首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous studies we have identified and isolated a prostaglandin E2 (PGE2) receptor from cardiac sarcolemmal (SL) membranes. Binding of PGE2 to this receptor in permeabilized SL vesicles inhibits adenylyl cyclase activity. The purpose of this study was to determine if the cardiac PGE2 receptor is coupled to adenylyl cyclase via a pertussis toxin sensitive guanine nucleotide binding inhibitory (Gi) protein. Incubation of permeabilized SL vesicles in the presence of 100 microM 5'-guanylamidiophosphate, Gpp(NH)p, a nonhydrolyzable analogue of GTP, resulted in a shift in [3H]PGE2 binding from two sites, one of high affinity (KD = 0.018 +/- 0.003 nM) comprising 7.7% of the total available binding sites and one of lower affinity (KD = 1.9 +/- 0.7 nM) to one site of intermediate affinity (KD = 0.52 +/- 0.01 nM) without a significant change in the total number of PGE2 binding sites. A shift from two binding sites to one binding site in the presence of Gpp(NH)p was also observed for [3H]dihydroalprenolol binding to permeabilized cardiac SL. When permeabilized SL vesicles were pretreated with activated pertussis toxin, ADP-ribosylation of a 40- to 41-kDa protein corresponding to Gi was observed. ADP-ribosylation of SL resulted in a shift in [3H]PGE2 binding to one site of intermediate affinity without significantly changing the number of binding sites. In alamethicin permeabilized SL vesicles, 1 nM PGE2 significantly decreased (30%) adenylyl cyclase activity. Pretreatment with activated pertussis toxin overcame the inhibitory effects of PGE2. These results demonstrate that the cardiac PGE2 receptor is coupled to adenylyl cyclase via a pertussis toxin sensitive Gi protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Studies were performed to examine a potential role for a guanine nucleotide-binding protein in epidermal growth factor (EGF)-stimulated phospholipase A2 (PLA2) activity. EGF increased prostaglandin E2 (PGE2) production in intact or saponin-permeabilized rat inner medullary collecting tubule (RIMCT) cells. Incubation of permeabilized cells with guanosine 5'-O-(thiotriphosphate) (GTP gamma S) enhanced and with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) inhibited the response to EGF. GDP beta S had no effect on ionomycin-stimulated PGE2 production. Exposure of intact cells to 25 mM NaF + 10 microM AlCl3 enhanced both basal and EGF-stimulated PGE2 production. Pertussis toxin ADP-ribosylated a 41-kDa protein in RIMCT cell membranes. Pretreatment of cells with pertussis toxin (100 ng/ml for 16 h) eliminated the response to EGF in intact cells and the response to EGF + GTP gamma S in permeabilized cells. Pertussis toxin had no effect on the response to ionomycin. The effect of pertussis toxin was not due to alterations in cAMP as cellular cAMP levels were unaffected by pertussis toxin both in the basal state and in the presence of EGF. PGE2 production in response to EGF was not transduced by a G protein coupled to phospholipase C (PLC) as neomycin, which inhibited PLC, did not decrease EGF-stimulated PGE2 production. Also, PGE2 production was not increased by inositol trisphosphate and did not require the presence of extracellular Ca2+. In contrast to EGF-stimulated PLC activity, stimulation of PLA2 by EGF was not susceptible to inhibition by phorbol 12-myristate 13-acetate. These results clearly demonstrate the existence of a PLA2-specific pertussis toxin-inhibitable guanine nucleotide-binding protein coupled to the EGF receptor in RIMCT cells.  相似文献   

3.
Insulin stimulates a novel GTPase activity in human platelets   总被引:3,自引:0,他引:3  
Insulin stimulated the activity of a high-affinity GTPase activity in human platelet membranes some 62% over that of the basal activity. Half-maximal stimulation (Ka) was achieved with 3.1 nM insulin. The Km for GTP of the insulin-stimulated GTPase was 0.6 microM GTP. Treatment of isolated platelet membranes with cholera toxin, but not pertussis toxin, blocked insulin's ability to stimulate GTPase activity. Cholera toxin acted as a more potent inhibitor of the insulin-stimulated GTPase activity than that of the GTPase activity of the stimulatory guanine nucleotide regulatory protein, Gs, as monitored by stimulation using prostaglandin E1 (PGE1). Mixed ligand experiments showed that insulin stimulated GTPase activity in an additive fashion to GTPase activity stimulated by PGE1, due to Gs; by adrenaline (+ propranolol), due to the inhibitory guanine nucleotide regulatory protein, G1 and by vasopressin, which stimulates the putative 'Gp', a G-protein suggested to control the stimulation of inositol phospholipid metabolism. Insulin thus appears to stimulate a novel high-affinity GTPase activity in human platelet membranes. This may reflect the functioning of the putative Gins, a guanine nucleotide regulatory protein which has been suggested to mediate certain of insulin's actions on target tissues.  相似文献   

