首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous Salmonella enterica and Escherichia coli O157:H7 outbreaks have been associated with contaminated sprouts. We examined how S. enterica serovars, E. coli serotypes, and nonpathogenic bacteria isolated from alfalfa sprouts grow on and adhere to alfalfa sprouts. Growth on and adherence to sprouts were not significantly different among different serovars of S. enterica, but all S. enterica serovars grew on and adhered to alfalfa sprouts significantly better than E. coli O157:H7. E. coli O157:H7 was essentially rinsed from alfalfa sprouts with repeated washing steps, while 1 to 2 log CFU of S. enterica remained attached per sprout. S. enterica Newport adhered to 3-day-old sprouts as well as Pantoea agglomerans and 10-fold more than Pseudomonas putida and Rahnella aquatilis, whereas the growth rates of all four strains throughout seed sprouting were similar. S. enterica Newport and plant-associated bacteria adhered 10- to 1,000-fold more than E. coli O157:H7; however, three of four other E. coli serotypes, isolated from cabbage roots exposed to sewage water following a spill, adhered to sprouts better than E. coli O157:H7 and as well as the Pseudomonas and Rahnella strains. Therefore, attachment to alfalfa sprouts among E. coli serotypes is variable, and nonpathogenic strains of E. coli to be used as surrogates for the study of pathogenic E. coli may be difficult to identify and should be selected carefully, with knowledge of the biology being examined.  相似文献   

2.
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log(10) on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log(10). The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.  相似文献   

3.
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log10 on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log10. The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.  相似文献   

4.
Genomic rearrangements (duplications and inversions) in enteric bacteria such as Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12 are frequent (10(-3) to 10(-5)) in culture, but in wild-type strains these genomic rearrangements seldom survive. However, inversions commonly survive in the terminus of replication (TER) region, where bidirectional DNA replication terminates; nucleotide sequences from S. enterica serovar Typhimurium LT2, S. enterica serovar Typhi CT18, E. coli K12, and E. coli O157:H7 revealed genomic inversions spanning the TER region. Assuming that S. enterica serovar Typhimurium LT2 represents the ancestral genome structure, we found an inversion of 556 kb in serovar Typhi CT18 between two of the 25 IS200 elements and an inversion of about 700 kb in E. coli K12 and E. coli O157:H7. In addition, there is another inversion of 500 kb in E. coli O157:H7 compared with E. coli K12. PCR analysis confirmed that all S. enterica serovar Typhi strains tested, but not strains of other Salmonella serovars, have an inversion at the exact site of the IS200 insertions. We conclude that inversions of the TER region survive because they do not significantly change replication balance or because they are part of the compensating mechanisms to regain chromosome balance after it is disrupted by insertions, deletions, or other inversions.  相似文献   

5.
Enteric pathogens, such as Salmonella enterica and Escherichia coli O157:H7, have been shown to contaminate fresh produce. Under appropriate conditions, these bacteria will grow on and invade the plant tissue. We have developed Arabidopsis thaliana (thale cress) as a model system with the intention of studying plant responses to human pathogens. Under sterile conditions and at 100% humidity, S. enterica serovar Newport and E. coli O157:H7 grew to 10(9) CFU g(-1) on A. thaliana roots and to 2 x 10(7) CFU g(-1) on shoots. Furthermore, root inoculation led to contamination of the entire plant, indicating that the pathogens are capable of moving on or within the plant in the absence of competition. Inoculation with green fluorescent protein-labeled S. enterica and E. coli O157:H7 showed invasion of the roots at lateral root junctions. Movement was eliminated and invasion decreased when nonmotile mutants of S. enterica were used. Survival of S. enterica serovar Newport and E. coli O157:H7 on soil-grown plants declined as the plants matured, but both pathogens were detectable for at least 21 days. Survival of the pathogen was reduced in unautoclaved soil and amended soil, suggesting competition from indigenous epiphytes from the soil. Enterobacter asburiae was isolated from soil-grown A. thaliana and shown to be effective at suppressing epiphytic growth of both pathogens under gnotobiotic conditions. Seed and chaff harvested from contaminated plants were occasionally contaminated. The rate of recovery of S. enterica and E. coli O157:H7 from seed varied from undetectable to 19% of the seed pools tested, depending on the method of inoculation. Seed contamination by these pathogens was undetectable in the presence of the competitor, Enterobacter asburiae. Sampling of 74 pools of chaff indicated a strong correlation between contamination of the chaff and seed (P = 0.025). This suggested that contamination of the seed occurred directly from contaminated chaff or by invasion of the flower or silique. However, contaminated seeds were not sanitized by extensive washing and chlorine treatment, indicating that some of the bacteria reside in a protected niche on the seed surface or under the seed coat.  相似文献   

