首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N.-E.L. Saris  P. Bernardi 《BBA》1983,725(1):19-24
The effect of Sr2+ on the set point for external Ca2+ was studied in rat heart and liver mitochondria with the aid of a Ca2+-sensitive electrode. In respiring mitochondria the set point is determined by the rates of Ca2+ influx on the Ca2+ uniporter and efflux by various mechanisms. We studied the Ca2+-Na+ exchange pathway in heart mitochondria and the Δψ-modulated efflux pathway in liver mitochondria. Prior accumulation of Sr2+ was found to shift the set points towards lower external Ca2+ both in heart mitochondria under conditions of Ca2+-Na+ exchange and in liver mitochondria under conditions that should promote opening of the Δψ-modulated pathway. The effect on the set point was found to be due to inhibition of Ca2+ efflux by Sr2+ taken up by the mitochondria, while Sr2+ efflux was too slow to be measurable.  相似文献   

2.
The time dependency of CA2+ efflux from Ca2+-loaded rat liver mitochondria has been investigated. The rate of ruthenium-red-insensitive Ca2+ efflux is continuously increased during the retention as a result of induction of an electroneutral H+ Ca2+ exchange system. The activation of the Ca2+ efflux pathway takes place under the constant value of the membrane potential and is accompanied by oxidation of mitochondrial pyridine nucleotides. It has also been found that the ruthenium-red-insensitive H+/Sr2+ exchange occurs in mitochondria during Sr2+-induced oscillation of ion fluxes. The rate of H+/Sr2+ exchange is variable and depends on the stage of the oscillatory cycle.  相似文献   

3.
A previous communication (Pereira da Silva, L., Bernardes, C.F. and Vercesi, A.E. (1984) Biochem. Biophys. Res. Commun. 124, 80-86) presented evidence that lasalocid-A, at concentrations far below those required to act as a Ca2+ ionophore, significantly inhibits Ca2+ efflux from liver mitochondria. In the present work we have studied the mechanism of this inhibition in liver and heart mitochondria. It was observed that lasalocid-A (25-250 nM), like nigericin, promotes the electroneutral exchange of K+ for H+ across the inner mitochondrial membrane and as a consequence can cause significant alterations in delta pH and delta psi. An indirect effect of these changes that might lead to inhibition of mitochondrial Ca2+ release was ruled out by experiments showing that the three observed patterns of lasalocid-A effect depend on the size of the mitochondrial Ca2+ load. At low Ca2+ loads (5-70 nmol Ca2+/mg protein), under experimental conditions in which Ca2+ release is supposed to be mediated by a Ca2+/2H+ antiporter, the kinetic data indicate that lasalocid-A inhibits the efflux of the cation by a competitive mechanism. The Ca2+/2Na+ antiporter, the dominant pathway for Ca2+ efflux from heart mitochondria, is not affected by lasalocid-A. At intermediate Ca2+ loads (70-110 nmol Ca2+/mg protein), lasalocid-A slightly stimulates Ca2+ release. This effect appears to be due to an increase in membrane permeability caused by the displacement of a pool of membrane bound Mg2+ possibly involved in the maintenance of membrane structure. Finally, at high Ca2+ loads (110-140 nmol Ca2+/mg protein) lasalocid-A enhances Ca2+ retention by liver mitochondria even in the presence of Ca2(+)-releasing agents such as phosphate and oxidants of the mitochondrial pyridine nucleotides. The maintenance of a high membrane potential under these conditions may indicate that lasalocid-A is a potent inhibitor of the Ca2(+)-induced membrane permeabilization. Nigericin, whose chemical structure resembles that of lasalocid-A, caused similar results.  相似文献   

4.
The uncoupler-induced release of accumulated Ca2+ from heart mitochondria can be separated into two components, one sensitive and one insensitive to ruthenium red. In mitochondria maintaining reduced NAD(P)H pools and adequate levels of endogenous adenine nucleotides, the release of Ca2+ following addition of an uncoupler is virtually all inhibited by ruthenium red and can be presumed to occur via reversal of the Ca2+ uniporter. When ruthenium red is added to block efflux via this pathway, high rates of Ca2+ efflux can still be induced by an uncoupler, provided either NADH is oxidized or mitochondrial adenine nucleotide pools are depleted by prior treatment. This ruthenium red-insensitive Ca2+-efflux pathway is dependent on the level of Ca2+ accumulated and is accompanied by swelling of the mitochondria and loss of endogenous Mg2+. Loss of Ca2+ by this relatively nonspecific pathway is strongly inhibited by Sr2+ and by nupercaine, as well as by oligomycin and exogenous adenine nucleotides. The loss of Ca2+ from uncoupled heart mitochondria occurs via a combination of these two mechanisms except under conditions chosen specifically to limit efflux to one or the other pathway.  相似文献   