4.
At different concentrations, prostaglandin E2 (PGE2) can either stimulate or inhibit cAMP formation in freshly isolated rabbit cortical collecting tubule (RCCT) cells, but in cultured RCCT cells PGE2 can only stimulate cAMP synthesis (Sonnenburg, W. K., and Smith W. L. (1989) J. Biol. Chem. 263, 6155-6160). Here, we report characteristics of [3H]PGE2 binding to membrane receptor preparations from both freshly isolated and cultured RCCT cells. [3H]PGE2 binding to membranes from freshly isolated RCCT cells was saturable and partially reversible. Equilibrium binding analyses indicated that in the absence of guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) there is a single class of PGE2 binding sites (KD = 4.2 +/- 0.4 nM; Bmax = 583 +/- 28 fmol/mg); in the presence of 100 microM GTP gamma S, there is also only one class of binding sites but with a somewhat lower KD = 1.2 +/- 0.5 nM (Bmax = 370 +/- 40 fmol/mg). This stimulatory effect of GTP gamma S was blocked by pretreatment of the freshly isolated RCCT cells with pertussis toxin. The relative affinities of prostanoids for the [3H]PGE2-binding site were determined to be 17,18,19,20-tetranor-16-phenoxy-PGE2-methylsulfonylamide (sulprostone) approximately PGE2 approximately PGE1 approximately 16,16-dimethyl-PGE2 greater than carbacyclin approximately PGF2 alpha greater than PGD2. This is the order of potency with which prostaglandins inhibit arginine vasopressin-induced cAMP formation in fresh RCCT cells. Interestingly, [3H]PGE2 binding to membranes from cultured cells, which, unlike fresh cells, fail to show an inhibitory response to PGE2, was only 10-20% of that observed with membranes from fresh cells; moreover, binding of [3H]PGE2 to membranes from cultured cells was neither stimulated by GTP gamma S nor inhibited by sulprostone. The prostanoid binding specificities and the unusual pertussis toxin-sensitive, stimulatory effect of GTP gamma S on binding of [3H]PGE2 to membranes from freshly isolated RCCT cells are characteristics shared by a Gi-linked PGE receptor from renal medulla (Watanabe, T., Umegaki, K., and Smith, W. L. (1986) J. Biol. Chem. 261, 14340-14349). Our results suggest that the [3H]PGE2 binding site of freshly isolated RCCT cells is the PGE receptor which is coupled to a Gi to attenuate arginine vasopressin-induced cAMP synthesis in the renal collecting tubule.  相似文献   

