共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of glycerol-extracted, Triton X-100 demembranated Tetrahymena cilia with 2–10 vol % acetone caused an enhancement of ATPase activity by 2- to 3- fold, depending on concentration and time of incubation. Axonemal ATPase activity was also increased upon incubation with bis (4-fluoro-3-nitrophenyl) sulfone (FNS). Acetone and FNS enhanced the activity of solubilized 30S dynein, but slightly inhibited that of 14S dynein. Heating at 38°C, incubation with FNS, and incubation with acetone activated axonemal ATPase to the same extent. Subsequent studies of (1) the effect of time of preincubation with a spin-labeled maleimide (SLM) at 25°C as a function of pH on the ATPase activity, (2) the concentration dependence of the inhibition of ATPase activity by N-ethylmaleimide or SLM, (3) the ratio of ATPase activity assayed at 25°C to that assayed at 0°C, and (4) the ratio of ATPase activity at pH 8.6 to that at pH 6.9 did not reveal any difference in the properties of the axonemal ATPase after near maximal enhancement by the heat, acetone, or FNS treatments. It was concluded that enhancement of ATPase activity by gentle heat treatment, by incubation with acetone (or other organic solvents), or by FNS results from a conformation change of 30S dynein. The effect of acetone and of FNS on the pellet height response (a measure of the increase in height of the pellet of cilia precipitated by brief centrifugation in the presence of ATP as compared to the absence of ATP) was also determined. Enhancement of ATPase by these reagents did not lead to a decrease in pellet height response. This observation, in conjunction with other data, indicates that there are at least 3 states of the cross-bridge cycle of dynein arms in cilia. 相似文献
2.
Demembranated cilia of Tetrahymena pyriformis were extracted with KCl or Tris-EDTA and the crude dyneins from each resolved by sucrose density gradient sedimentation into 14S-K, 30S-K, 14S-E and 30S-E dyneins, respectively. The calmodulin activation ratio (ATPase activity in presence of added calmodulin/ATPase activity in absence of added calmodulin) did not vary across the 30S dynein fractions regardless of the method of extraction nor did it vary across the 14S-E region. However, in going from the “heavy” fractions to the “light” fractions of the 14S-K region, it increased markedly. The concentration of calmodulin required for half-maximal activation did not differ appreciably in the “light” versus the “heavy” fractions of the 14S-K region, suggesting that the affinity for calmodulin does not vary in these fractions. SDS-polyacrylamide gel electrophoresis studies showed the presence of several polypeptides that varied in a systematic fashion across the 14S-K region and hence may be involved in regulating the sensitivity of 14S-K dynein ATPase activity to added calmodulin. 相似文献
3.
The effects of N-1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)maleimide(SLM) on the pellet height response and ATPase activity of glycerinated Triton X-100 extracted cilia of Tetrahymena pyriformis have been studied. Preincubation of cilia with SLM caused complete inhibition of the pellet height response and an initial increase in ATPase activity followed upon longer exposure to SLM by inhibition of ATPase. The effect of SLM on extracted 30S dynein was the reverse of that for whole cilia: ATPase activity was increased when 30S dynein was added to a mixture of ATP and SLM and inhibited when the 30S dynein was preincubated with SLM. The activity of 14S dynein was only inhibited by SLM. Electron spin resonance spectra of ciliary axonemes that had reacted with SLM for various times showed that much of the covalently bound SLM was strongly immobilized even after 1 min of reaction, when ATPase activity increased twofold. The proportion of strongly immobilized label increased with longer times of reaction. Addition of ATP to SLM-labeled axonemes caused a small decrease in the height of the spectral peak corresponding to strongly immobilized label as compared with that of weakly immobilized label, indicating an increase in rotational freedom of some covalently bound label. The results suggest that ATP causes a conformation change affecting a sulfhydryl group(s) involved in the mechanochemical system. It was also shown that beta,gamma-methylene ATP(AMP-PCP) is an inhibitor of dynein ATPase. This analogue of ATP is not hydrolyzed by whole cilia or by the extracted dyneins and does not cause a pellet height response. With Mg2+ as divalent cation, AMP-PCP inhibits 30S dynein more than it inhibits 14S dynein; with Ca2+, the inhibition of 30S dynein is reduced, and there is no inhibition of 14S dynein. Under conditions where AMP-PCP inhibited 30S dynein ATPase it was much less effective than ATP in protecting against the loss of ATPase activity by SLM. Although SLM inhibited Mg2+-activated 14S and 30S dyneins in solution, it did not inhibit ciliary ATPase activity. These results support the view that at least 2 SH groups are involved in ciliary motility and that their reactivity to SH reagents depends on whether the dyneins are in situ or have been extracted. 相似文献
4.
