首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Larval competition between contest and scramble strategists was investigated using the two bruchid species, C. analis (contest species) and C. phaseoli (scramble species) with two different sized mung beans (large and small beans). In both sized beans, the adult emergences of each species dependen on total density of the initial larval densities of the two species and the ratio of the two densities. The emergence of one species was suppressed by the existence of the other species when the initial larval density per bean of the former species was less than that of the latter one. There were many cases in which both C. analis and C. phaseoli emerged from one bean in large beans, but such cases were quite rare in small beans. C. analis performed interference behavior only at late larval stages, whereas C. phaseoli was superior in exploitative competition all through their larval stages. These, combined with the niche segregation inside a bean, are throught to be the major factors of observed density- and frequency-dependent competition results. Based on the above experimental results, long-term competition results between the contest and scramble species were predicted.  相似文献   

2.
Larval competition curves and resource sharing patterns of 5 strains of Callosobruchus maculatus (iQ, yQ, aaQ, wQ, and tQ) were examined. Offspring emergences as a function of the initial larval density were recorded to construct competition curves. Elytron length of emerged adults was used as the indicator of resource sharing patterns among competing larvae inside a bean. In the large beans, strain iQ showed a saturated competition curve and tQ strain showed a humped curve. Competition curves of the other 3 strains (yQ, aaQ, and wQ) were between those two extremes. In the small beans, strains iQ and tQ also showed a saturated and a humped competition curves, respectively, whereas the competition curves of the 3 intermediate scramble strains could not be distinguished from that of the iQ strain. Thus, the classification based on competition curves was sensitive to the resource condition (bean size). In both the large and the small beans, the elytron lengths of iQ strain remained constant irrespective of initial larval density. On the contrary, the elytron lengths of the 4 other strains decreased monotonically with higher initial larval density. Thus, the judgment based on the resource sharing pattern was shown to be robust. Only iQ strain should be designated as a contest type, and the remaining strains as scaramble types. Contest and scramble types in C. maculatus were also compared with those observed in C. analis and C. phaseoli using competition curves, resource sharing patterns, and other physiological characters.  相似文献   

3.
Competition between contest and scramble strategists was examined using two strains of Callosobruchus maculatus, the contest strain (iQ) and the scramble strain (tQ). The direct larval interference experiment within each strain showed that the contest strain performed strong direct interference throughout its larval stage against the conspecific opponent(s). The scramble strain also performed its interference, but only during the 3rd and the 4th larval stages. The inter-strain larval competition experiments inside a large and small mung bean (Vigna radiata) showed that the contest strain was, in general, superior to the scramble strain in competition, but the competition results were density- and frequency-dependent. In the large beans, the proportion of adult emergence of the contest strain increased with the increase of its own initial density but decreased as the initial density of the scramble strain increased. The shape of the proportion of adult emergence became nonlinear in the small beans. The cause of the complexity of inter-strain competition results was discussed in the light of the difference in larval interference ability between the two strains.  相似文献   

4.
We performed multiple-generation competition experiments between Callosobruchus analis and C. phaseoli with different bean sizes. In each system, we supplied 5 g of mung beans (Vigna radiata) every 10 days. We examined three types of bean conditions: 5 g of large beans, 5 g of small beans, and a mixture of 2.5 g of large and small beans. In small bean condition, C. analis dominated C. phaseoli in all three replicates and C. phaseoli was extinct by the 260th day. On the contrary, C. phaseoli overcame C. analis within 250 days in large beans in all three replicates. In mixed beans condition the two bruchid species coexisted more than 500 days in two out of the three replicates. Even in the exceptional case, both species coexisted for 460 days. These results were examined in the light of the predictions from short-term larval competition experiments and a game theoretical model by Smith and Lessells (1985). The density and frequency dependent results during larval competition inside a bean was concluded to be a main factor to produce the above long-term competition results.  相似文献   

5.
Variation from contest to scramble in larval competition types was observed among laboratory lines derived from a geographic strain of Callosobruchus maculatus. In contest competition, only one adult can emerge from a small bean because the successful larva monopolizes resources. In scramble competition, however, multiple adults can emerge from the bean because larvae share resources. To explain the variation in competition types, we used six lines of the geographic strain to test the hypothesis that the larval competition type is determined by the larval behavior of building walls, which prevent larvae from interfering with each other, allowing multiple adults to emerge from a single bean. We also investigated the proportions of wall-making in contest-scramble hybrid lines to test whether the formation of a wall structure was genetically determined. Results support our hypothesis that wall-making behavior determines the type of larval competition within a geographic strain, and that the behavior is genetically determined. Scramble-type lines exhibited higher frequencies of wall-making than contest-type lines when two larvae of the same line infested a bean. Larval competition type and the tendency towards wall formation in contest-scramble hybrid lines ranged intermediate of parental lines. We concluded that the variation in larval competition type is determined by the variation in larval wall-making behavior among laboratory lines derived from the geographic strain. We will discuss the evolution of scramble-type larvae in C. maculatus based on our results.  相似文献   