6.
When Escherichia coli O157:H7 bacteria are added to alfalfa sprouts growing in water, the bacteria bind tightly to the sprouts. In contrast, laboratory K-12 strains of E. coli do not bind to sprouts under similar conditions. The roles of E. coli O157:H7 lipopolysaccharide (LPS), capsular polysaccharide, and exopolysaccharides in binding to sprouts were examined. An LPS mutant had no effect on the binding of the pathogenic strain. Cellulose synthase mutants showed a significant reduction in binding; colanic acid mutants were more severely reduced, and binding by poly-beta-1,6-N-acetylglucosamine (PGA) mutants was barely detectable. The addition of a plasmid carrying a cellulose synthase gene to K-12 strains allowed them to bind to sprouts. A plasmid carrying the Bps biosynthesis genes had only a marginal effect on the binding of K-12 bacteria. However, the introduction of the same plasmid allowed Sinorhizobium meliloti and a nonbinding mutant of Agrobacterium tumefaciens to bind to tomato root segments. These results suggest that although multiple redundant protein adhesins are involved in the binding of E. coli O157:H7 to sprouts, the polysaccharides required for binding are not redundant and each polysaccharide may play a distinct role. PGA, colanic acid, and cellulose were also required for biofilm formation by a K-12 strain on plastic, but not for the binding of E. coli O157:H7 to mammalian cells.  相似文献   

7.
An immunochromatographic-based assay (Quixtrade mark E. coli O157 Sprout Assay) and a polymerase chain reaction (PCR)-based assay (TaqMan E. coli O157:H7 Kit) were used to detect Escherichia coli O157:H7 strain 380-94 in spent irrigation water from alfalfa sprouts grown from artificially contaminated seeds. Ten, 25, 60, or 100 seeds contaminated by immersion for 15 min in a suspension of E. coli O157:H7 at concentrations of 10(6) or 10(8) cfu/ml were mixed with 20 g of non-inoculated seeds in plastic trays for sprouting. The seeds were sprayed with tap water for 15 s every hour and spent irrigation water was collected at intervals and tested. E. coli O157:H7 was detected in non-enriched water by both the TaqMan PCR (30 of 30 samples) and the immunoassay (9 of 24 samples) in water collected 30 h from the start of the sprouting process. However, enrichment of the spent irrigation water in brain heart infusion (BHI) broth at 37 degrees C for 20 h permitted detection of E. coli O157:H7 in water collected 8 h from the start of sprouting using both methods, even in trays containing as few as 10 inoculated seeds. The TaqMan PCR assay was more sensitive (more positive samples were observed earlier in the sprouting process) than the immunoassay; however, the immunoassay was easier to perform and was more rapid. At 72 h after the start of the sprouting process, the sprouts were heated at 100 degrees C for 30 s to determine the effectiveness of blanching for inactivation of E. coli O157:H7. All of the 32 samples tested with the TaqMan assay and 16 of 32 samples tested with the Quixtrade mark assay gave positive results for E. coli O157:H7 after enrichment of the blanched sprouts at 37 degrees C for 24 h. In addition, the organism was detected on Rainbow Agar O157 in 9 of 32 samples after 24 h of enrichment of the blanched sprouts. In conclusion, E. coli O157:H7 was detected in spent irrigation water collected from sprouts grown from artificially contaminated seeds by both the TaqMan and Quixtrade mark assays. The data also revealed that blanching may not be effective to completely inactivate all the E. coli O157:H7 that may be present in sprouts.  相似文献   