The effects of thioura and of several substituted thioureas–phenylthiourea, α-naphtylthiourea, metiamide, and burimamide–on dynein ATPase have been studied. The substituted thioureas are over 30 times more potent than thiourea in causing enhancement of 30S dynein ATPase activity and inhibition of 14S dynein ATPase activity. The effects of thiourea and phenylthiourea can be prevented by very low concentrations of β-mercaptoethanol or dithiotheritol. Axonemal ATPase is also enhanced by the thioureas, but the reaction proceeds more slowly than for solubilized 30S dynein. Enhancement of 30S dynein ATPase by metiamide is prevented by low (~ 1 μM) concentrations of ATP and, less effectively, by AMP-PNP, but not by AMP-PCP even though the latter is a stronger inhibitor of 30S dynein ATPase than is AMP-PNP. The thioureas inhibit the ATP-induced decrease in turbidity (measured as ΔA350) of axonemal suspensions. Inhibition of the turbidity response is also prevented by low concentrations of β-mercaptoethanol, but, in contrast to the irreversible enhancement of ATPase activity, inhibition of the turbidity response is largely reversible. The ability of 30S dynein to rebind onto twice extracted axonemes is not changed by treatment with phenylthiourea or metiamide. These observations indicate that the thioureas react with at least two sets of SH or S–S groups on axonemes. Reaction with the group(s) on the 30S dynein causes an apparently irreversible enhancement of ATPase activity. Reaction with another group(s) causes a reversible inhibition of the turbidity response. 相似文献
5.
6.
Rienmüller F Dreyer I Schönknecht G Schulz A Schumacher K Nagy R Martinoia E Marten I Hedrich R 《The Journal of biological chemistry》2012,287(12):8986-8993
Proton pumping of the vacuolar-type H(+)-ATPase into the lumen of the central plant organelle generates a proton gradient of often 1-2 pH units or more. Although structural aspects of the V-type ATPase have been studied in great detail, the question of whether and how the proton pump action is controlled by the proton concentration on both sides of the membrane is not understood. Applying the patch clamp technique to isolated vacuoles from Arabidopsis mesophyll cells in the whole-vacuole mode, we studied the response of the V-ATPase to protons, voltage, and ATP. Current-voltage relationships at different luminal pH values indicated decreasing coupling ratios with acidification. A detailed study of ATP-dependent H(+)-pump currents at a variety of different pH conditions showed a complex regulation of V-ATPase activity by both cytosolic and vacuolar pH. At cytosolic pH 7.5, vacuolar pH changes had relative little effects. Yet, at cytosolic pH 5.5, a 100-fold increase in vacuolar proton concentration resulted in a 70-fold increase of the affinity for ATP binding on the cytosolic side. Changes in pH on either side of the membrane seem to be transferred by the V-ATPase to the other side. A mathematical model was developed that indicates a feedback of proton concentration on peak H(+) current amplitude (v(max)) and ATP consumption (K(m)) of the V-ATPase. It proposes that for efficient V-ATPase function dissociation of transported protons from the pump protein might become higher with increasing pH. This feature results in an optimization of H(+) pumping by the V-ATPase according to existing H(+) concentrations. 相似文献
7.
