首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The association of vesicular stomatitis virus proteins with intracellular and plasma membranes was examined by pulse and pulse-chase labeling of virus-infected HeLa cells with [35S]methionine and separation of cell homogenates into three major membrane fractions in discontinuous sucrose gradients. The glycoprotein G was primarily associated with rough endoplasmic reticulum-like membranes after short radioactive pulses (2 to 4 min) but accumulated in the plasma membrane-enriched fraction and the smooth internal membrane fraction with longer pulse or chase periods. The nucleocapsid protein N and the matrix protein M accumulated in the rough endoplasmic reticulum and plasma membrane-like fractions but not in the smooth internal membrane fraction. Only a fraction (35 to 40%) of the viral protein synthesized during a short pulse in the mid-cycle of infection was apparently utilized in released virus. The newly synthesized virus proteins first appeared in released virus in the order: M, N and L, and G.  相似文献   

2.
Glycoprotein mRNA (G mRNA) of vesicular stomatitis virus is synthesized in the cytosol fraction of infected HeLa cells. Shortly after synthesis, this mRNA associates with 40S ribosomal subunits and subsequently forms 80S monosomes in the cytosol fraction. The bulk of labeled G mRNA is then found in polysomes associated with the membrane, without first appearing in the subunit or monomer pool of the membrane-bound fraction. Inhibition of the initiation of protein synthesis by pactamycin or muconomycin A blocks entry of newly synthesized G m RNA into membrane-bound polysomes. Under these circumstances, labeled G mRNA accumulates into the cytosol. Inhibition of the elongation of protein synthesis by cucloheximide, however, allows entry of 60 percent of newly synthesized G mRNA into membrane-bound polysomes. Furthermore, prelabeled G mRNA associated with membrane-bound polysomes is released from the membrane fraction in vivo by pactamycin or mucomycon A and in vitro by 1mM puromycin - 0.5 M KCI. This release is not due to nonspecific effects of the drugs. These results demonstrate that association of G mRNA with membrane-bound polysomes is dependent upon polysome formation and initiation of protein synthesis. Therefore, direct association of the 3' end of G mRNA with the membrane does not appear to be the initial event in the formation of membrane-bound polysomes.  相似文献   

3.
The kinetics of the incorporation of the proteins of vesicular stomatitis virus into the HeLa cell plasma membrane have been studied. The virus M and NS proteins become associated with the plasma membrane very rapidly (< 5 min) while the glycoprotein G shows a lag of about 20 minutes. A similar lag is observed for the incorporation of the G protein into released virus. By pulse-chase experiments the transit time for the G protein from the site of completion to the plasma membrane was also calculated to be about 20 minutes although not all of the G protein could be chased into the plasma membranes.  相似文献   

4.
Cell fractionation and protein electrophoresis were used to study the intracellular sites of synthesis and intermediate structures in the assembly of the virion proteins of vesicular stomatitis virus. Each of the three major virion proteins assembled into virions through a separable pathway. The nucleocapsid (N) protein was first a soluble protein and later incorporated into free, cytoplasmic nucleocapsids. A small amount of N protein was bound to membranes at later times, presumably representing either nucleocapsids in the process of budding or completed virions attached to the cell surface. The matrix (M) protein also appeared to be synthesized as a soluble protein, but was then directly incorporated into membranous structures with the same density as whole virus. Very little M protein was ever found in membranes banding at the density of plasma membranes. The M protein entered extracellular virus very quickly, as though it moved directly from a soluble state into budding virus. In contrast, the glycoprotein (G) was always membrane bound; it appeared to be directly inserted into membranes during its synthesis. Glycosylation of the G protein was completed only in smooth membrane fractions, possibly in the Golgi apparatus. After a minimum time of 15 min following its synthesis, G protein was incorporated into the surface plasma membrane, from which it was slowly shed into virions. These multiple processing steps probably account for its delayed appearance in virus. From this work it appears that the three major structural proteins come into the surface budding structure through independent pathways and together they coalesce at the plasma membrane to form the mature virion.  相似文献   