5.
The paper analyzes the relationship between membrane potential (delta psi), steady state pCao (-log [Ca2+] in the outer aqueous phase) and rate of ruthenium-red-induced Ca2+ efflux in liver mitochondria. Energized liver mitochondria maintain a pCao of about 6.0 in the presence of 1.5 mM Mg2+ and 0.5 mM Pi. A slight depression of delta psi results in net Ca2+ uptake leading to an increased steady state pCao. On the other hand, a more marked depression of delta psi results in net Ca2+ efflux, leading to a decreased steady-state pCao. These results reflect a biphasic relationship between delta psi and pCao, in that pCao increases with the increase of delta psi up to a value of about 130 mV, whereas a further increase of delta psi above 130 mV results in a decrease of pCao. The phenomenon of Ca2+ uptake following a depression of delta psi is independent of the tool used to affect delta psi whether by inward K+ current via valinomycin, or by inward H+ current through protonophores or through F1-ATP synthase, or by restriction of e- flow. The pathway for Ca2+ efflux is considerably activated by stretching of the inner membrane in hypotonic media. This activation is accompanied by a decreased pCao at steady state and by an increased rate of ruthenium-red-induced Ca2+ efflux. By restricting the rate of e- flow in hypotonically treated mitochondria, a marked dependence of the rate of ruthenium-red-induced Ca2+ efflux on the value of delta psi is observed, in that the rate of Ca2+ efflux increases with the value of delta psi. The pCao is linearly related to the rate of Ca2+ efflux. Activation of oxidative phosphorylation via addition of hexokinase + glucose to ATP-supplemented mitochondria, is followed by a phase of Ca2+ uptake, which is reversed by atractyloside. These findings support the view that Ca2+ efflux in steady state mitochondria occurs through an independent, delta psi-controlled pathway and that changes of delta psi during oxidative phosphorylation can effectively modulate mitochondrial Ca2+ distribution by inhibiting or activating the delta psi-controlled Ca2+ efflux pathway.  相似文献   

6.
The components of magnesium efflux in squid axons have been studied under internal dialysis and voltage clamp conditions. The present report rules out the existence of an ATP-dependent, Nao- and Mgo-independent Mg2+ efflux (ATP-dependent Mg2+ pump) leaving the Mg2+-Na+ exchange system as the only mechanism for Mg2+ extrusion. The main features of the Mg2+ efflux are: (1) The efflux is completely dependent on ATP. (2) The efflux can be activated either by external Na+ (forward Mg2+-Na+ exchange) or external Mg2+ (Mg2+-Mg2+ exchange). (3) The mobility of the Mg2+ exchanger in the Na+o-loaded form is greater than that in the Mg2+-loaded one. (4) In variance with the Na+-Ca2+ exchange mechanism, Mg2+-Mg2+ exchange is not activated by external monovalent cations. (5) ATP gamma S replaces ATP in activating Mg2+-Na+ exchange suggesting that a phosphorylation/dephosphorylation process regulates this transport mechanism.  相似文献   