We have studied the inactivation of membrane-bound and solubilized UDP-glucose:ceramide glucosyltransferase from Golgi membranes by various types of sulfhydryl reagents. The strong inhibition of the membrane-bound form by the non-penetrant mercurial-type reagents clearly corroborated the fact that in sealed and right-side-out Golgi vesicles the ceramide glucosyltransferase is located on the cytoplasmic face. No significant differences in the susceptibility to the various sulfhydryl reagents were noted when solubilized enzyme was assayed, showing that solubilization does not reveal other critical SH groups. The different results obtained must be interpreted with regard to several thiol groups, essential for enzyme activity. No protection by the substrate UDP-glucose against mercurial-type reagents was obtained indicating that these thiol groups were not located in the nucleotide sugar binding domain. A more thorough investigation of the thiol inactivation mechanism was undertaken with NEM (N-ethylmaleimide), an irreversible reagent. The time dependent inactivation followed first order kinetics and provided evidence for the binding of 1 mol NEM per mol of enzyme. UDP-Glucose protected partially against NEM inactivation, indicating that the thiol groups may be situated in or near the substrate binding domain. Inactivation experiments with disulfide reagents showed that increased hydrophobicity led to more internal essential SH groups which are not obviously protected by the substrate UDP-glucose, thus not implicated in the substrate binding domain, but rather related to conformational changes of the enzyme during the catalytic process.Abbreviations Chaps
3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulfonate
- Mops
4-morpholinepropanesulfonic acid
- PC
phosphatidylcholine
- NEM
N-ethylmaleimide
- CPDS
carboxypyridine disulfide (dithio-6,6-dinicotinic acid)
- DTNB
5,5-dithiobis-(2-nitrobenzoic acid)
- DTP
dithiodipyridine
-
p-HMB
para-hydroxymercuribenzoate
- DTT
dithiothreitol
- BAL
British anti-Lewisite (dimercaptopropanol)
- Zw 3–14
Zwittergent 3–14 相似文献
8.
Summary Tannase was produced by modified solid-state fermentation (MSSF) of tannin rich substrates by a co-culture of the two filamentous
fungi, Rhizopus oryzae and Aspergillus foetidus. The enzyme thus produced was then partially purified by solvent precipitation and DEAE-Sephadex column chromatography. A
study on the effects of temperature and pH was made on the activity of tannase so purified. The optimum values of incubation
time, reaction temperature and pH for tannase activity were 5 min, 40 °C and 5.0 respectively. The half-life period thermal
stability and kinetic constants (K
m 0.21 mM, V
max 4.9×10−2 M min-1 at 40 °C) of this tannase were determined and the effects of different metal ions, surfactants, chelators, denaturants and
inhibitors on the enzyme activity were also studied. 相似文献
9.
J. Sklenar G. G. Fox B. C. Loughman A. D. B. Pannifer R. G. Ratcliffe 《Plant and Soil》1994,167(1):57-62
Although the sensitivity of the plasma membrane H+-ATPase to vanadate is well known, the metabolic response of plant cells to vanadate is less well characterised in vivo and its use as an inhibitor in whole plant experiments has had mixed success. Experiments with maize (Zea mays, L.) roots and with purified plasma membrane fractions from the same tissues showed that exposure to vanadate caused: (i) a reduction in the capacity for phosphate uptake; (ii) a reduction in the extractable ATPase activity from the tissue; and (iii) a significant increase in the ATP level. The measurements on the extractable ATPase activity and the ATP level showed that the effect of vanadate developed slowly, apparently reflecting the slow accumulation of intracellular vanadate. The marked effect of vanadate on the ATP level-exposure to 500 M vanadate for 5 h doubled the ATP content of the roots tips-indicates that there is no stringent control over the ATP level in the roots and that the plasma membrane H+-ATPase activity is likely to have a significant role in determining the ATP level under normal conditions. 相似文献
10.