8.
A modified version of sorbitol MacConkey medium containing cefixime and tellurite (CT-SMAC medium) was produced by adding salicin and 4-methylumbelliferyl-beta-D-galactopyranoside to CT-SMAC medium; this medium was designated CT-SSMAC medium and was used to isolate Escherichia coli O157:H7 from radish sprouts. Of 101 non-E. coli bacteria isolated from radish sprouts that produced colorless colonies similar to colonies of E. coli O157:H7 grown on CT-SMAC medium, 92 (91%) formed colonies that were red to pink or were beta-galactosidase negative and colorless on CT-SSMAC medium. On the other hand, colonies of E. coli O157:H7 strains were colorless and beta-galactosidase positive on CT-SSMAC medium. Our results suggest that CT-SSMAC medium is more selective than CT-SMAC medium for isolating E. coli O157:H7.  相似文献   

9.
The rpoS nucleotide and predicted amino acid sequences from three Escherichia coli O157:H7 isolates were compared with those from three other E. coli isolates, including the likely O157:H7 progenitor, E. coli O55:H7. These clinical and environmental isolates all had identical sigma S amino acid sequences, while laboratory strains K12 and DH1 had three and one amino acid alterations, respectively, in comparison with the majority sequence. To extend the analysis of sigma S sequence conservation to include other Gram-negative bacteria, the E. coli sigma S sequences were compared with those from diverse Gram-negative organisms; sigma S sequence identities ranged from 50.2 to 99.7% among the available sequences. The results further confirm the existence of rpoS alleles among different E. coli strains, although all strains were classified as acid-resistant with survival rates > 10% after 2 h exposure to pH 2.5. It was also found that all E. coli O157:H7 isolates tested had a unique nucleotide at position 543, thus differentiating these strains from other E. coli serotypes.  相似文献   

10.
Two murine monoclonal antibodies (MAbs) (2B7 and 46E9-9) reactive with the H7 flagellar antigen of Escherichia coli were produced and characterized. A total of 217 E. coli strains (48 O157:H7, 4 O157:NM, 23 O157:non-H7, 22 H7:non-O157, and 120 non-O157:nonH7), 17 Salmonella serovars, and 29 other gram-negative bacteria were used to evaluate the reactivities of the two MAbs by indirect enzyme-linked immunosorbent assay (ELISA). Both MAbs reacted strongly with all E. coli strains possessing the H7 antigen and with H23- and H24-positive E. coli strains. Indirect ELISA MAb specificity was confirmed by inhibition ELISA and by Western blotting (immunoblotting), using partially purified flagellins from E. coli O157:H7 and other E. coli strains. On a Western blot, MAb 46E9-9 was more reactive against H7 flagellin of E. coli O157:H7 than against H7 flagellin of E. coli O1:K1:H7. Competition ELISA suggested that MAbs 2B7 and 46E9-9 reacted with closely related H7 epitopes. When the ELISA reactivities of the MAbs and two commercially available polyclonal anti-H7 antisera were compared, both polyclonal antisera and MAbs reacted strongly with E. coli H7 bacteria. However, the polyclonal antisera cross-reacted strongly both with non-H7 E. coli and with many non-E. coli bacteria. The polyclonal antisera also reacted strongly with H23 and H24 E. coli isolates. The data suggest the need to define serotype-specific epitopes among H7, H23, and H24 E. coli flagella. The anti-H7 MAbs described in this report have the potential to serve as high-quality diagnostic reagents, used either alone or in combination with O157-specific MAbs, to identify or detect E. coli O157:H7 in food products or in human and veterinary clinical specimens.  相似文献   

11.
Escherichia coli O157:H7 carried on plant surfaces, including alfalfa sprouts, has been implicated in food poisoning and outbreaks of disease in the United States. Adhesion to cell surfaces is a key component for bacterial establishment and colonization on many types of surfaces. Several E. coli O157:H7 surface proteins are thought to be important for adhesion and/or biofilm formation. Therefore, we examined whether mutations in several genes encoding potential adhesins and regulators of adherence have an effect on bacterial binding to plants and also examined the role of these genes during adhesion to Caco-2 cells and during biofilm formation on plastic in vitro. The genes tested included those encoding adhesins (cah, aidA1, and ompA) and mediators of hyperadherence (tdcA, yidE, waaI, and cadA) and those associated with fimbria formation (csgA, csgD, and lpfD2). The introduction of some of these genes (cah, aidA1, and csg loci) into an E. coli K-12 strain markedly increased its ability to bind to alfalfa sprouts and seed coats. The addition of more than one of these genes did not show an additive effect. In contrast, deletion of one or more of these genes in a strain of E. coli O157:H7 did not affect its ability to bind to alfalfa. Only the absence of the ompA gene had a significant effect on binding, and the plant-bacterium interaction was markedly reduced in a tdcA ompA double mutant. In contrast, the E. coli O157:H7 ompA and tdcA ompA mutant strains were only slightly affected in adhesion to Caco-2 cells and during biofilm formation. These findings suggest that some adhesins alone are sufficient to promote binding to alfalfa and that they may exist in E. coli O157:H7 as redundant systems, allowing it to compensate for the loss of one or more of these systems. Binding to the three types of surfaces appeared to be mediated by overlapping but distinct sets of genes. The only gene which appeared to be irreplaceable for binding to plant surfaces was ompA.  相似文献   