7.
This study investigates the effects of adrenergic agonists and mitochondrial energy state on the activities of the Ca2+ transport systems of female rat liver mitochondria. Tissue perfusion with the alpha-adrenergic agonist phenylephrine and with adrenaline, but not with the beta-adrenergic agonist isoprenaline, induced significant activation of the uniporter and the respiratory chain. Uniporter activation was evident under two sets of experimental conditions that excluded influences of delta psi, i.e., at high delta psi, where uniporter activity was delta psi independent, and at low delta psi, where uniporter conductance was measured. Preincubation of mitochondria with extracts from phenylephrine-perfused tissue quantitatively reproduced uniporter activation when comparison was made with mitochondria treated similarly with extracts from tissue perfused without agonist. Similar, but more extensive, data were obtained with heart mitochondria pretreated with extracts from hearts perfused with the alpha-adrenergic agonist methoxamine. Phenylephrine did not affect Ca2+ efflux mediated by the Na+-Ca2+ carrier or the Na+-independent system. In contrast, the liver mitochondrial Na+-Ca2+ carrier was activated by tissue perfusion with isoprenaline; the Na+-independent system was unaffected. Na+-Ca2+ carrier activation was not associated with any change in a number of basic bioenergetic parameters. It is concluded that the Ca2+ transport systems of liver mitochondria may be controlled in an opposing manner by alpha-adrenergic agonists (promotion of Ca2+ influx) and beta-adrenergic agonists (promotion of Ca2+ efflux). At delta psi values greater than 110 mV, the Na+-independent system was activated by increase in delta psi; the uniporter and Na+-Ca2+ carrier activities were insensitive to delta psi changes in this range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Spermine enhances electrogenic Ca2+ uptake and inhibits Na(+)-independent Ca2+ efflux in rat brain mitochondria. As a result, Ca2+ retention by brain mitochondria increases greatly and the external free Ca2+ level at steady-state can be lowered to physiologically relevant concentrations. The stimulation of Ca2+ uptake by spermine is more pronounced at low concentrations of Ca2+, effectively lowering the apparent Km for Ca2+ uptake from 3 microM to 1.5 microM. However, the apparent Vmax is also increased. At low Ca2+ concentrations, Ca2+ uptake is diffusion-limited. Spermine strongly inhibits Ca2+ binding to anionic phospholipids and it is suggested that this increases the rate of surface diffusion which reduces the apparent Km for uptake. The same effect could inhibit the Na(+)-independent efflux if the rate of efflux is limited by Ca2+ dissociation from the efflux carrier. In brain mitochondria (but not in liver) the spermine effect depends on the presence of ADP. In a medium that contains physiological concentrations of Pi, Mg+, K+, ADP and spermine, brain mitochondria sequester Ca2+ down to 0.1 microM and below, depending on the matrix Ca2+ load. Moreover, brain mitochondria under the same conditions buffer the external medium at 0.4 microM, a concentration at which the set point becomes independent of the matrix Ca2+ content. Thus, mitochondria appear to be capable of modulating calcium oscillations in brain cells.  相似文献   

9.
Pathways for Ca2+ efflux in heart and liver mitochondria.   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Two processes of Ruthenium Red-insensitive Ca2+ efflux exist in liver and in heart mitochondria: one Na+-independent, and another Na+-dependent. The processes attain maximal rates of 1.4 and 3.0 nmol of Ca2+.min-1.mg-1 for the Na+-dependent and 1.2 and 2.0 nmol of Ca2+.min-1.mg-1 for the Na+-independent, in liver and heart mitochondria, respectively. 2. The Na+-dependent pathway is inhibited, both in heart and in liver mitochondria, by the Ca2+ antagonist diltiazem with a Ki of 4 microM. The Na+-independent pathway is inhibited by diltiazem with a Ki of 250 microM in liver mitochondria, while it behaves as almost insensitive to diltiazem in heart mitochondria. 3. Stretching of the mitochondrial inner membrane in hypo-osmotic media results in activation of the Na+-independent pathway both in liver and in heart mitochondria. 4. Both in heart and liver mitochondria the Na+-independent pathway is insensitive to variations of medium pH around physiological values, while the Na+-dependent pathway is markedly stimulated parallel with acidification of the medium. The pH-activated, Na+-dependent pathway maintains the diltiazem sensitivity. 5. In heart mitochondria, the Na+-dependent pathway is non-competitively inhibited by Mg2+ with a Ki of 0.27 mM, while the Na+-independent pathway is less affected; similarly, in liver mitochondria Mg2+ inhibits the Na+-dependent pathway more than it does the Na+-independent pathway. In the presence of physiological concentrations of Na+, Ca2+ and Mg2+, the Na+-independent and the Na+-dependent pathways operate at rates, respectively, of 0.5 and 1.0 nmol of Ca2+.min-1.mg-1 in heart mitochondria and 0.9 and 0.2 nmol of Ca2+.min-1.mg-1 in liver mitochondria. It is concluded that both heart and liver mitochondria possess two independent pathways for Ca2+ efflux operating at comparable rates.  相似文献   