6.
We examined the effect of age differences on competition type in individuals of a scramble‐type strain of Callosobruchus maculatus (F.). When oviposition of two individuals on a bean was manipulated to introduce time intervals using two lines with different adult body colors, the frequency of two‐adult emergence decreased with the introduction of sequential oviposition. This result indicates that an age difference between two individuals induces contest competition. The frequency of adult emergence in older individuals decreased, whereas in younger individuals it increased with the introduction of sequential oviposition. Using a dissecting microscope, we observed that bodies of older individuals that died in the bean during the 4‐day oviposition interval were crushed at the pupal stage under the pupal chambers of younger individuals. These results show that an age difference between two larvae in a bean causes contest competition due to one‐sided interference by a younger individual during pupation of an older individual. Based on these experimental results, we discuss the ecological cause of contest competition and the population‐level consequences of identified interactions in scramble‐type C. maculatus.  相似文献   

7.
Interspecific competition between an intermediate contest strain of Callosobruchus maculatus and a scramble strain of C. chinensis was investigated on two types of resource beans: the azuki (Vigna anguralis, small seed) and the black-eye bean (Vigna unguiculata, large seed). We conducted both single-generation competition experiments and multiple-generation experiments and then analyzed the system with a discrete version of the Lotka–Volterra competition model. The estimated competition coefficients showed the competitive dominance of the C. maculatus strain over the C. chinensis strain in both types of bean. Zero-growth isocline analysis based on the predicted model showed that an overall dominance of the contest species, C. maculatus, in azuki beans, whereas the outcome of competition was dependent on the initial population size of each species in the black-eye beans. In the multiple-generation experiments, C. maculatus was the successful competitor irrespective of the ratio of the two beans, whereas C. chinensis overcame C. maculatus in one of five replicates with the black-eye beans system. When we incorporated the cost of scramble competition, or density-dependent reduction in body mass into the predicted model, the model alteration decreased the survival region of C. chinensis in phase space on the black-eye bean. Thus, the competitive equations, which do not consider the density-dependent body size reduction, tend to overestimate the advantages of scramble strategists. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The seed beetle Callosobruchus maculatus larvae exhibit two types of resource competition: scramble, in which a resource is shared, and contest, in which the resource is monopolized. This difference in larval behavior results in different adult densities. Under contest competition, adult density remains constant regardless of larval density, but under scramble competition, adult density increases with larval density. This in turn affects mating frequency during adulthood, and thus, the intensity of sexual selection operating on males. In this study, we examined the relationship between larval competition types and male reproductive investment in mating. We assessed the male ejaculate expenditure per mating across geographic strains of C. maculatus. The male investment (ejaculate expenditure) increased with the degree of scramble competition and decreased with the degree of contest competition. We therefore suggest that males experience different selective pressures depending on the type of larval competition: scramble type males are selected for increased reproductive investment.  相似文献   

9.
In intraspecific competition, the sex of competing individuals is likely to be important in determining the outcome of competitive interactions and the way exposure to conspecifics during development influences adult fitness traits. Previous studies have explored differences between males and females in their response to intraspecific competition. However, few have tested how the sex of the competitors, or any interactions between focal and competitor sex, influences the nature and intensity of competition. We set up larval seed beetles Callosobruchus maculatus to develop either alone or in the presence of a male or female competitor and measured a suite of traits: development time, emergence weight; male ejaculate mass, copulation duration, and lifespan; and female lifetime fecundity, offspring egg–adult survival, and lifespan. We found effects of competition and competitor sex on the development time and emergence weight of both males and females, and also of an interaction between focal and competitor sex: Females emerged lighter when competing with another female, while males did not. There was little effect of larval competition on male and female adult fitness traits, with the exception of the effect of a female competitor on a focal female's offspring survival rate. Our results highlight the importance of directly measuring the effects of competition on fitness traits, rather than distant proxies for fitness, and suggest that competition with the sex with the greater resource requirements (here females) might play a role in driving trait evolution. We also found that male–male competition during development resulted in shorter copulation times than male–female competition, a result that remained when controlling for the weight of competitors. Although it is difficult to definitively tease apart the effects of social environment and access to resources, this result suggests that something about the sex of competitors other than their size is driving this pattern.  相似文献   