5.
In this study we have characterized, in brain, the expression of a plasma membrane proteolipid protein (PM-PLP) complex that can form cation-selective channels in lipid bilayers. We isolated PLP fractions from synaptic plasma membrane and glial microsomes and found a high degree of similarity in both size and amino acid composition to the complex we had previously isolated from kidney. Antibodies specific to the kidney PM-PLP were prepared, and, on the basis of immunoblot and immunoprecipitation studies, the PM-PLP complex isolated from neural membranes was shown to be immunologically related to the kidney PM-PLP. These proteolipid proteins exhibited a molecular weight of approximately 14K and contained a high percentage of hydrophobic amino acids with an apparent absence of cysteine. The biogenesis of PM-PLP in brain was studied by in vitro translation of free and bound polysomes and total RNA in a rabbit reticulocyte lysate followed by immunoprecipitation of the translation products. From these studies it is concluded that the PM-PLP complex is synthesized on the rough endoplasmic reticulum. On the basis of the identical electrophoretic mobility of material isolated from plasma membranes and material immunoprecipitated after translation of bound polysomes and isolated RNA, it appears that the PM-PLP does not undergo detectable posttranslational processing between its site of synthesis and its incorporation into the plasma membrane.  相似文献   

6.
The outer nuclear membrane is morphologically similar to rough endoplasmic reticulum. The presence of ribosomes bound to its cytoplasmic surface suggests that it could be a site of synthesis of membrane glycoproteins. We have examined the biogenesis of the vesicular stomatitis virus G protein in the nuclear envelope as a model for the biogenesis of membrane glycoproteins. G protein was present in nuclear membranes of infected Friend erythroleukemia cells immediately following synthesis and was transported out of nuclear membranes to cytoplasmic membranes with a time course similar to transport from rough endoplasmic reticulum (t 1/2 = 5-7 min). Temperature-sensitive mutations in viral membrane proteins which block transport of G protein from endoplasmic reticulum also blocked transport of G protein from the nuclear envelope. Friend erythroleukemia cells and NIH 3T3 cells differed in the fraction of newly synthesized G protein found in nuclear membranes, apparently reflecting the relative amount of nuclear membrane compared to endoplasmic reticulum available for glycoprotein synthesis. Nuclear membranes from erythroleukemia cells appeared to have the enzymatic activities necessary for cleavage of the signal sequence and core glycosylation of newly synthesized G protein. Signal peptidase activity was detected by the ability of detergent-solubilized membranes of isolated nuclei to correctly remove the signal sequence of human preplacental lactogen. RNA isolated from the nuclear envelope was highly enriched for G protein mRNA, suggesting that G protein was synthesized on the outer nuclear membrane rather than redistributing to nuclear membranes from endoplasmic reticulum before or during cell fractionation. These results suggest a mechanism for incorporation of membrane glycoproteins into the nuclear envelope and suggest that in some cell types the nuclear envelope is a major source of newly synthesized membrane glycoproteins.  相似文献   

7.
Ribosome synthesis and metabolism has been studied in a plasmacytoma cell line synchronized by isoleucine deprivation. Ribosomal RNA (rRNA) was characterized by gel electrophoresis. The rate of ribosome synthesis (as measured by the appearance of labelled rRNA in the cytoplasm) varied greatly during the cell cycle. It was low during the G l phase, increased rapidly during the S phase, remained high during part of the G 2 phase, and dropped to a minimum during mitosis. A slowdown in the increasing rate of RNA synthesis was observed during the middle of the S phase.No significant decrease in the total nucleotide pool per cell could be observed during the S phase. The accumulation of RNA (as determined by absorbance measurements) was highest during the S and G 2 phases.Pulse labelling of rRNA and pulse chase experiments demonstrated that newly synthesized ribosomal subunits entered into free polysomes to the highest extent during the S phase. The percentage of membrane-bound polysomes of total polysomes increased during the G 1 phase, as did the percentage of labelled rRNA in the membrane-bound fraction.  相似文献   