William Rouslin Charles W. Broge Boris V. Chernyak 《Journal of bioenergetics and biomembranes》1993,25(3):297-306
Zn2+ caused a noninhibitory binding of IF1 to mitochondrial membranes in both rabbit heart SMP and intact rabbit heart mitochondria. This Zn2+-induced IF1 binding required the presence of at least trace amounts of MgATP and was essentially independent of pH between 6.2 and 8.2. Addition of Zn2+ after the formation of fully inhibited IF1-ATPase complexes very slowly reversed IF1-mediated ATPase inhibition without causing significant IF1 release from the membranes. When Zn2+ was added during the state 4 energization of ischemic mitochondria in which IF1 was already functionally bound, it slowed somewhat energy-driven ATPase activation. This slowing was probably due to the fairly large depressing effect Zn2+ had upon membrane potential development, but Zn2+ did not decrease the degree of ATPase activation eventually reached at 20 min of state 4 incubation. Zn2+ also preempted normal IF1 release from the membranes, causing what little inhibitor that was released to rebind to the enzyme in noninhibitory IF1-ATPase complexes. The data suggest that IF1 can interact with the ATPase in two ways or through two kinds of sites: (a) a noninhibitory interaction involving a noninhibitory IF1 conformation and/or and IF1 docking site on the enzyme and (b) an inhibitory interaction involving an inhibitory IF1 conformation and/or a distinct ATPase activity regulatory site. Zn2+ appears to have the dual effect of stabilizing the noninhibitory IF1-ATPase interaction and possibily a noninhibitory IF1 conformation while concomitantly preventing the formation of an inhibitory IF1-ATPase interaction and possibly an inhibitory IF1 conformation, regardless of pH. While the data do not rule out direct effects of Zn2+ on either free IF1 or the free enzyme, they suggest that Zn2+ cannot interact readily with either the inhibitor or the enzyme once functional IF1-ATPase complexes are formed. 相似文献
11.
Maurice S Coroller L Debaets S Vasseur V Le Floch G Barbier G 《Journal of applied microbiology》2011,111(6):1436-1446
Aims: To predict the risk factors for building infestation by Serpula lacrymans, which is one of the most destructive fungi causing timber decay in buildings. Methods and Results: The growth rate was assessed on malt extract agar media at temperatures between 1·5 and 45°C, at water activity (aw) over the range of 0·800–0·993 and at pH ranges from 1·5 to 11·0. The radial growth rate (μ) and the lag phase (λ) were estimated from the radial growth kinetics via the plots radius vs time. These parameters were then modelled as a function of the environmental factors tested. Models derived from the cardinal model (CM) were used to fit the experimental data and allowed an estimation of the optimal and limit values for fungal growth. Optimal growth rate occurred at 20°C, at high aw level (0·993) and at a pH range between 4·0 and 6·0. The strain effect on the temperature parameters was further evaluated using 14 strains of S. lacrymans. The robustness of the temperature model was validated on data sets measured in two different wood‐based media (Quercus robur L. and Picea abies). Conclusions: The two‐step procedure of exponential model with latency followed by the CM with inflection gives reliable predictions for the growth conditions of a filamentous fungus in our study. The procedure was validated for the study of abiotic factors on the growth rate of S. lacrymans. Significance and Impact of the Study: This work describes the usefulness of evaluating the effect of physico‐chemical factors on fungal growth in predictive building mycology. Consequently, the developed mathematical models for predicting fungal growth on a macroscopic scale can be used as a tool for risk assessment of timber decay in buildings. 相似文献
12.
The action of divalen Zn,Cd, Hg,Cu and Pb ions on the ATPase activity of a plasma membrane fraction isolated from roots ofZea mays 总被引:4,自引:1,他引:4
The effects of the divalent metal ions Zn, Cd, Hg, Cu and Pb on the ATPase activity of a plasma membrane fraction isolated from roots ofZea mays have been investigated. When Mg-ions (3 mM), with or without K-ions (50mM) are included in the reaction medium, inhibition of ATPase activity was found in all cases, the relative order of the inhibitors over the concentration range 10 to 100M, being Hg>>CuCd>ZnPb. Below 1.0M only Hg caused substantial inhibition. In the absence of Mg ions, Zn and to a lesser extent Cd, activated the enzyme up to a concentration of 1 mM, activity being further stimulated in the presence of K-ions (50mM). No activation of ATPase activity was found for Hg, Cu or Pb. It was concluded that Zn-ATP and Cd-ATP are both alternative substrates for the enzyme. Further experiments showed that both Km and Vmax for the substrates Zn-ATP and Cd-ATP are very much lower than for the usual substrate Mg-ATP.These present results are discussed in relation to the known actions of these divalent cations on the trans-root potential and H-ion efflux in excised maize roots (Kennedy and Gonsalves, 1987). 相似文献
13.