5.
Tumor necrosis factor (TNF) is a monokine that induces pleiotropic events in both transformed and normal cells. These effects are initiated by the binding of TNF to high affinity cell surface receptors. The post-receptor events and signaling mechanisms induced by TNF, however, have remained unknown. The present studies demonstrate the presence of a single class of high affinity receptors on membranes prepared from HL-60 promyelocytic leukemic cells. The interaction of TNF with these membrane receptors was associated with a 3.8-fold increase in specific binding of the GTP analogue, GTP gamma S. Scatchard analysis of GTP gamma S binding data demonstrated that TNF stimulates GTP binding by increasing the affinity of available sites. The TNF-induced stimulation of GTP binding was also associated with an increase in GTPase activity. Moreover, the increase in GTPase activity induced by TNF was sensitive to pertussis toxin. The results also demonstrate that TNF similarly increased GTP binding and pertussis toxin-sensitive GTPase activity in membranes from mouse L929 fibroblasts, thus indicating that these effects are not limited to hematopoietic cells. Analysis of HL-60 membranes after treatment with pertussis toxin in the presence of [32P]NAD revealed three substrates with relative molecular masses of approximately Mr 41,000, 40,000, and 30,000. In contrast, L929 cell membranes had only two detectable pertussis toxin substrates of approximately Mr 41,000 and 40,000. Although the Mr 41,000 pertussis toxin substrate represents the guanine nucleotide-binding inhibitory protein Gi, the identities of the Mr 40,000 and Mr 30,000 substrates remain unclear. In any event, inhibition of the TNF-induced increase in GTPase activity and ADP-ribosylation of Gi by pertussis toxin suggested that TNF might act by increasing GTPase activity of the Gi protein. However, the results further indicate that TNF has no detectable effect on basal or prostaglandin E2-stimulated cAMP levels in HL-60 cells. Taken together, these findings indicate that a pertussis toxin-sensitive GTP-binding protein other than Gi, and possibly the Mr 40,000 substrate, is involved in the action of TNF. Finally, the demonstration that pertussis toxin inhibited TNF-induced cytotoxicity in L929 cells supports the presence of a GTP-binding protein which couples TNF-induced signaling to a biologic effect.  相似文献   

6.
C A Vandenberg  M Montal 《Biochemistry》1984,23(11):2339-2347
The occurrence of a guanine nucleotide binding protein activated by squid rhodopsin was established by examination of GTPase activity, guanine nucleotide binding, and cholera toxin catalyzed labeling of squid photoreceptor membranes. Purified squid (Loligo opalescens) photoreceptors exhibited GTPase activity that increased 3-4-fold by illumination. Half-maximal GTPase activity was observed when 2% of the rhodopsin was photoconverted to metarhodopsin. The Km of the light-regulated activity was 1 microM GTP. Binding of the hydrolysis-resistant GTP analogue guanosine 5'-(beta, gamma-imidotriphosphate) [Gpp(NH)p] was enhanced greater than 10 times by illumination. A protein, Mr 44 000, was identified as a component of the light-activated guanine nucleotide binding protein/GTPase through its specific labeling with [32P]NAD catalyzed by cholera toxin: light increased the extent of 32P incorporation 7-fold. The addition of ATP to the membrane suspension enhanced labeling, while guanine nucleotides inhibited labeling with the relative potency GTP gamma S much greater than GDP greater than GTP greater than Gpp(NH)p. The 44 000-dalton protein was membrane bound irrespective of variations in ionic strength and divalent ion concentration over a wide range. These results suggest that a G protein, which incorporates both GTP binding and hydrolysis functions, is intimately involved in the visual process of invertebrate photoreceptors.  相似文献   

7.
To evaluate the relation between the pancreatic cholecystokinin (CCK) receptor and guanine nucleotide-binding protein(s) we studied the effects of nucleotides on 125I-CCK binding to pancreatic acinar plasma membranes, 125I-CCK binding to solubilized 125I-CCK receptors, and the stability of the solubilized 125I-CCK-receptor complex. In plasma membranes, guanine nucleotides both inhibited CCK binding and increased the dissociation of CCK from its receptor. The potency of the nucleotides studied was GTP gamma S = GMP-PNP greater than GTP much greater than ATP. When membranes were solubilized with digitonin, subsequent binding of CCK was insensitive to guanine nucleotides including GTP, GMP-PNP and GTP gamma S. However, if CCK binding occurred before solubilization of the membranes, guanine nucleotides increased dissociation at concentrations and with a specificity similar to that observed for effects on intact pancreatic membranes. It is concluded that guanine nucleotides act via a protein which is separable from the receptor to induce dissociation of bound CCK. Moreover, CCK binding induces an association in the plasma membrane of the CCK receptor with this guanine nucleotide binding protein.  相似文献   