10.
Respiring heart mitochondria exchange matrix 42K+ with extramitochondrial K+ at a rapid rate in the presence of Pi (Chávez, E., Jung, D. W., and Brierley, G. P. (1977) Arch. Biochem. Biophys. 183, 460-470, 1977). This exchange reaction is strongly inhibited by uncouplers. However, under two rather similar sets of conditions, the addition of an uncoupler results in a rapid, transient increase in the exchange of matrix 42K+ with external K+ when the mitochondria are suspended in KCl or, alternatively, in a net loss of matrix 42K+ from mitochondria suspended in K+-free media. These conditions are: (a) the addition of an uncoupler to respiring mitochondria after the accumulation of a small amount of phosphate salt, and (b) the presence of a Ca2+-chelator or ruthenium red with uncoupler. Loss of 42K+ under these conditions occurs with all substrates tested, is completely blocked by rotenone, and is accompanied by an almost complete oxidation of both NADH and NADPH. In the presence of rotenone and acetoacetate, only NADH is oxidized and 42K+ efflux does not occur. It is concluded that simply dissipating the mitochondrial protonmotive force by addition of an uncoupler is not sufficient to induce release of mitochondrial K+. Uncoupler-induced oxidation of mitochondrial NADPH, in conjunction with elevated internal Pi, opens a rather nonspecific pathway for K+ loss which can be inhibited by ADP and enhanced by Ca2+. The more specific loss of K+ which occurs in the absence of elevated internal Pi when uncoupler and EGTA or ruthenium red are present suggests that K+ efflux is related to the Ca2+-uniporter. Loss of K+ by either of these pathways can be differentiated from efflux of K+ on the endogenous K+/H+ exchanger which functions without dissipation of the mitochondrial membrane potential.  相似文献   

11.
The Na+-induced efflux of Ca2+ catalysed by the Na+/Ca2+ carrier of cardiac mitochondria is strongly inhibited by extramitochondrial Ca2+. The nature of this inhibition was investigated as follows. (a) The apparent association of external Na+ and the Ca2+ analogue Sr2+ with substrate-binding sites (i.e. those sites involved in cation translocation) is promoted markedly by K+. The inhibition of Na+/Ca2+ exchange by external Ca2+ is affected little by K+. (b) There is a competitive relationship between the binding of external Na+ and external Ca2+ to substrate-binding sites, whereas at low concentrations (less than 4 microM) extramitochondrial Ca2+ is a partial non-competitive inhibitor with respect to external Na+. (c) This inhibiton by external Ca2+ is characterized by a maximal decrease of about 70% in the Vmax of Na+/Ca2+ exchange and by cooperative binding of external Ca2+ to sites that are half saturated by 0.7-0.8 microM free Ca2+. The binding of Ca2+ and Sr2+ to substrate-binding sites shows no co-operativity. These criteria suggest that the Na+/Ca2+ carrier may contain regulatory sites that render the carrier sensitive to changes in extramitochondrial [Ca2+] within the physiological range.  相似文献   

12.
Isolated rat liver mitochondria, energized either by succinate oxidation or by ATP hydrolysis, present a transient increase in the rate of Ca2+ efflux concomitant to NAD(P)H oxidation by hydroperoxides when suspended in a medium containing 3 mM ATP, 4 mM Mg2+ and acetate as permeant anion. This is paralleled by an increase in the steady-state concentration of extramitochondrial Ca2+, a small decrease in delta psi and an increase in the rate of respiration and mitochondrial swelling. With the exception of mitochondrial swelling all other events were found to be reversible. If Ca2+ cycling was prevented by ruthenium red, the changes in delta psi, the rate of respiration and the extent of mitochondrial swelling were significantly diminished. In addition, there was no significant decrease in the content of mitochondrial pyridine nucleotides. Mitochondrial coupling was preserved after a cycle of Ca2+ release and re-uptake under these experimental conditions. It is concluded that hydroperoxide-induced Ca2+ efflux from intact mitochondria is related to the redox state of pyridine nucleotides.  相似文献   