Defining plant adaptation to soil conditions is critical for the successful introduction of grain legume species into farming systems. This nutrient solution study examined the effects of pH (4, 5, 6, 7 and 8) and bicarbonate (5 mM KHCO3) on the growth and nodulation of 14 grain legume species supplied with N or reliant on N2-fixation. Species includedPisum sativum L.,Cicer arietinum L.,Lens culinaris Med., and a range ofLupinus, Vicia andLathyrus species. Species differed greatly in response to solution pH. For both N-fertilized and N2-fixing plants, shoot growth ofL. culinaris was very sensitive to low pH (pH < 7), whereas shoot growth ofLupinus angustifolius L. andLupinus albus L. was sensitive to higher pH (pH ≥ 6). Other species had a broader optimal pH range for growth when supplied with N, but were generally sensitive to low pH (pH < 7 forC. arietinum andVicia sativa L., pH < 6 forP. sativum, Vicia faba L.,Lathyrus sativus L. andLathyrus cicera L., and pH < 5 forVicia benghalensis L. andVicia narbonensis L.) when reliant on N2-fixation. For these other species, symbiotic N2-fixation appeared to be more sensitive than host plant growth to low pH. This finding was supported by lower nodule numbers and mass, and lower N concentrations in shoots of sensitive species at low pH relative to higher pH. ForL. culinaris, nodule numbers and mass were relatively unaffected by pH 5–8, N concentrations in shoots were high at low pH and plants developed symptoms relating to H+ toxicity at pH as high as 7. These results indicate that host plant growth ofL. culinaris is more sensitive to low pH than theRhizobium symbiosis. ForL. albus andL. angustifolius, both host plant growth and symbiotic N2-fixation appeared to be equally sensitive to pH ≥ 6.Lupinus pilosus Murr. was more tolerant of high pH than the otherLupinus species. At pH 4, two genotypes ofC. arietinum had better early nodulation than other species.Vicia ervilia L. nodulated poorly at all levels of solution pH, indicating that the commercial Group E inoculum (Rhizobium leguminosurum bv.viceae SU303) may not be effective for this species in solution culture. Addition of bicarbonate decreased shoot growth, nodulation and N concentrations in shoots of most species. Early nodulation (nodule number) ofLathyrus ochrus (L.) DC was not affected by the bicarbonate treatment. 相似文献
14.
This study focussed on the capacity of a montmorillonite clay to oxidize organic contaminants having activating (methoxyphenol) and deactivating (chlorophenol) substituent groups when pH and water conditions are changing. The amount and strength of Lewis and Br?nsted acidity of the clay was measured using organic indicator and titration methods. Water plays two distinct roles in the oxidation of such contaminants by clays: (1) it neutralizes the clay's Lewis acidity, thereby preventing chlorophenol from getting oxidized in significant yields; (2) it does not successfully compete with methoxyphenol for Lewis acid sites because high dimer yields are observed. The high capacity of Na+, Ca2+, and Fe3+ clays to oxidize phenolic compounds at high pH appears to be caused by phenolates being more reactive than the protonated form. The Lewis and Br?nsted acidity measurement of the various homoionic clays tested help explain the high capacity of the clays to oxidize phenolic compounds at low and high pH and their low capacity at near neutral pH. Finally, the results also clarify the effects of exchangeable cations on the capacity of clays to oxidize organic contaminants. 相似文献
15.
M Vitolo M A Duranti M B Pellegrim 《Journal of industrial microbiology & biotechnology》1995,15(2):75-79
S. cerevisiae was grown in a blackstrap molasses containing medium in batch and fed-batch cultures. The following parameters were varied: pH (from 4.0 to 6.5), dissolved oxygen (DO) (from 0 to 5.0 mg O2L–1) and sucrose feeding rate. When glucose concentration (S) was higher than 0.5 g L–1 a reduction in the specific invertase activity of intact cells (v) and an oscillatory behavior of v values during fermentation were observed. Both the invertase reduction and the oscillatory behavior of v values could be related to the glucose inhibitory effect on invertase biosynthesis. The best culture conditions for attainingS. cerevisiae cells suitable for invertase production were: temperature=30°C; pH=5.0; DO=3.3 mg O2L–1; (S)=0.5 g L–1 and sucrose added into the fermenter according to the equations: (V–Vo)=t2/16 or (V–Vo)=(Vf–Vo)·(e0.6t–1)/10.This work was supported by FAPESP 相似文献
16.