12.
AIMS: A study was performed to determine D values of acid-adapted and unadapted cells of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in cantaloupe juice and watermelon juice. METHODS AND RESULTS: Salmonella enterica serotype Poona, S. enterica serotype Saphra, two strains of E. coli O157:H7, and two strains of L. monocytogenes were grown in tryptic soy broth (TSB) and TSB supplemented with 1% glucose for 24 h at 37 degrees C. Decimal reduction times (D values) of cells suspended in unpasteurized cantaloupe juice and watermelon juice were determined. Acid-adapted cells of Salmonella and E. coli O157:H7, but not L. monocytogenes, had increased thermal tolerance compared with cells that were not acid-adapted. There was no correlation between soluble solids content of the two types of juice and thermal resistance. CONCLUSIONS: Growth of Salmonella and E. coli O157:H7 in cantaloupe juice, watermelon juice, or other acidic milieu, either in preharvest or postharvest environments, may result in cross protection to heat. The pasteurization conditions necessary to achieve elimination of pathogens from these juices would consequently have to be more severe if cells are habituated to acidic environments. SIGNIFICANCE AND IMPACT OF THE STUDY: Insights from this study provide guidance to developing pasteurization processes to eliminate Salmonella, E. coli O157:H7, and L. monocytogenes in cantaloupe juice and watermelon juice.  相似文献   

13.
A colony enzyme-linked immunosorbent assay using the hydrophobic grid membrane filter format was developed for the isolation of verotoxigenic Escherichia coli from human and food samples. The method utilizes monoclonal antibodies directed against the verotoxins and is sensitive to all verotoxin 1- and/or 2-producing serotypes. E. coli that produced a minimum of 2 x 10(2) and 2 x 10(3) 50% cytotoxic doses per ml of verotoxins 1 and 2, respectively, were detectable. In a method comparison using human stool specimens, this procedure isolated 29% more E. coli O157 than did the standard sorbitol-MacConkey agar procedure, with no false-positive reactions. When applied to meat, 11 of 20 samples positive for verotoxin by polymyxin extraction yielded verotoxigenic E. coli of a variety of serotypes including O157:H7. Four false positives were noted. This procedure provides a sensitive means for the isolation of verotoxigenic E. coli and should facilitate recovery of those serotypes that are otherwise indistinguishable from nonpathogenic strains.  相似文献   

14.
Aims:  To develop methods to differentiate Escherichia coli O157:H7 and related serotypes by the use of amplicon length polymorphism (ALP) analysis based on identifying DNA sequence deletions within highly homologous regions of three sequenced E. coli strains.
Methods and Results:  Potential primer locations along the ancestral genomic backbone were identified and evaluated against three sequenced genomes and then applied to a reference set of pathogenic E. coli strains. All 16 primer combinations generated the expected diagnostic fragments as predicted for the E. coli K12 MG1655, O157:H7 EDL933, and O157:H7B Sakai genomes.
Conclusions:  This study defines a collection of primers distributed along the length of the E. coli genome that were applied to ALP analysis methods to successfully differentiate between serotypes of E. coli O157:H7 and other E. coli serotypes.
Significance and Impact of the Study:  ALP-PCR analysis method was validated as an independent method of classification when compared with that of rep-PCR. The principles underlying ALP analysis can be readily applied for the detection and differentiation of other closely related microbial species because of the abundance of complete DNA sequence data for a large number of microbial genomes.  相似文献   