8.
Maarten J. Chrispeels 《Planta》1983,157(5):454-461
Incubation of developing cotyledons of P. vulgaris with [3H]fucose resulted in the incorporation of radioactivity into the cell wall, membranous organelles and soluble macromolecules. Fractionation of the proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by fluorography, showed that phytohemagglutinin (PHA) was the major fucosylated protein synthesized in the cotyledons. Incorporation of fucose into PHA occurred in the membranous organelle fraction, and the radioactive fucose remained associated with the PHA during a 20-h chase of the radioactivity. Tunicamycin inhibited the incorporation of glucosamine and fucose into PHA to the same extent (65%), indicating the involvement of a lipid intermediate in the incorporation of fucose, or the attachment of fucose to the high-mannose oligosaccharide moiety of newly synthesized PHA. Digestion with proteinase K of [3H]fucose- or [3H]glucosamine-labeled PHA resulted in the formation of glycopeptides of similar size. These glycopeptides were partially resistant to digestion with endo-β-N-acetylglucosaminidase H, even after the removal of fucose by mild acid hydrolysis. We postulate, on the basis of these experiments, that the transport of PHA from the endoplasmic reticulum to the protein bodies is accompanied by the modification of its oligosaccharide side-chain. This modification involves inter alia the attachment of fucose, and renders the oligosaccharide side-chain resistant to digestion with endo-β-N-acetylglucosaminidase H. Analogy with animal glycoproteins indicates that this modification probably occurs in the Golgi apparatus.  相似文献   

9.
All five major viral proteins were synthesized in chicken embryo cells infected with vesicular stomatitis virus temperature-sensitive (ts) mutants of complementation groups III and V and maintained at the nonpermissive temperature. The distribution of these proteins among cytoplasmic cellular fractions separated on discontinuous sucrose gradients was identical for wild-type and tsIII-infected cells. Strikingly different patterns were observed for the G protein in gradients from cells infected by tsV mutants; very little, if any, G protein was found in the lightest fraction. Pulse and chase experiments with wild-type, virus-infected cells showed that protein G moves from the heaviest to the lightest fraction before being incorporated into the virion. After shift down to the permissive temperature (30 C), G protein synthesized at 39.6 C in tsV-infected cells became associated with the lightest cellular fraction and later with the released virions. In contrast, M protein, synthesized at 39.6 C in tsIII-infected cells, was not incorporated into the virions after shift down. These data strongly suggest, first, that M protein is encoded by the vesicular stomatitis gene III, and second, that incorporation of G protein in the lightest cellular fraction is a necessary step of vesicular stomatitis maturation. This step is impaired by tsV mutations.  相似文献   

10.
Previous work has shown that the mRNA encoding the vesicular stomatitis virus (VSV) glycoprotein (G) is bound to the rough endoplasmic reticulum (RER) and that newly made G protein is localized to the RER. In this paper, we have investigated the topology and processing of the newly synthesized G protein in microsomal vesicles. G was labeled with [35S]methionine ([35S]met), either by pulse-labeling infected cells or by allowing membrane-bound polysomes containing nascent G polipeptides to complete G synthesis in vitro. In either case, digestion of microsomal vesicles with any of several proteases removes approximately 5% (30 amino acids) from each G molecule. These proteases will digest the entire G protein if detergents are present during digestion. Using the method of Dintzis (1961, Proc. Natl. Acad. Sci. U. S. A. 47:247--261) to order tryptic peptides (8), we show that peptides lost from G protein by protease treatment of closed vesicles are derived from the carboxyterminus of the molecule. The newly made VSV G in microsomal membranes is glycosylated. If carbohydrate is removed by glycosidases, the resultant peptide migrates more rapidly on polyacrylamide gels than the unglycosylated, G0, form synthesized in cell-free systems in the absence of membranes. We infer that some proteolytic cleavage of the polypeptide backbone is associated with membrane insertion of G. Further, our findings demonstrate that, soon after synthesis, G is found in a transmembrane, asymmetric orientation in microsomal membranes, with its carboxyterminus exposed to the extracisternal, or cytoplasmic, face of the vesicles, and with most or all of its amino-terminal peptides and its carbohydrate sequestered within the bilayer and lumen of the microsomes.  相似文献   

11.
Cytoplasmic droplets of the boar are progressively lost from the flagellum of boar spermatozoa during epididymal transit, at ejaculation and during the nitrogen cavitation technique for isolation of plasma membranes. Apparently very fragile, these structures are broken up in the fluids of the reproductive tract and in the buffer used during the nitrogen cavitation procedure. The maximal potential contamination of cytoplasmic droplet internal vesicular membranes in plasma membrane fractions was determined to be 2.2% of the entire membrane surface area collected. The highly sensitive silver-stained, two-dimensional (2-D) polyacrylamide (PAGE) gels of boar sperm plasma membranes did not reveal cytoplasmic droplet, internal membrane, marker polypeptides, further demonstrating the high purity of plasma membrane preparations. In addition, freeze-fracture demonstrates that the internal membranes of the cytoplasmic droplet show few intramembranous particles and these may contribute little protein to plasma membrane preparations. The presence of two forms of vesicular elements in boar sperm Cytoplasmic droplets (typical vesicles and collapsed vesicles) is described.  相似文献   