10.
Callosobruchus maculatus has both contest and scramble competition strategies. The currently existing theoretical models using game theory suggest that the contest strategy should be selected for. However, most geographic strains of C. maculatus show scramble competition. We experimentally crossed the representative strains of contest and scramble. We expressed the degree of contest competition by a continuous value named the C-value, which ranges from zero (pure scramble) to unity (pure contest). The competition types expressed in the C-value were genetically additive. Their larval developmental rates were negatively correlated with C-values. Multiple-generation experiments of the mixed strains confirmed that there were no overwhelming advantages of contest over scramble type. Most of the mixed strains remained in the intermediate states. We discuss the results in terms of the resource size necessary for developmental success and developmental speed. Received: April 19, 2001 / Accepted: November 2, 2001  相似文献   

11.
Abstract Environmental conditions experienced by organisms during development can have profound impacts on adult fitness and behaviour. Internally feeding larvae unable to leave the seed selected by their mother face limitations of resource suitability and competition. The host seed may guide the larval behaviour within the seed leading to differential intensity of competition and determining its process and outcome, which varies in strains of the legume seed beetle Callosobruchus maculatus (Coleoptera: Bruchidae). However, the intensity, process and outcome of larval competition in different hosts have yet to be simultaneously considered, the objective of the present study. Here we assessed the intensity, process and outcome of intrastrain larval competition as related to host type, and how they are interrelated. Larval competition was faced with two distinct strategies – scramble and contest competition depending on the insect strain and host seed species. The intensity of competition did not show any straight link with the process and outcome of competition. Only a single strain showed a contest competition process with likely interference between larvae, while the four other strains studied showed the process of scramble competition. The process of scramble competition, however, led to variable outcomes in mung beans based on larval competition curves. Such differences were not apparent on cowpea seeds and either the plateau or the peak expected on the larval fitness curves were not reached preventing the distinction of the competition outcome, a likely consequence of the egg laying behaviour of these strains limiting the maximum number of eggs laid per seed. Seed host species rather than seed size are the likely cause of the differences observed from the initial expectation. The strain showing the process of contest competition increased larval fitness with density of larvae emerged per seed regardless of the host species, an unexpected outcome based on theoretical models. In this case the egg laying behaviour of the adult female is probably the main fitness determinant of its progeny.  相似文献   

12.
Abstract Polyandry reflected in multiple mating with different mates is regarded as favoured by natural selection in males but not necessarily in females, where conflicting effects on fitness components can occur. The present study aims to provide empirical evidence to predict which fitness components may be affected in this sexual conflict using a species that demonstrates potential between‐population variation in their resolution: the cowpea weevil Callosobruchus maculatus. Two strains showing contrasting competition outcomes (scramble × contest) and contrasting life‐history strategies based on trade‐offs between longevity and fecundity are crossed for subsequent selection based on larval‐competition strategy, expecting the production of a correlated response to multiple (polyandrous) mating. Such a response is expected because the scramble strain shows high fecundity (and lower longevity) and would benefit from multiple mating, in contrast with the contest strain, which shows high juvenile mortality. The scramble‐selected lines would evolve a response of increased fecundity and reduced longevity under multiple and potentially polyandrous mating but the contest‐selected lines would not respond to multiple (polyandrous) mating. Instead, both scramble‐ and contest‐selected lines show increased fecundity and reduced longevity with multiple (polyandrous) matings, which did not affect egg weight. Indirect benefits of multiple (polyandrous) mating appear to be relevant for lines showing contest competition among juveniles.  相似文献   

13.
In an insect host (the cowpea weevilCallosobruchus maculatus)- parasitoidHeterospilus prosopidis) experimental system, the population densities of the component species oscillated for the first 20 generations and then abruptly stabilized as the parasitoid density decreased. Examination of the host and parasitoid after the 40th generation in the long-term experiment showed that (1) host larvae exhibited contest-type competition (killing other larvae inhabiting the same bean), in contrast to the founder population being scramble-type competitors and (2) the parasitoid attack rate on the host did not change. There was also an evolutionary trade-off between body size and the rates of larval survival and development, suggesting a cost of contest competition on larval survivorship and development. I tested model predictions (Tuda and Iwasa 1998) that (1) host equilibrium population size should gradually decrease as the proportion of the contest type increases and that (2) random attacks of the parasitoid on the host should reduce the rate of increase in proportion of the contest type, and the effect should become manifest especially during the first 20 generations. Two of three host-only replicates showed significant decrease in population sizes. Although the density of emerging adults per bean did not differ between replicates of the host-only and host-parasitoid systems, comparison of the host body size between them on day 270 (at the 13th generation) showed that the host was more contest-type in the host-only system than in the host-parasitoid system, as the model predicted, and later on day 650 the effect of the parasitoid had disappeared.  相似文献   

