细胞中海藻糖合酶的热稳定性。透性化细胞经包埋-交联-覆膜耦合固定化后,酶活回收率为32%,最适酶反应pH值由6.5左右升至7.0左右,最适反应温度未变,仍为60℃。所得固定化细胞间歇反应时,催化麦芽糖转化为海藻糖的转化率可达60%,重复使用4次(每次50℃、反应24h),酶活损失小于20%,转化率可保持在50%以上。  相似文献   

9.
海藻糖生产菌株筛选过程中产物鉴定的研究   总被引:4,自引:0,他引:4  
在海藻糖生产菌的筛选过程中,微生物胞内酶转化淀粉生成的产物复杂,将产物逐一纯化是非常烦琐的,但又必须确证产物中是否含有海藻糖。本文将薄层层析、高效液相电喷雾电离质谱联用及核磁共振等分析手段综合应用于海藻糖生产菌株的筛选,在酶反应产物不必被纯化的前提下,准确、快捷地鉴定了酶反应产物中的未知糖组分,最终证明食尼古丁节杆菌(Arthrobacter nicotinovorus)D97利用淀粉或麦芽寡糖的酶反应产物中含有海藻糖。该方法在筛选海藻糖及其它功能性葡二糖生产菌株时较为严密。  相似文献   

10.
海藻糖合酶能够利用麦芽糖一步法转化生产海藻糖,其底物专一性较高,该酶体系生产工艺简单,不受底物麦芽糖浓度的影响,是工业生产海藻糖的首选。为获得具有生产海藻糖合酶能力的毕赤酵母表面展示载体,实验以筛选的Pseudomonas putide P06海藻糖合酶基因为模板,PCR扩增得到海藻糖合酶基因(tres,2064 bp),连接至pPICZαA质粒中,获得重组质粒pPICZαA-tres。以来自酿酒酵母的共价连接细胞壁的Pir系列蛋白的Pir1p成熟肽蛋白作为毕赤酵母表面展示的锚定蛋白,利用PCR技术扩增得到pir1p(847 bp),连接至重组质粒pPICZαA-tres中,获得重组质粒pPICZαA-tres-pir1p。将重组质粒电击转入毕赤酵母GS115中,利用α-factor信号肽将蛋白引导分泌至细胞壁展示于毕赤酵母表面。通过Zeocin抗性筛选,挑选出阳性克隆子并摇瓶发酵。发酵产物经离心、破碎并使用昆布多糖酶水解,洗脱,结果显示,SDS-聚丙烯酰胺凝胶电泳分析可见明显融合蛋白条带,表明海藻糖合酶已成功地锚定在毕赤酵母。将重组毕赤酵母使用pH 7.5的缓冲液清洗并重悬,与底物浓度为30%的麦芽糖在30℃~60℃水浴条件下作用2 h,反应产物利用HPLC检测,能够检测到酶学活性。在优化后的条件pH 7.5,50℃,表面展示海藻糖合酶酶活达到300.65 U/g。40℃~50℃酶活较稳定,保温60 min,残留酶活相对活力达75%以上;最适反应pH值为7.5,并在碱性环境下稳定。  相似文献   

11.
分离克隆了腾冲嗜热杆菌(Thermoanaerobacter tengcongensis)海藻糖磷酸化酶(TreP)的编码基因(treP), 该酶可催化以葡萄糖和α-1-磷酸葡萄糖为底物的海藻糖合成反应及其逆向的分解反应. 反向mRNA点杂交实验表明, 腾冲嗜热杆菌中treP基因在高盐胁迫条件下表达量增加, 而在海藻糖诱导条件下表达量降低. 将该基因导入不含TreP的大肠杆菌中进行诱导表达, SDS-PAGE表明, 异源表达的TreP分子量约为90 kD, 与预期值相同. 通过葡萄糖氧化酶法测定分解产物葡萄糖的产率表明: TreP催化海藻糖分解反应的最适温度是70℃, 最适pH值为7.0; 通过HPLC检测合成产物海藻糖的产率表明: TreP催化合成反应的最适温度为70℃, 最适pH值为6.0. 在最适反应条件下, 50 μg的TreP粗酶可催化25 mmol/L α-1-磷酸葡萄糖与葡萄糖在30 min合成11.6 mmol/L海藻糖; 而同量的酶在同样时间内仅能将250 mmol/L海藻糖分解生成1.5 mmol/L葡萄糖. 以上体内胁迫和诱导表达分析及体外酶学性质分析均证明该酶的主要功能是催化海藻糖的合成反应. 热稳定性实验表明, 该酶性质比较稳定, 在50℃下温育7 h还能保持77%以上的活性, 是一个有潜在工业用途的新的热稳定海藻糖合成酶.  相似文献   