13.
Mechanism of sodium independent calcium efflux from rat liver mitochondria   总被引:1,自引:0,他引:1  
On the basis of primarily two types of observations, it has been suggested that the Na+-independent Ca2+ efflux mechanism of rat liver mitochondria is a passive Ca2+-2H+ exchanger. First, when a pulse of acid is added to a suspension of mitochondria loaded with Ca2+, a pulse of intramitochondrial Ca2+ is often released, even in the presence of the inhibitor of mitochondrial Ca2+ influx, ruthenium red. Second, at a pH near 7, the stoichiometry of Ca2+ released to H+ taken up by Ca2+-loaded mitochondria, following treatment with ruthenium red, has been observed to be 1:2. This evidence for a Ca2+-2H+ exchanger is reexamined here by studying the release of Ca2+ upon acidification of the medium by addition of buffer, the dependence of liver mitochondrial Ca2+ efflux on external medium pH and intramitochondrial pH, and the Ca2+-Ca2+ exchange properties of the Ca2+ efflux mechanism. These studies show no pulse of mitochondrial Ca2+ efflux when pH is abruptly lowered by addition of buffer. The stoichiometry between Ca2+ and H+ fluxes is found to be highly pH dependent. The reported 1:2 stoichiometry between Ca2+ efflux and H+ influx is only observed at one pH. Furthermore, the rate of Ca2+ efflux from mitochondria is found to increase only very slightly at most as suspension pH is decreased. The rate of Ca2+ efflux is not found to increase with increasing intramitochondrial pH. Finally, no Ca2+-Ca2+ isotope exchange can be demonstrated over the Na+-independent efflux mechanism (i.e., in the presence of ruthenium red). It is concluded that these data do not support the hypothesis that the Na+-independent Ca2+ efflux mechanism is a passive Ca2+-2H+ exchanger.  相似文献   

14.
In extracts of rat heart mitochondria, Sr2+ mimicked the activatory effects of Ca2+ on the Ca2(+)-sensitive intramitochondrial enzymes, pyruvate dehydrogenase phosphate phosphatase, isocitrate dehydrogenase (NAD+), and 2-oxoglutarate dehydrogenase, but at about tenfold higher concentrations (effective range approximately 1-100 muM) in each case. Ba2+ had no effect on extracted phosphatase, but did mimic the effect of Ca2+ on the other two enzymes with effective concentration ranges similar to those of Sr2+; as with Ca2+ and Sr2+, effective Ba2+ ranges were slightly (2-3-fold) raised by increases in ATP/ADP. In intact uncoupled rat heart mitochondria, the effects of Sr2+ and Ba2+ on the pyruvate and 2-oxoglutarate dehydrogenases were essentially similar to their effects in extracts. In fully coupled rat heart or liver mitochondria, the effective concentration ranges of extramitochondrial Sr2+, leading to activation of the matrix enzymes, were always approximately tenfold higher than those for Ca2+ under all conditions. Ba2+ did not affect pyruvate dehydrogenase in coupled mitochondria, but was shown to activate 2-oxoglutarate dehydrogenase in heart or liver mitochondria, and also isocitrate dehydrogenase (NAD+) in the latter; effective concentration ranges for extramitochondrial Ba2+ were approximately 100-fold greater than those for Ca2+, and like those for Ca2+ and Sr2+, were affected markedly by Mg2+ and spermine (which inhibit and promote mitochondrial Ca2+ uptake, respectively) but, in contrast to Ca2+ and Sr2+, they were hardly affected at all by Na+ (which promotes mitochondrial Ca2+ egress). Ba2+ effects were also blocked by ruthenium red (an inhibitor of mitochondrial Ca2+ uptake), but not so effectively as its blockage of the effects of Sr2+ and Ca2+. Ba2+ and Sr2+ both mimicked the inhibitory effects of extramitochondrial Ca2+ on the Na+/Ca2+ exchanger, but only Sr2+ could mimic Ca2+ in exchanging for internal Ca2+ by this mechanism. Both Sr2+ and Ba2+ changed the fluorescent properties of fura-2 or indo-1 in a similar manner to Ca2+, but with higher kd values. In fura-2-loaded rat heart mitochondria, increases in matrix Sr2+ and Ba2+ and the effects of the transport effectors could be readily demonstrated.  相似文献   