8.
Prostaglandin E2 (PGE2) specifically bound to 100,000 X g pellet prepared from bovine adrenal medulla, and [3H]PGE2-bound proteins were solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid. The dissociation of bound [3H]PGE2 from the proteins was enhanced by GTP. [3H]PGE2-specifically bound proteins were adsorbed onto a wheat germ agglutinin column and GTP treatment decreased the amount of [3H]PGE2 retained on the column. When [3H]PGE2-bound proteins were cross-linked in the membrane by dithiobis(succinimidyl propionate) and solubilized, bound [3H]PGE2 was no longer dissociated by GTP treatment, suggesting that cross-linking produced a stable and high-affinity complex of PGE receptor with a GTP-binding protein. Covalent cross-linking of the complex was attested by adsorption of dithiobis(succinimidyl propionate)-treated [3H]PGE2-bound proteins to GTP-Sepharose, and co-elution of [35S]guanosine 5'-O-(3-thiotriphosphate) binding activity and immunoreactivities of alpha o and beta subunits of a GTP-binding protein. The cross-linked [3H]PGE2-bound complex was eluted as an apparently single radioactive peak at the position of Mr = 200,000 by gel filtration. These results have demonstrated that PGE receptor is a glycoprotein with an approximate Mr of 110,000, assuming that the Mr of the GTP-binding protein is 90,000. PGE2 neither activated nor inhibited adenylate cyclase activity, and pertussis toxin (islet-activating protein) did not affect PGE2 binding and its GTP sensitivity. These results suggest that the PGE receptor may be functionally associated with a pertussis toxin-insensitive GTP-binding protein and is not coupled to the adenylate cyclase system in bovine adrenal medulla.  相似文献   

9.
GTP-binding activity to Dictyostelium discoideum membranes was investigated using various guanine nucleotides. Rank order of binding activities was: GTP gamma S greater than GTP greater than 8-N3-GTP; the binding of GTP gamma S and GTP, but not of 8-N3-GTP, was stimulated by receptor agonists. [3H]GTP binding to D. discoideum membranes has been described previously by a single binding type (Kd = 2.6 microM, Bmax = 85 nM). More detailed studies with [35S]GTP gamma S showed heterogeneous binding composed of two forms of binding sites with respectively high (Kd = 0.2 microM) and low (Kd = 6.3 microM) affinity. cAMP derivatives enhanced GTP gamma S binding by increasing the affinity and the number of the high-affinity sites, while the low-affinity sites were not affected by cAMP. The specificity of cAMP derivatives for stimulation of GTP gamma S binding showed a close correlation with the specificity for binding to the cell surface cAMP receptor. Pretreatment of D. discoideum cells with pertussis toxin did not affect basal GTP and GTP gamma S binding, but eliminated the cAMP stimulation of GTP and GTP gamma S binding. These results indicate that D. discoideum cells have a pertussis toxin-sensitive GTP-binding protein that interacts with the surface cAMP receptor, suggesting the functional interaction of surface receptor with a G-protein in D. discoideum.  相似文献   

10.
Analysis of the equilibrium binding of [3H]-neurotensin(1-13) at 25 degrees C to its receptor sites in bovine cortex membranes indicated a single population of sites with an apparent equilibrium dissociation constant (KD) of 3.3 nM and a density (Bmax) of 350 fmol/mg protein (Hill coefficient nH = 0.97). Kinetic dissociation studies revealed the presence of a second class of sites comprising less than 10% of the total. KD values of 0.3 and 2.0 nM were obtained for the higher and lower affinity classes of sites, respectively, from association-dissociation kinetic studies. The binding of [3H]neurotensin was decreased by cations (monovalent and divalent) and by a nonhydrolysable guanine nucleotide analogue. Competition studies gave a potency ranking of [Gln4]neurotensin greater than neurotensin(8-13) greater than neurotensin(1-13). Smaller neurotensin analogues and neurotensin-like peptides were unable to compete with [3H]neurotensin. Stable binding activity for [3H]neurotensin in detergent solution (Kd = 5.5 nM, Bmax = 250 fmol/mg protein, nH = 1.0) was obtained in 2% digitonin/1 mM Mg2+ extracts of membranes which had been preincubated (25 degrees C, 1 h) with 1 mM Mg2+ prior to solubilization. Association-dissociation kinetic studies then revealed the presence of two classes of sites (KD1 = 0.5 nM, KD2 = 3.6 nM) in a similar proportion to that found in the membranes. The solubilized [3H]-neurotensin activity retained its sensitivity to cations and guanine nucleotide.  相似文献   