14.
Reproductive interference is any interspecific sexual interaction that adversely affects female fitness through indiscriminate reproductive activities. It can be a driving force of resource partitioning in conjunction with resource competition. We previously showed that the bean beetle Callosobruchus maculatus is superior in larval resource competition, but vulnerable in reproductive interference, compared with its congener C. chinensis. We hypothesized that these two species might use two resources differently if one of the resources modified the intensity of reproductive interference or resource competition. We observed that C. maculatus females often enter gaps between beans to avoid mating attempts of heterospecific males, and hypothesized that removing bean gaps would strengthen reproductive interference. Therefore, we provided normal beans with gaps and split beans without gaps to females of the two species housed with conspecific or heterospecific males or no males and compared the number of eggs on each bean type among treatments. Callosobruchus maculatus females housed with heterospecific males were more likely to oviposit on normal beans than C. chinensis females. As a result, more C. chinensis adults hatched from split beans and more C. maculatus hatched from normal beans when females and males of both species were housed together. Thus, oviposition resource partitioning resulted from the combination of female avoidance of reproductive interference and resource competition.  相似文献   

15.
During contest competition, a competitor may persist in a given contest based on information regarding its own fighting ability (resource‐holding potential, RHP), or that of its opponent. Although a number of models formalize the ways in which competitors are hypothesized to use RHP‐related information to determine their persistence in contests, we focused on pure self‐assessment and mutual assessment models in this study. According to pure self‐assessment models, a competitor uses only information regarding its own RHP to determine its persistence in a contest. In contrast, according to mutual assessment models, persistence is based on information regarding a competitor's RHP relative to that of its opponent and therefore requires assessment between competitors. In this study, using size as a proxy for RHP, we tested whether the parasitoid wasp Nasonia vitripennis utilizes pure self‐assessment or mutual assessment during pairwise, male–male contests. When we examined competitors of varied sizes, we found that the losing male's size was positively related to contest duration, but the winning male's size was uncorrelated with contest duration. When we examined contests in which competitors were size‐matched, we found that the mean size of paired competitors was positively related to contest duration. These results suggest that male N. vitripennis engage in pure self‐assessment during contests.  相似文献   

16.
1. The patterns of density-dependent resource competition and the mechanisms leading to competitive exclusion in an experimental two-species insect age-structured interaction were investigated. 2. The modes of competition (scramble or contest) and strength of competition (under- to overcompensatory) operating within and between the stages of the two species was found to be influenced by total competitor density, the age structure of the competitor community and whether competition is between stages of single or two species. 3. The effect of imposed resource limitation on survival was found to be asymmetric between stages and species. Environments supporting both dominant and subordinate competitors were found to increase survival of subordinate competitors at lower total competitor densities. Competitive environments during development within individual stage cohorts (i.e. small or large larvae), differed from the competitive environment in lumped age classes (i.e. development from egg-->pupae). 4. Competition within mixed-age, stage or species cohorts, when compared with uniform-aged or species cohorts, altered the position of a competitive environment on the scramble-contest spectrum. In some cases the competitive environment switched from undercompensatory contest to overcompensatory scramble competition. 5. Such switching modes of competition suggest that the relative importance of the mechanisms regulating single-species population dynamics (i.e. resource competition) may change when organisms are embedded within a wider community.  相似文献   