12.
海藻糖是自然界中普遍存在的一种非还原性双糖,是一种极好的天然干燥剂和保鲜剂。海藻糖合酶能够催化α,α-1,4-糖苷键连接的麦芽糖直接转化为α,α-1,1-糖苷键连接的海藻糖,是生产海藻糖的首选。为获得具有良好展示效果的海藻糖合酶,将其高效稳定的展示于枯草芽孢杆菌芽孢表面,实验同时分别选取增强型绿色荧光蛋白(EGFP)和海藻糖合酶(Tres)作为模型蛋白,以来自枯草芽孢杆菌的芽孢衣壳蛋白Cot C作为枯草芽杆菌表面展示的锚定蛋白进行表面展示研究。利用流式细胞仪分析EGFP在芽孢表面展示的情况,结果表明芽孢衣壳蛋白Cot C可以将EGFP固定在芽孢的表面。然后将荧光蛋白基因egfp通过酶切替换为海藻糖合酶基因tres,将重组菌株使用p H7.5的缓冲液清洗并重悬,与底物浓度为30%的麦芽糖在50℃水浴条件下作用2h,反应产物利用HPLC检测,能够检测到海藻糖峰,通过计算得到的酶活为252U/ml。说明海藻糖合酶基因通过与芽孢衣壳蛋白Cot C融合后可被展示在芽孢的表面。  相似文献   

13.
从天蓝色链霉菌Streptomyces coelicolor克隆得到海藻糖合酶基因 (ScTreS),在大肠杆菌Escherichia coli BL21(DE3) 中进行了异源表达,通过 Ni-NTA 亲和柱对表达产物进行分离纯化得到纯酶,经 SDS-PAGE 测定其分子量约为62.3 kDa。研究其酶学性质发现该酶最适温度35 ℃;最适pH 7.0,对酸性条件比较敏感。通过同源建模和序列比对分析,对该基因进行定点突变。突变酶K246A比酶活比野生酶提高了1.43倍,突变酶A165T相对提高了1.39倍,海藻糖转化率分别提高了14%和10%。利用突变体重组菌K246A进行全细胞转化优化海藻糖的合成条件并放大进行5 L罐发酵,结果表明:在麦芽糖浓度300 g/L、初始反应温度和pH分别为35 ℃和7.0的条件下,转化率最高达到71.3%,产量为213.93 g/L;当底物浓度增加到700 g/L时,海藻糖产量仍可达到465.98 g/L。  相似文献   

14.
【目的】通过比较柑橘大实蝇Bactrocera minax蛹滞育期与滞育前和滞育后以及滞育蛹与非滞育蛹体内海藻糖和葡萄糖含量的变化、海藻糖合成代谢途径中关键酶的活力变化以及关键酶基因的表达量变化,明确蛹滞育期间海藻糖合成代谢途径中关键酶对海藻糖含量的调控。【方法】利用分光光度法检测柑橘大实蝇滞育前(1日龄蛹)、滞育期(30,60和90日龄蛹)以及滞育后(120和150日龄蛹)蛹体内海藻糖与葡萄糖含量的变化,以及海藻糖合成代谢途径中的海藻糖-6-磷酸合成酶(TPS)、海藻糖-6-磷酸磷酸酯酶(TPP)和海藻糖酶(Tre)活力的变化;利用实时定量荧光PCR(qPCR)检测TPS,TPPB,TPPC-1,TPPC-2和Tre-1基因表达量的变化。向1日龄蛹体内注射20-羟基蜕皮酮(20E)作为处理(以注射10%乙醇为对照),分别于注射后1和30 d比较处理组与对照组蛹体内海藻糖与葡萄糖含量、关键酶活力以及上述基因表达量的差异。【结果】柑橘大实蝇蛹进入滞育后,海藻糖含量显著升高,葡萄糖含量无显著变化; TPS和TPP的酶活力以及TPS,TPPC-1和TPPC-2表达量在化蛹后逐渐升高,于滞育期达到最高水平,维持至羽化前显著下降;TPPB表达量在整个蛹期无显著差异; Tre酶活力以及Tre-1表达量在化蛹后逐渐升高,于滞育早期达到最高水平,随后显著下降,羽化前再次显著上升。注射20E后1 d,与对照组相比,处理组蛹体内海藻糖与葡萄糖含量、关键酶(TPS,TPP和Tre)活力以及TPS,TPPC-2和Tre-1表达量无显著变化,TPPB表达量显著下降,TPPC-1表达量显著上升;注射后30 d,与对照组滞育蛹相比,处理组非滞育蛹海藻糖含量显著上升,葡萄糖含量、TPS和Tre酶活力、TPS和Tre-1表达量显著下降,TPP酶活力以及TPPB和TPPC-2表达量无显著差异。【结论】柑橘大实蝇蛹体内海藻糖的含量在合成代谢途径中关键酶的调控下,随着滞育状态发生变化,表明海藻糖与滞育之间存在密切的关系,但其作用机理仍待进一步研究。  相似文献   