12.
The biogenesis of plasmalemma glycoproteins of rat small-intestinal villus cells was studied by following the incorporation of l-[1,5,6-(3)H]fucose, given intraperitoneally with and without chase, into Golgi, lateral basal and microvillus membranes. Each membrane fraction showed distinct kinetics of incorporation of labelled fucose and was differently affected by the chase, which produced a much greater decrease in incorporation of label into Golgi and microvillus than into lateral basal membranes. The kinetic data suggest a redistribution of newly synthesized glycoproteins from the site of fucosylation, the Golgi complex, directly into both lateral basal and microvillus membranes. The observed biphasic pattern of label incorporation into the microvillus membrane fraction may be evidence for a second indirect route of incorporation. The selective effect of the chase suggests the presence of two different pools of radioactive fucose in the Golgi complex that differ in (1) their accessibility to dilution with non-radioactive fucose, and (2) their utilization for the biosynthesis of membrane glycoproteins subsequently destined for either the microvillus or the lateral basal parts of the plasmalemma. The radioactively labelled glycoproteins of the different membrane fractions were separated by sodium dodecyl sulphate/polyacrylamide-slab-gel electrophoresis and identified by fluorography. The patterns of labelled glycoproteins in Golgi and lateral basal membranes were identical at all times. At least 14 bands could be identified shortly after radioactive-fucose injection. Most seemed to disappear at later times, although one of them, which was never observed in microvillus membranes, increased in relative intensity. All but two of the labelled glycoproteins present in the microvillus membrane corresponded to those observed in Golgi and lateral basal membranes shortly after fucose injection. The patterns of labelled glycoproteins in all membrane fractions were little affected by the chase. These data support a flow concept for the insertion of most surface-membrane glycoproteins of the intestinal villus cells.  相似文献   

13.
Transport of newly synthesized cholesterol and vesicular stomatitis virus G protein from the endoplasmic reticulum to the plasma membrane is interrupted by incubation at 15 degrees C. Under this condition the newly synthesized molecules accumulate in both the endoplasmic reticulum (ER) and a subcellular vesicle fraction of low density called the lipid-rich vesicle fraction. The material in the lipid-rich vesicle fraction appears to be a post-ER intermediate in the transport process to the plasma membrane (PM). Although both newly synthesized cholesterol and G protein accumulate in this intermediate compartment at 15 degrees C, suggesting cotransport, treatment with Brefeldin A does not affect cholesterol transport to the PM, whereas it strongly inhibits G protein transport. We conclude that cholesterol and G protein leave the ER in separate vesicles, the cholesterol containing vesicles bypass the Golgi apparatus and proceed to the PM, whereas G protein containing vesicles follow the well documented Golgi route to the cell surface.  相似文献   

14.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytoplasm, on ATP-dependent calcium transport in the plasma membrane vesicles of rat liver was investigated. (Ca2+-Mg2+)-ATPase activity in the liver plasma membranes was significantly increased by the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the enzyme reaction mixture. This increase was completely inhibited by the presence of sulfhydryl group modifying reagent Nethylmaleimide (5.0 mM NEM) or digitonin (0.04%), which can solubilize the membranous lipids. When ATP-dependent calcium uptake by liver plasma membrane vesicles was measured by using 45CaCl2, the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the reaction mixture caused a significant increase in the 45Ca2+ uptake. This increase was about 2-fold with 0.5 \sgmaelig;M regucalcin addition. An appreciable increase was seen by 5 min incubation with regucalcin addition. The regucalcin-enhanced ATP-dependent 45Ca2+ uptake by the plasma membrane vesicles was completely inhibited by the presence of NEM (5.0 mM) or digitonin (0.04%). These results demonstrate that regucalcin activates (Ca2+-Mg2+)-ATPase in the liver plasma membranes and that it can stimulate ATP-dependent calcium transport across the plasma membranes.  相似文献   