17.
We carried out field experiments to examine the variability of interspecific competition of mosquito larvae among microcosms in a bamboo grove (small spatial scale) and between bamboo groves at two sites, with single and multiple mosquito species (large spatial scale). Four types of microcosms that differed in capacity and litter input were set. In the hillside bamboo grove, where multiple species occurred, succession of the predominant species from Aedes albopictus to Tripteroides bambusa was observed in control microcosms from which no mosquito larvae were removed. Weekly removal of competitive species resulted in increased pupation of A. albopictus and adult body weight under both rich and poor resource conditions. In the late period of the experiments, the effect of competitor removal on pupation of A. albopictus was greater in deep containers that never dried than in shallow containers that were dried in the laboratory. The number of eggs showed a slight difference between competitor‐excluded and deep control microcosms. These results indicate that interspecific competition limits pupation of A. albopictus more strongly in deep containers than in shallow and drought‐prone containers.
Compared with the hillside site, the larval density of A. albopictus attained a higher density in the bamboo grove in the plain where no competitive species occurred, due to a higher oviposition rate. Lower rate of pupation and lower adult weight at the plain site than at the hillside site indicated that resource limitation was more severe at the plain site. Populations of A. albopictus at hillside and plain sites appeared to suffer from strong inter‐ and intraspecific competition, respectively. At the hillside site, the intensity of interspecific competition appeared to increase later in the breeding season, with a high larval density of T. bambusa. In contrast, at the plain site, intensity of intraspecific competition appeared to be reduced later in the breeding season with decreasing larval density of A. albopictus.  相似文献   

18.
1. Competition was created between the larvae of two life‐history strains of the blowfly Lucilia cuprina (Wiedemann) that have different requirements for larval resource acquisition. Adult females of one strain had the ability to mature eggs in the absence of adult feeding (autogeny) whereas the other strain lacked this ability. Autogeny shifts the burden of resource acquisition from adults to larvae, potentially leading to greater competition at this earlier life history stage. 2. A replacement series was used to determine the per‐capita competitive effect between strains relative to the intra‐strain effect, and density‐ and frequency‐dependent variation in this per‐capita effect was then evaluated. Evidence was found of competitive superiority of autogenous larvae when they occurred at a low frequency and low density, but their competitive ability was lost or reversed at higher frequencies and densities. 3. A dynamic competitive environment created by frequency and density dependence can account for the maintenance of genetic diversity for major life‐history traits. Such competition may explain why autogeny is rare in field populations of L. cuprina even although underlying genetic variation for the trait seems to be present.  相似文献   

19.
1. In nature, competitive interactions occur when different species exploit similar niches. Parasitic wasps (parasitoids) often have narrow host ranges and need to cope with competitors that use the same host species for development of their offspring. When larvae of different parasitoid species develop in the same host, this leads to intrinsic and often contest competition. Thus far, most studies on intrinsic competition have focused on primary parasitoids. However, competition among primary hyperparasitoids, parasitic wasps that use primary parasitoids as a host, has been little studied. 2. This study investigated intrinsic competition between two primary hyperparasitoids, the gregarious Baryscapus galactopus and the solitary Mesochorus gemellus, which lay their eggs in primary parasitoid larvae of Cotesia rubecula, while those in turn are developing inside their herbivore host, Pieris rapae. The aims were to identify: (i) which hyperparasitoid is the superior competitor; and (ii) whether oviposition sequence affects the outcome of intrinsic competition. 3. The results show that B. galactopus won 70% of contests when the two hyperparasitoids parasitised the host at the same time, and 90% when B. galactopus oviposited first. When M. gemellus had a 48 h head start, the two hyperparasitoids had an equal chance to win the competition. This suggests that B. galactopus is an intrinsically superior competitor to M. gemellus. Moreover, the outcome of competition is affected by time lags in oviposition events. 4. In contrast to what has been reported for primary parasitoids, we found that a gregarious hyperparasitoid species had a competitive advantage over a solitary species.  相似文献   

20.
Abstract.
  • 1 The effects of intraspecific and interspecific larval competition on larval survival, adult size, adult longevity and fecundity were quantified in four species of coexisting Lucilia blowflies: illustris, silvarum, sericata and caesar.
  • 2 There was a general negative effect of increasing density on larval and adult survival, size and fecundity. Additionally, complex species-specific and frequency-dependent responses were identified, which were not expected in these biologically and morphologically closely similar species.
  • 3 Lucilia illustris, the numerically dominant species in the natural community, was a superior competitor to L.silvarum at intermediate densities but an inferior competitor at high density. Such nonlinear responses may be related to differences in the life histories and larval behaviour of the species (bigger eggs and more contest-type outcome of competition in L.silvarum).
  • 4 We parameterized a model of interspecific competition on a subdivided resource in an attempt to reconcile the conflicting results on larval competitive abilities and the abundances of the species in the field. Using laboratory and field-estimated parameter values the model predicted coexistence of L.illustris and L.silvarum and the observed numerical dominance of the former species. The average densities of flies in the field are limited to relatively low levels, apparently preventing L.silvarum (the superior competitor at high density) from dominating and excluding L. illustris.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号