15.
AIMS: The objective of this study was to determine the combined effects of water activity (a(w)), chemical treatment and temperature on Salmonella and Escherichia coli O157:H7 inoculated onto alfalfa seeds. METHODS AND RESULTS: Alfalfa seeds inoculated with Salmonella or E. coli O157:H7 and adjusted to various a(w) values were subjected to simultaneous and separate treatments with chemicals and heat. The rate of death of both pathogens was correlated with increased a(w) (0.15-0.60) and temperature (5-37 degrees C) over a 52-week storage period. Higher seed a(w) enhanced the inactivation of pathogens on seeds heated at 50-70 degrees C for up to 24 h. Treatment of seeds with water, 1% Ca(OH)2, 1% Tween 80, 1% Ca(OH)2 plus 1% Tween 80 or 40 mg l(-1) Tsunami 200 at 23 or 55 degrees C for 2 min significantly (alpha=0.05) reduced populations of Salmonella and E. coli O157:H7. CONCLUSIONS: Overall, at the combinations of temperature and concentrations of chemicals tested, 1% Ca(OH)2 was most effective in killing Salmonella and E. coli O157:H7 without reducing seed viability. SIGNIFICANCE AND IMPACT OF THE STUDY: None of the treatments evaluated in this study, whether applied separately or in combination, eliminated Salmonella or E. coli O157:H7 on alfalfa seeds without sacrificing the viability of the seeds. It remains essential that practices to prevent the contamination of alfalfa seeds be strictly followed in order to minimize the risk of Salmonella and E. coli O157:H7 infections associated with sprouts produced from these seeds.  相似文献   

16.
The periplasmic chaperones HdeA and HdeB are known to be important for cell survival at low pH (pH < 3) in Escherichia coli and Shigella spp. Here we investigated the roles of HdeA and HdeB in the survival of various enterohemorrhagic E. coli (EHEC) following exposure to pH 2.0. Similar to K-12 strains, the acid protections conferred by HdeA and HdeB in EHEC O145 were significant: loss of HdeA and HdeB led to over 100- to 1,000-fold reductions in acid survival, depending on the growth condition of prechallenge cells. However, this protection was much less in E. coli O157:H7 strains. Deletion of hdeB did not affect the acid survival of cells, and deletion of hdeA led to less than a 5-fold decrease in survival. Sequence analysis of the hdeAB operon revealed a point mutation at the putative start codon of the hdeB gene in all 26 E. coli O157:H7 strains analyzed, which shifted the ATG start codon to ATA. This mutation correlated with the lack of HdeB in E. coli O157:H7; however, the plasmid-borne O157-hdeB was able to restore partially the acid resistance in an E. coli O145ΔhdeAB mutant, suggesting the potential function of O157-HdeB as an acid chaperone. We conclude that E. coli O157:H7 strains have evolved acid survival strategies independent of the HdeA/B chaperones and are more acid resistant than nonpathogenic K-12 for cells grown under nonfavorable culturing conditions such as in Luria-Bertani no-salt broth at 28°C. These results suggest a divergent evolution of acid resistance mechanisms within E. coli.  相似文献   

17.
The sequence of two enterohaemorrhagic Escherichia coli (EHEC) O157:H7 strains reveals the possession of at least 16 fimbrial gene clusters, many of the chaperone/usher class. The first part of this study examined the distribution of these clusters in a selection of EHEC/EPEC (enteropathogenic E. coli) serotypes to determine if any were likely to be unique to E. coli O157:H7. Six of the clusters, as determined by the presence of amplified main subunit or usher gene sequences, were detected only in the E. coli O157 and O145 serotypes tested. With the exception of one serotype O103 strain that contained an lpf2 cluster, lpf sequences were only detected in E. coli O157 of the serotypes tested. Expression from each cluster was measured by the construction of chromosomally integrated lacZ promoter fusions and plasmid-based eGFP fusions in E. coli O157:H7. This analysis demonstrated that the majority (11/15) of main fimbrial subunit genes were not expressed under the majority of conditions tested in vitro. One of the clusters showing promoter activity, loc8, has a temperature expression optimum indicating a possible role outside the host. From the presence of pseudogenes in three of the clusters, the lack of FimH-like minor adhesins in the clusters and their limited expression in vitro, it would appear that E. coli O157:H7 has a limited repertoire of expressed functional fimbriae. This restricted selection of fimbriae may be important in bringing about the tropism E. coli O157:H7 demonstrates for the terminal rectum of cattle.  相似文献   