15.
The mechanism by which a number of agents such as hydroperoxides, inorganic phosphate, azodicarboxylic acid bis(dimethylamide) (diamide), 2-methyl-1,4-naphthoquinone (menadione) and aging, induce Ca2+ release from rat liver mitochondria has been analyzed by following Ca2+ fluxes in parallel with K+ fluxes, matrix swelling and triphenylmethylphosphonium fluxes (as an index of transmembrane potential). Addition of hydroperoxides causes a cycle of Ca2+ efflux and reuptake and an almost parallel cycle of delta psi depression. The hydroperoxide-induced delta psi depression is biphasic. The first phase is rapid and insensitive to ATP and is presumably due to activation of the transhydrogenase reaction during the metabolization of the hydroperoxides. The second phase is slow and markedly inhibited by ATP and presumably linked to the activation of a Ca2+-dependent reaction. The slow phase of delta psi depression is paralleled by matrix K+ release and mitochondrial swelling. Nupercaine and ATP reduce or abolish also K+ release and swelling. Inorganic phosphate, diamide, menadione or aging also cause a process of Ca2+ efflux which is paralleled by a slow delta psi depression, K+ release and swelling. All these processes are reduced or abolished by Nupercaine and ATP. The slow delta psi depression following addition of hydroperoxide and diamide is largely reversible at low Ca2+ concentration but tends to become irreversible at high Ca2+ concentration. The delta psi depression increases with the increase of hydroperoxide, diamide and menadione concentration, but is irreversible only in the latter case. Addition of ruthenium red before the hydroperoxides reduces the extent of the slow but not of the rapid phase of delta psi depression. Addition of ruthenium red after the hydroperoxides results in a slow increase of delta psi. Such an effect differs from the rapid increase of delta psi due to ruthenium-red-induced inhibition of Ca2+ cycling in A23187-supplemented mitochondria. Metabolization of hydroperoxides and diamide is accompanied by a cycle of reversible pyridine nucleotide oxidation. Above certain hydroperoxide and diamide concentrations the pyridine nucleotide oxidation becomes irreversible. Addition of menadione results always in an irreversible nucleotide oxidation. The kinetic correlation between Ca2+ efflux and delta psi decline suggests that hydroperoxides, diamide, menadione, inorganic phosphate and aging cause, in the presence of Ca2+, an increase of the permeability for protons of the inner mitochondrial membrane. This is followed by Ca2+ efflux through a pathway which is not the H+/Ca2+ exchange.  相似文献   

16.
The presence and significance of Na+-induced Ca2+ release from rat liver mitochondria was investigated by the arsenazo technique. Under the experimental conditions used, the mitochondria, as expected, avidly extracted Ca2+ from the medium. However, when the uptake pathway was blocked with ruthenium red, only a small rate of 'basal' release of Ca2+ was seen (0.3 nmol Ca2+ X min-1 X mg-1), in marked contrast to earlier reports on a rapid loss of sequestered Ca2+ from rat liver mitochondria. The addition of Na+ in 'cytosolic' levels (20 mM) led to an increase in the release rate by about 1 nmol Ca2+ X min-1 X mg-1. This effect was specific for Na+. The significance of this Na+-induced Ca2+ release, in relation to the Ca2+ uptake mechanism, was investigated (in the absence of uptake inhibitors) by following the change in the extramitochondrial Ca2+ steady-state level (set point) induced by Na+. A five-fold increase in this level, from less than 0.2 microM to more than 1 microM, was induced by less than 20 mM Na+. The presence of K+ increased the sensitivity of the Ca2+ homeostat to Na+. The effect of Na+ on the extramitochondrial level was equally well observed in an K+/organic-anion buffer as in a sucrose buffer. Liver mitochondria incubated under these circumstances actively counteracted a Ca2+ or EGTA challenge by taking up or releasing Ca2+, so that the initial level, as well as the Na+-controlled level, was regained. It was concluded that liver mitochondria should be considered Na+-sensitive, that the capacity of the Na+-induced efflux pathway was of sufficient magnitude to enable it to influence the extramitochondrial Ca2+ level biochemically and probably also physiologically, and that the mitochondria have the potential to act as active, Na+-dependent regulators of extramitochondrial ('cytosolic') Ca2+. It is suggested that changes of cytosolic Na+ could be a mediator between certain hormonal signals (notably alpha 1-adrenergic) and changes in this extramitochondrial ('cytosolic') Ca2+ steady state level.  相似文献   