11.
Activation of epidermal growth factor (EGF) receptors stimulates inositol phosphate production in rat hepatocytes via a pertussis toxin-sensitive mechanism, suggesting the involvement of a G protein in the process. Since the first event after receptor-G protein interaction is exchange of GTP for GDP on the G protein, the effect of EGF was measured on the initial rates of guanosine 5'-O-(3-[35S]thiotriphosphate) [( 35S]GTP gamma S) association and [alpha-32P]GDP dissociation in rat hepatocyte membranes. The initial rate of [35S]GTP gamma S binding was stimulated by EGF, with a maximal effect observed at 8 nM EGF. EGF also increased the initial rate of [alpha-32P]GDP dissociation. The effect of EGF on [35S]GTP gamma S association was blocked by boiling the peptide for 5 min in 5 mM dithiothreitol or by incubation of the membranes with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). EGF-stimulated [35S]GTP gamma S binding was completely abolished in hepatocyte membranes prepared from pertussis toxin-treated rats and was inhibited in hepatocyte membranes that were treated directly with the resolved A-subunit of pertussis toxin. The amount of guanine nucleotide binding affected by occupation of the EGF receptor was approximately 6 pmol/mg of membrane protein. Occupation of angiotensin II receptors, which are known to couple to G proteins in hepatic membranes, also stimulated [35S]GTP gamma S association with and [alpha-32P]GDP dissociation from the membranes. The effect of angiotensin II on [alpha-32P]GDP dissociation was blocked by the angiotensin II receptor antagonist [Sar1,Ile8]angiotensin II, demonstrating that the guanine nucleotide binding was receptor-mediated. In A431 human epidermoid carcinoma cells, EGF stimulates inositol lipid breakdown, but the effect is not blocked by treatment of the cells with pertussis toxin. In these cells, EGF had no effect on [35S]GTP gamma S binding. Occupation of the beta-adrenergic receptor in A431 cell membranes with isoproterenol did stimulate [35S] GTP gamma S binding, and the effect could be completely blocked by l-propranolol. These results support the concept that in hepatocyte membranes, EGF receptors interact with a pertussis toxin-sensitive G protein via a mechanism similar to other hormone receptor-G protein interactions, but that in A431 human epidermoid carcinoma cells, EGF may activate phospholipase C via different mechanisms.  相似文献   

12.
Activation of adenylyl cyclase by cholera toxin A subunit (CT-A) results from the ADP-ribosylation of the stimulatory guanine nucleotide binding protein (GS alpha). This process requires GTP and an endogenous guanine nucleotide binding protein known as ADP-ribosylation factor (ARF). One membrane (mARF) and two soluble forms (sARF I and sARF II) of ARF have been purified from bovine brain. Because the conditions reported to enhance the binding of guanine nucleotides by ARF differ from those observed to promote optimal activity, we sought to characterize the determinants influencing the functional interaction of guanine nucleotides with ARF. High-affinity GTP binding by sARF II (apparent KD of approximately 70 nM) required Mg2+, DMPC, and sodium cholate. sARF II, in DMPC/cholate, also enhanced CT-A ADP-ribosyltransferase activity (apparent EC50 for GTP of approximately 50 nM), although there was a delay before achievement of a maximal rate of sARF II stimulated toxin activity. The delay was abolished by incubation of sARF II with GTP at 30 degrees C before initiation of the assay. In contrast, a maximal rate of activation of toxin by sARF II, in 0.003% SDS, occurred without delay (apparent EC50 for GTP of approximately 5 microM). High-affinity GTP binding by sARF II was not detectable in SDS. Enhancement of CT-A ADP-ribosyltransferase activity by sARF II, therefore, can occur under conditions in which sARF II exhibits either a relatively low affinity or a relatively high affinity for GTP. The interaction of GTP with ARF under these conditions may reflect ways in which intracellular membrane and cytosolic environments modulate GTP-mediated activation of ARF.  相似文献   