18.
AIMS: To determine the effectiveness of combined treatments with chemicals, heat and ultrasound in killing or removing Salmonella and Escherichia coli O157:H7 on alfalfa seeds intended for sprout production. METHODS AND RESULTS: Alfalfa seeds inoculated with Salmonella or E. coli O157:H7 were treated with ultrasound (38.5-40.5 kHz) in solutions containing 1% Ca(OH)(2), 1% Tween 80, 1% Ca(OH)(2) plus 1% Tween 80, 160 microg ml(-1) Tsunami 200 and 0.5% Fit at 23 and 55 degrees C for 2 and 5 min. Highest reductions were in chemical solutions at 55 degrees C, but seed viability was also reduced compared with treatment at 23 degrees C. Inactivation of Salmonella and E. coli O157:H7 was generally enhanced by simultaneous treatments with ultrasound, chemicals and heat. CONCLUSIONS: Ultrasound treatment, in combination with chemicals and heat, had a modest enhancing effect on the effectiveness of chemicals in killing or removing pathogens on alfalfa seeds. Overall, treatment with 1% Ca(OH)(2) was most effective in killing Salmonella and E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of 1% Ca(OH)(2) instead of 20,000 microg ml(-1) chlorine, which is currently recommended as a sanitizer for seeds intended for sprout production in the US, should be considered. Ultrasound treatment of alfalfa seeds containing Salmonella or E. coli O157:H7, in combination with chemical treatment, contributes to achieving greater reductions in populations of these pathogens, thereby reducing the risk of contamination and the presence of pathogens in sprouts produced from these seeds.  相似文献   

19.
The study was undertaken to determine the clonal relationship and the genetic diversity among Escherichia coli isolates by comparing a non-motile O157 variant with three O157:H7 EHEC isolates and one O55:H7 enteropathogenic E. coli (EPEC) strain. E. coli strains were characterized by sorbitol phenotype, multilocus enzyme electrophoresis, pulsed-field gel electrophoresis, random amplification polymorphic DNA, and the presence of specific virulence genes (stx, E-hly and LEE genes). Sorbitol fermentation was observed in O157:H- (strain 116I), O55:H7 and O157:H7 (strain GC148) serotypes. stx1 or stx2 and E-hly genes were only detected among O157:H7 isolates. LEE typing revealed specific allele distribution: eaegamma, tirgamma, espAgamma, espBgamma associated with EPEC O55:H7 and EHEC O157:H7 strains (B1/1 and EDL 933), eaealpha, tiralpha, espAalpha, espBalpha related to the 116I O157:H- strain and the GC148 strain presented non-typable LEE sequences. Multilocus enzyme profiles revealed two main clusters associated with specific LEE pathotypes. E. coli strains were discriminated by random amplification of polymorphic DNA-polymerase chain reaction and pulsed-field gel electrophoresis methodologies. The molecular approaches used in this study allowed the determination of the genetic relatedness among E. coli strains as well as the detection of lineage specific group markers.  相似文献   

20.
AIMS: The reliability of the O157:H7 ID agar (O157 H7 ID-F) to detect verocytotoxigenic strains of Escherichia coli (VTEC) of serogroup O157 was investigated. METHODS AND RESULTS: This medium, designed to detect strains belonging to the clone of VTEC O157:H7/H-, contains carbohydrates and two chromogenic substrates to detect beta-d-galactosidase and beta-d-glucuronidase and sodium desoxycholate to increase selectivity for Gram-negative rods. A total of 347 strains of E. coli including a variety of serotypes, verocytotoxigenicity of human and animal sources were tested. The green VTEC O157 colonies were easy to detect among the other dark purple to black E. coli colonies. Of 63 O157:H7/H- strains, 59 (93.7%) gave the characteristic green colour. Three of the failed four strains of O157:H- were not verocytotoxigenic, missing only one VTEC O157. Three non-O157 strains gave the characteristic green colour on the medium and were VTEC OR:H- (2) and Ont:H- (1), possibly being degraded variants of the O157 enterohaemorrhagic E. coli clone. CONCLUSIONS: The O157:H7 ID agar (O157 H7 ID-F) was largely successful in isolating VTEC belonging to the O157:H7/H- clone. SIGNIFICANCE AND IMPACT OF THE STUDY: A medium, suitable for isolating strains of VTEC O157 was successfully evaluated and should be useful for the isolation of these pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号