17.
We used internally dialyzed squid axons to explore whether the reported activatory effect of Ca2+i on the partial reactions of the Na+-Ca2+ exchange (essential activator) is secondary to the presence of Ca2+ chelating agents in the internal medium. The effect of Ca2+i pulses on both the reverse (Ca2+o-dependent Na+ efflux) and Na+-Na+ exchange (Na+o-dependent Na+ efflux) modes of the Na+-Ca2+ exchange was studied in axons dialyzed without EGTA. For these experiments a substantial inhibition of the Ca2+ buffer capacity of the axoplasm was achieved by the use of Ruthenium red (10-20 microM), cyanide (1 mM) and vanadate (1 mM) in the dialysis solution. Our results indicate that the Ca2+i requirement of the reverse and Na+-Na+ exchange can not be explained by a direct inhibition of the Na+-Ca2+ exchanger by EGTA. In fact, both modes of operation of the exchanger can be activated by internal Ca2+ ions in the complete absence of Ca2+ chelating agents thus indicating that the 'catalytic' effect of Ca2+i on the Na+-Ca2+ exchanger is a real phenomenon.  相似文献   

18.
Inorganic pyrophosphate (PPi) in the intracellular concentration range causes rapid efflux of Ca2+ from rat heart mitochondria oxidizing pyruvate + malate in a low Na+ medium. Half-maximal rates of Ca2+ efflux were given by 20 microM PPi. During and after PPi-stimulated Ca2+ efflux the mitochondria retain their structural integrity and complete respiratory control. Carboxyatractyloside inhibits PPi-stimulated Ca2+ efflux, indicating PPi must enter the matrix in order to promote Ca2+ efflux. Heart mitochondria have a much higher affinity for PPi uptake and PPi-induced Ca2+ efflux than liver mitochondria.  相似文献   

19.
The Ruthenium Red-insensitive efflux of Ca2+ from previously loaded rat liver mitochondria was studied as a function of the added Na+ concentration and ADP present. Stimulation of Ca2+ efflux is sigmoidally dependent on the Na+ concentration; maximal stimulation of efflux was observed with 12--15 mM-NaCl. Na+-stimulated Ca2+ efflux from liver mitochondria is about one-tenth that from cardiac mitochondria. No synergistic effect of K+ on the Na+-stimulated efflux was found. The alkali-metal cations other than Na+ did not stimulate efflux and did not prevent stimulation by Na+. In the absence of Na+, Ca2+ efflux was diminished by added ADP, but the Na+-stimulated efflux was made correspondingly greater as ADP concentration was increased to 16 microM. The Na+-stimulated Ca2+ efflux was inhibited by 70% by oligomycin and was not observed in the presence of antimycin. It is suggested that failure to observe Na+-stimulation of Ca2+ efflux from liver mitochondria by some investigators is attributable to a high basal efflux existing before addition of the Na+ salt.  相似文献   

20.
The status of glutathione (GSH) was studied in isolated rat liver mitochondria under conditions which induce a permeability transition. This transition, which is inhibited by cyclosporin A (CyA), requires the presence of Ca2+ and an inducing agent such as near physiological levels (3 mM) of inorganic phosphate (Pi). The transition is characterized by an increased inner membrane permeability to some low molecular weight solutes and by large amplitude swelling under some experimental conditions. Addition of 70 microM Ca2+ and 3 mM Pi to mitochondria resulted in mitochondrial swelling and extensive release of GSH that was recovered in the extramitochondrial medium as GSH. Both swelling and the efflux of mitochondrial GSH were prevented by CyA. Incubation of mitochondria in the presence of Ca2+, Pi, and GSH followed by addition of CyA provided a mechanism to load mitochondria with exogenous GSH that was greater than the rate of uptake by untreated mitochondria. Thus, GSH efflux from mitochondria may occur under toxicological and pathological conditions in which mitochondria are exposed to elevated Ca2+ in the presence of near physiological concentrations of Pi through a nonspecific pore. Cyclical opening and closing of the pore could also provide a mechanism for uptake of GSH by mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号