15.
Previous reports demonstrated that the vesicular stomatitis viral glycoprotein (G protein), initially present in membranes of a Chinese hamster ovary mutant cell line (clone 15B) that is incapable of terminal glycosylation, can be transferred in vitro to exogenous Golgi membranes and there glycosylated (E. Fries and J. E. Rothman, 1980, Proc. Natl. Acad. Sci. U. S. A. 77:3870-3874; and J. E. Rothman and E. Fries, 1981, J. Cell Biol. 89:162-168). Here we present evidence that Golgi-like membranes serve as donors of G protein in this process. Pulse-chase experiments revealed that the donor activity of membranes is greatest at approximately 10 min of chase, a time when G protein has been shown to have arrived in Golgi stacks (J. E. Bergmann, K. T. Tokuyasu, and S. J. Singer, 1981, Proc. Natl. Acad. Sci. U. S. A. 78:1746-1750). Additional evidence that the G protein that is transferred to exogenous Golgi membranes in vitro had already entered the Golgi membranes in vivo was provided by observations that its oligosaccharides had already been trimmed, and that its distribution in a sucrose density gradient was coincident with that of enzymatic markers of Golgi membranes. The capacity of this Golgi-like membrane to serve as donor is transient, declining within 5 min after "trimming" in vivo as the G protein enters a "nontransferable" pool. The rapidity of the process suggests that both the "transferable" and "nontransferable" pools of G protein reside in Golgi-like membranes.  相似文献   

16.
Membrane-bound polysomes from vesicular stomatitis virus (VSV)-infected HeLa cells synthesize predominantly three proteins in an in vitro protein synthesizing system. These three proteins have different molecular weights than the viral structural proteins, i.e., 115,000, 88,000, and 72,000. Addition of preincubated L or HeLa cell S10 or HeLa cell crude initiation factors stimulates amino acid incorporation and, furthermore, alters the pattern of proteins synthesized. Stimulated membrane-bound polysomes synthesize predominantly viral protein G and lesser amounts of N, NS, and M. In vitro synthesized proteins G and N are very similar to virion proteins G and N based on analysis of tryptic methionine-labeled peptides. Most methionine-labeled tryptic peptides of virion G protein contain no carbohydrate moieties, since about 90% of sugar-labeled peptides co-chromatograph with only about 10% of methionine-labeled peptides. Sucrose gradient analysis of the labeled RNA present in VSV-infected membrane-bound polysomes reveals a relative enrichment in a class of viral RNA sedimenting slightly faster than the total population of the 13 to 15S mRNA, as compared to a VSV-infected crude cytoplasmic extract. A number of proteins, other than the viral structural proteins, are synthesized in the cytoplasm of five lines of VSV-infected cells. One of these proteins has the same molecular weight as the major in vitro synthesized protein, P(88). In vitro synthesized protein P(88) does not appear to be a precursor of viral structural proteins G, N, or M based on pulse-chase experiments and tryptic peptide mapping. Nonstimulated membrane-bound polysomes from uninfected HeLa cells synthesize the same size distribution of proteins as nonstimulated VSV-infected membrane-bound polysomes.  相似文献   

17.
The intracellular transport and destination of the major glycoprotein associated with zymogen granule membranes in the pancreas (GP-2) was established. In suspensions of isolated acinar cells from rat pancreas, pulse-chase experiments were performed. The incorporation of the first newly synthesized GP-2 molecules into zymogen granule membranes occurred at about 60 min after beginning of the pulse. We demonstrated by using two different methods that newly made GP-2 reaches the cell surface within the same time span. After 6-8 h chase considerable more newly synthesized GP-2 has reached the cell surface than would be expected on account of secreted newly synthesized zymogens. These observations strongly suggest that at least part of the GP-2 molecules bypass the mature zymogen granule compartment on their way to the plasma membrane. GP-2 is the only protein that appears in discernable quantity in the plasma membrane during 1-4 h after a pulse label. Nevertheless GP-2 comprises only a small percentage of externally 125I-iodinated plasma membrane proteins. We conclude that GP-2 has a high turnover rate at the plasma membrane level. Treatment of the acinar cells with the N-glycosylation inhibitor tunicamycin does not block the intracellular transport of GP-2.  相似文献   