15.
在昆虫中已发现成熟的典型胰岛素信号通路,但是其调控海藻糖代谢途径的机制还未清晰。为探讨胰岛素受体基因在褐飞虱海藻糖代谢平衡及其发育的调控作用,本文采用RNAi技术抑制胰岛素受体(InR)基因的表达,测定处理后海藻糖、糖原和葡萄糖含量及海藻糖酶活变化,并检测InR、类胰岛素多肽(Ilp)、海藻糖代谢途径中关键基因的表达。研究结果表明dsRNA注射后能够显著抑制Ilp和InR基因的表达;InR1低表达后72 h能够显著抑制3种糖类物质的含量;InR表达抑制后72 h可溶性海藻糖酶活性上升,而膜结合型海藻糖酶活性下降;当InR表达受抑制后3个海藻糖酶和2个海藻糖合成酶基因的表达都显著下降。这些结果说明InR能够影响海藻糖等糖类物质的平衡。从而为将来通过调控昆虫血糖平衡来控制害虫提供理论依据。  相似文献   

16.
酿酒酵母海藻糖合成酶基因的克隆和在大肠村菌中的表达   总被引:2,自引:0,他引:2  
杨波  戴秀玉  周坚 《遗传学报》2001,28(4):372-378
用PCR方法克隆了1.5kb的酿酒母Sacchromyces cerevisiae海藻糖合成酶基因TPSI,将该片段连接到pUC19载体,通过转化分别引入海藻糖合成酶基因缺失和缺陷的大肠杆菌Escherichia coli FF4169 和FF4050,对转化株的质粒DNA酶切分析表明均含有1.5kb PCR克隆片段,生长曲线实验证明,带有克隆片段的转化株在含0.5mol/L NaCl的高渗透压基础培养基中生长良好;用高效液相色谱(HPLC)结合蒸发散射(ELSD)技术测定细胞内海藻糖实验证明转化株能够合成海藻糖。  相似文献   

17.
海藻糖具有独特的生物活性,在多种行业应用广泛。海藻糖合酶能够专一性催化麦芽糖一步生成海藻糖。本文通过PCR扩增获得了来源于Thermus thermophilus ATCC33923的海藻糖合酶基因Tre S,构建了基因工程菌E.coli BL21(DE3)/p ET-24a(+)-Tre S。工程菌在摇瓶中发酵28 h时,胞内海藻糖合酶酶活达到最高值为6.4 U/m L。进一步研究了该重组酶制备海藻糖的影响因素,发现当以10%麦芽糖为底物,初始反应p H 7.5,加酶量为15 U/g麦芽糖,40℃,150 r/min反应24 h,转化率达到最高值,为49.0%。当底物浓度提高至20%~40%时,转化率为45.4%~46.2%。  相似文献   

18.
设计引物克隆玫瑰微球菌QS412中麦芽寡糖基海藻糖水解酶(MTHase)的基因treZ,通过与pET-28a( )载体相连,转化入宿主菌E.coli BL21,进行发酵诱导。通过SDS-PAGE检测到外源基因在大肠杆菌中有很高的MTHase表达量,但大部分都以不溶性包含体形式存在。对菌体超声破碎全菌液检测酶活,结果显示了水解酶酶活。这是来源于微球菌属的麦芽寡糖基海藻糖水解酶首次获得基因克隆和活性表达,为进一步提高酶活、增大海藻糖产量奠定了基础。  相似文献   

19.
海藻糖是相容性溶质的一种,因其具有多种生物学功能,在食品、化妆品、药品以及器官移植等方面均有很广泛应用。然而近几年生产海藻糖主要集中在使用酶催化的方法,虽然这种方法的转化效率高,但是却存在着副产物的问题,难以得到高纯度的海藻糖产品,严重制约了海藻糖的应用。本文通过基因工程技术在大肠杆菌Escherichia coli中构建了海藻糖高效合成新途径,通过全细胞催化合成海藻糖。利用PCR技术在哈氏噬纤维菌Cytophaga hutchinsonii中克隆获得海藻糖双功能合成酶基因(tpsp),采用E.coli pTac-HisA高效表达载体,实现海藻糖双功能合成酶基因(tpsp)高效表达,利用高效表达菌株进行全细胞催化,将葡萄糖高效转化为海藻糖。结果表明C.hutchinsonii海藻糖合成酶基因(tpsp)在E.coli中成功实现表达,该酶能够在胞内将葡萄糖高效转化为海藻糖,并将其转运到胞外,实现海藻糖的高效率合成,海藻糖的产量提高到1.2 g/L,相对转化率为21%。当将此高产菌株在发酵罐中进行转化时,海藻糖的产量达到13.3 g/L,葡萄糖的相对转化率达到48.6%。采用C.hutchinsonii海藻糖合成酶基因高效表达并且应用于海藻糖全细胞合成催化在国内外尚属首次报道,海藻糖的转化率及产率都已达到文献报道最高水平,本研究为开拓海藻糖生产新技术奠定了基础。  相似文献   

20.
海藻糖合酶的研究进展   总被引:1,自引:0,他引:1  
海藻糖是一种天然存在的非还原性二糖, 对生物膜和蛋白质等大分子有独特的保护作用, 在食品、医药、化妆品等多个领域中都有广泛的发展空间。海藻糖合酶(TreS)是一类分子内转糖苷酶, 专一性地以麦芽糖为底物, 一步转化生成海藻糖, 操作工艺简单、底物价格低廉、应用前景良好。本文综述了海藻糖合酶的酶学性质、催化机理、基因工程以及目前存在的主要问题和拟解决方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号