The specific activities of pyruvate kinase of cardiac and skeletal (gastrocnemius) muscles of adult rats of both sexes are lower than those of immature rats. The activity does not change after adulthood in the cardiac muscle, but decreases in the gastrocnemius. The activity of pyruvate kinase of the heart of immature and adult rats of both sexes decreases after castration, but is unaffected in old rats. Castration has no effect on the activity of pyrovate kinase of the gastrocnemius muscle of rats of both sexes at any age. In invo administration of estradiol (50 μg/100 g body weight) increases the activity of pyruvate kinase of the heart of castrated male and female rats of the three ages. For the skeletal muscle, the activity increases in castrated adult female and old male rats only. A higher dose (100 μg) of estradiol has variable effects on pyruvate kinase of the heart of male and female castrated rats of different ages. This dose increase pyruvate kinase significantly in the skeletal muscle of old castrated male and female rats. However, it decreases it in the skeletal muscle of adult castrated male rats. Testosterone (100 μm) increases the activity of pyruvate kinase of the heart of castrated male rats. This increase is lower in old age. It has no effect in the heart of castrated female rats of any age. Testosterone (50 μg) increases pyruvate kinase activity of the skeletal muscle of young ovariectomized rats only. A higher dose (100 μg) causes a significant increase in pyruvate kinase of the skeletal muscle of castrated adult and old male, and young and adult female rats, respectively. These data show that sex steroid hormones induce pyruvate kinase of striated muscles, and that the age- and sex-dependent variations may be due to changes in the levels of receptor proteins. 相似文献
17.
低温、高pH胁迫对水稻幼苗根系质膜、液泡膜ATP酶活性的影响 总被引:1,自引:0,他引:1
以耐冷性不同的两个水稻品种为材料,比较研究了幼苗根系质膜、液泡膜ATP酶对低温(8℃)及高pH(8.0)胁迫的反应。结果表明水稻根细胞质膜和液泡膜上均存在Ca3+-ATP酶,但活性远低于H+-ATP酶。耐冷品种武育粳3号经低温(8℃)处理2d,根系质膜和液泡膜H+-ATP酶、Ca2+-ATP酶活性均明显升高,至冷处理12d,H+-ATP酶、Ca2+-ATP酶活性有所下降,但仍与对照相近;而冷敏感品种汕优63经低温(8℃)处理2d,根系质膜H+-ATP酶活性略有升高,而质膜Ca2+-ATP酶以及液泡膜H+-ATP酶、Ca2+-ATP酶活性已明显下降;至冷处理12d,4种酶活性均明显低于对照。高pH胁迫使质膜和液泡膜H+-ATP酶活性下降,而使Ca2+-ATP酶活性上升。高pH胁迫会加剧低温冷害。结果表明,耐冷品种质膜、液泡膜ATP酶比冷敏感品种对低温胁迫有更强的适应能力。 相似文献
18.
The Ca2+-extruding ATPase pump of the human platelet was studiedin situ by measuring Ca2+ extrusion from quin2-overloaded platelets (Johansson, J.S., Haynes, D.H. 1988.J. Membrane Biol. 104:147–163). Cytoplasmic pH (pHcyt) was measured by BCECF fluorescence in parallel experiments. The pump was studied by raising the cytoplasmic free Ca2+ to 2.5 μM and monitoring active Ca2+ extrusion into a Ca2+-free medium. The pump was shown to perturb pHcyt, to not respond to changes in membrane potential and to respond to imposed changes in pHcyt in a manner consistent with the Ca2+ pump acting as a 2 Ca2+/nH+ exchanger. (i) Raising the external pH (pHext) from 7.40 to 7.60 lowers the Vmax of the pump in basal condition (Vmax,1) from 110±18 to 73±12 μM/min (=μmol/liter cell volume/min). (ii) Lowering pHext to 7.13 raised Vmax,1 to 150±15 μM/min. (iii) In an N-methyl-d-glucamine (NMDG+) medium, the pump operation against high [Ca2+]cyt acidifies the cytoplasm by −0.36±0.10 pH units, and the pump becomes self-inhibited. (iv) Use of nigericin to drive pHcyt down to 6.23 reduces the Vmax,1 to 18±11 μM/min. (v) Alkalinization of the cytoplasm by monensin in the presence of Na+ raises the Vmax,1 (basal state withK m,1=80 nM) to 136±24 μM/min, but also activates the pump fourfold (Vmax,2=280±28 μM/min;K m,2=502±36 nM). (vi) Transient elevation of pHcyt by NH4Cl at high [Ca2+]cyt activates the pump eightfold (Vmax,2≥671±350 μM/min). The large activation by alkaline pHcyt at high [Ca2+]cyt can be explained by Ca2+-calmodulin activation of the pump (Valant, P.A., Adjei, P.N., Haynes, D.H. 1992.J. Membrane Biol. 130:63–82) and by increased Ca2+ affinity of calmodulin at high pH. 相似文献
19.