18.
The polarity of the surface distribution of viral glycoproteins during virus infection has been studied in the Madin-Darby canine kidney epithelial cell line on nitrocellulose filters. Using a surface radioimmunoassay on Madin-Darby canine kidney strain I cells that had been infected with vesicular stomatitis virus or with avian influenza fowl plague virus, we found that the surface G protein was 97% basolateral, whereas the fowl plague virus hemagglutinin was 88% apical. Newly synthesized, pulse-labeled vesicular stomatitis virus appeared first on the basolateral plasma membrane as measured by an immunoprecipitation assay in which the anti-G protein antibody was applied to the monolayer either from the apical or the basolateral side. Labeled G protein could be accumulated inside the cell at a late stage of transport by decreasing the temperature to 20 degrees C during the chase. Reversal to 37 degrees C led to its rapid and synchronous transport to the basolateral surface at an initial rate 61-fold greater than that of transport to the apical side. These results demonstrate that the newly synthesized G protein is transported directly to the basolateral membrane and does not pass over the apical membrane en route. Since a previous study of the surface appearance of influenza virus hemagglutinins showed that the newly synthesized hemagglutinins were inserted directly from an intracellular site into the apical membrane (Matlin, K., and K. Simons, 1984, J. Cell Biol., 99:2131-2139), we conclude that the divergence of the transport pathway for the apical and basolateral viral glycoproteins has to occur intracellularly, i.e., before reaching the cell surface.  相似文献   

19.
Newly synthesized canalicular ectoenzymes and a cell adhesion molecule (cCAM105) have been shown to traffic from the Golgi to the basolateral plasma membrane, from where they transcytose to the apical bile canalicular domain. It has been proposed that all canalicular proteins are targeted via this indirect route in hepatocytes. We studied the membrane targeting of rat canalicular proteins by in vivo [(35)S]methionine metabolic labeling followed by preparation of highly purified Golgi membranes and canalicular (CMVs) and sinusoidal/basolateral (SMVs) membrane vesicles and subsequent immunoprecipitation. In particular, we compared membrane targeting of newly synthesized canalicular ABC (ATP-binding cassette) transporters MDR1, MDR2, and SPGP (sister of P-glycoprotein) with that of cCAM105. Significant differences were observed in metabolic pulse-chase labeling experiments with regard to membrane targeting of these apical proteins. After a chase time of 15 min, cCAM105 appeared exclusively in SMVs, peaked at 1 h, and progressively declined thereafter. In CMVs, cCAM105 was first detected after 1 h and subsequently increased for 3 h. This findings confirm the transcytotic targeting of cCAM105 reported in earlier studies. In contrast, at no time point investigated were MDR1, MDR2, and SPGP detected in SMVs. In CMVs, MDR1 and MDR2 appeared after 30 min, whereas SPGP appeared after 2 h of labeling. In Golgi membranes, each of the ABC transporters peaked at 30 min and was virtually absent thereafter. These data suggest rapid, direct targeting of newly synthesized MDR1 and MDR2 from the Golgi to the bile canaliculus and transient sequestering of SPGP in an intracellular pool en route from the Golgi to the apical plasma membrane. This study provides biochemical evidence for direct targeting of newly synthesized apical ABC transporters from the Golgi to the bile canaliculus in vivo.  相似文献   

20.
We have investigated the site of synthesis of the 2',3'-cyclic nucleotide 3'-phosphodiesterases (CNPs I and II) in rat brain. Rapid kinetics of incorporation of CNPs into oligodendrocyte plasma membrane in the intact brain are consistent with their synthesis on free polysomes. This hypothesis was confirmed by the translation in vitro of RNA isolated from free and bound polysomes, respectively. Unlike myelin basic protein (MBP) mRNAs, CNP mRNAs are not enriched in a myelin-associated pool of RNA. MBPs, but not CNPs, were found to readily associate in vitro with membrane vesicles derived from rough endoplasmic reticulum. The avidity of MBPs in binding to membranes is probably related to the previously observed spatial segregation of MBP mRNAs into actively myelinating cellular processes of the oligodendrocyte. Such a segregation would ensure that newly synthesized MBPs are immediately incorporated into myelin. In contrast, the CNPs probably associate with the cytoplasmic surface of the oligodendrocyte plasma membrane through interaction with a membrane-bound receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号