Indole-3-acetic acid (IAA) and 4-chloroindole-3-acetic acid (4-Cl-IAA) were tested at different concentrations and times for
their capacity to change the redox activity and medium pH of maize root segments. The dose-response surfaces (dose-response
curves as a function of time) plotted for redox activity and changes in medium pH (expressed as ΔpH) had a similar shape for
both auxins, but differed significantly at the optimal concentrations. With 4-Cl-IAA, the maximal values of redox activity
and medium pH changes were observed at 10−10 M, which was a 100-fold lower concentration than with IAA. Correlations were observed between redox activity and medium pH
changes at the optimal concentrations of both IAA and 4-Cl-IAA. The results are discussed herein, taking into account both
the concentration of the auxins and the effects produced by them. 相似文献
20.
A series of experiments have been conducted with isolated reaction centers of photosystem two (PS II) with the aim to elucidate the functional role of cytochrome (Cyt b
559). At pH 6.5 it was found that Cyt b
559 was reversibly photoreduced by red actinic light when Mn2+ was present as an electron donor while at pH 8.5 a photo-oxidation was observed under the same lighting conditions, which was dark reversible in the presence of hydroquinone. These pH dependent light induced changes were measured under anaerobic conditions and correlated with changes in the relative levels of high (HP) and low (LP) potential forms of the cytochrome. At pH 6.5 the cytochrome was mainly in its LP form while at pH 8.5 a significant proportion was converted to the HP form as detected by dark titrations with hydroquinone. This pH dependent difference in the levels of HP and LP Cyt b
559 was also detected when bright white light was used to monitor the level of the LP form using a novel reaction involving direct electron donation from the flavin of glucose oxidase (present in the medium and used together with glucose and catalase as an oxygen trap). The results suggest that PS II directly oxidises and reduces the HP and LP forms, respectively and that the extent of these photo-reactions is dependent on the relative levels of the two forms, which are in turn governed by the pH. This conclusion is interpreted in terms of the model presented previously (Barber J and De Las Rivas J (1993) Proc Natl Acad Sci USA 90: 10942–10946) whereby the pH induced effect is considered as a possible mechanism by which interconversion of LP and HP forms of Cyt b
559 is achieved. In agreement with this was the finding that as the extent of photo-oxidisable HPCyt b
559 increases, with increasing pH, the rate of irreversible photo-oxidation of -carotene decreases, a result expected if the HP form protects against donor side photoinhibition.Abbreviations -car
-carotene
- CCCP
carbonylcyanide m-chloro-phenylhydrazone
- Chl
chlorophyll
- Cyt b
559
cytochrome b
559
- HPCyt b
559
high potential form of cytochrome b
559 which is reducible by hydroquinone
- LPCyt b
559
low potential form of cytochrome b
559 which is non-reducible by hydroquinone
- D1 and D2
products of the psbA and psbD genes, respectively
- LHC II
light-harvesting chlorophyll protein complex associated with PS II
- Mes
2-(N-morpholino) ethanesulphonic acid
- P680
primary electron donor of PS II
- Pheo
pheophytin
- PQ
plastoquinone
- PS II
Photosystem II
- QA
first stable quinone electron acceptor of PS II
- QB
second stable quinone electron acceptor of PS II
- RC
reaction center
- SDS
sodium dodecyl sulphate
- SiMo
silicomolybdate
- Tris
tris(hydroxymethyl) amino methane
- YZ and YD
tyrosine residues 161 in D1 and D2 proteins of the PS II RC which act as secondary electron donors to P680 相似文献