13.
Due to multiple molecular species of platelet-activating factor (PAF) and the existence of high affinity binding sites in a variety of cells and tissues, possible existence of PAF receptor subtypes has been suggested. This report shows differences between specific PAF receptors in human leukocytes and platelets. Human polymorphonuclear leukocyte membranes showed high affinity binding sites for PAF with an equilibrium dissociation constant (KD) of 4.4 (+/- 0.3) x 10(-10) M. We compared the relative potencies of several PAF agonists and receptor antagonists between human platelet and human leukocyte membranes. One receptor antagonist (Ono-6240) was found to be 6-10 times less potent in inhibiting the specific [3H]PAF receptor binding, PAF-induced GTPase activity, as well as the PAF-induced aggregation in human leukocytes than in human platelets. Mg2+, Ca2+, and K+ ions potentiated the specific [3H]PAF binding in both systems. Na+ and Li+ ions inhibited the specific [3H]PAF binding to human platelets but showed no effects in human leukocytes. K+ ions decreased the Mg2+-potentiated [3H]PAF binding in human leukocytes but showed no effects in human platelets. PAF stimulates the hydrolysis of [gamma-32P] GTP with an ED50 of about 1 nM, whereas the biological inactive enantiomer shows no activity even at 10 microM in both human platelets and human leukocytes. The PAF-stimulated GTPase in human leukocytes can be abolished by the pretreatment of membranes with pertussis toxin and cholera toxin. However, the PAF-stimulated activity of GTPase in human platelets is insensitive to pertussis toxin and cholera toxin. These results suggest that there exists a second type of PAF receptor in human polymorphonuclear leukocytes, which is structurally different from the one characterized in human platelets, and that the guanine nucleotide-binding protein coupled to PAF receptors in human leukocytes is also different from the one in human platelets.  相似文献   

14.
The guanine nucleotide regulatory protein component (N) of the frog erythrocyte membrane adenylate cyclase system appears to form a stable complex with the beta-adrenergic receptor (R) in the presence of agonist (H). This agonist-promoted ternary complex HRN can be solubilized with Lubrol. The guanine nucleotide regulatory protein associated with the solubilized complex can be adsorbed either to GTP-Sepharose directly or to wheat germ lectin-Sepharose via its interaction with the receptor which is a glycoprotein. Guanosine 5'-O-(3-thiotriphosphate)(GTP gamma S) can be used to elute the guanine nucleotide regulatory protein from either Sepharose derivative. The resulting N.GTP gamma S complex conveys nucleotide-dependent adenylate cyclase activity when combined with a Lubrol-solubilized extract of turkey erythrocyte membranes. The ability to observe GTP gamma S-dependent reconstitution of adenylate cyclase activity in the eluate from either resin required the formation of the HRN complex prior to solubilization. The N protein can be identified by its specific [32P]ADP ribosylation catalyzed by cholera toxin in the presence of [32P]NAD+. The existence of a stable HRN intermediate complex is supported by the observation that agonist pretreatment of frog erythrocyte membranes results in a 100% increase in the amount of 32P-labeled N protein eluted from the lectin-Sepharose in the presence of GTP gamma S compared to membranes pretreated with either antagonist or agonist plus GTP. Our results therefore provide evidence that the same guanine nucleotide-binding protein that associates with the beta-adrenergic receptor in the presence of agonist mediates adenylate cyclase activation.  相似文献   

15.
Opioid receptors solubilized in Mg2+-digitonin (2%, wt/vol) from Mg2+-pretreated rat brain membranes maintain, in addition to high-affinity opioid agonist binding, the modulation by guanine nucleotides. One of the modes of expression of the latter property is an attenuation of agonist binding by guanine nucleotides in the presence of Na+. To investigate the molecular basis of this modulation and to identify the G protein(s) involved, the soluble receptors were [32P]ADP-ribosylated by means of Bordetella pertussis toxin and subjected to molecular size exclusion chromatography. In addition, soluble extracts were chromatographed on lectin and hydrophobic affinity columns. The binding of 35S- and 3H-labelled analogues of GTP was also monitored in the species separated. The oligomeric G protein-coupled opioid receptors and the guanine nucleotide/pertussis toxin-sensitive species showed similar chromatographic properties in all three systems. This indicates that the biochemically functional G protein-opioid receptor complex formed in Mg2+-pretreated membranes in the absence of an agonist is stable in digitonin solution and to chromatographic separation. Further analysis showed that the guanine nucleotide modulation of opioid receptors is via the pertussis toxin substrates with Mr of 41,000 and 39,000, which are identified as Gi and Go alpha subunits, respectively.  相似文献   

16.
In cloned osteoblast-like cells, MC3T3-E1, prostaglandin E2 (PGE2) stimulated the formation of inositol phosphates in a dose-dependent manner in the range between 10 nM and 10 microM. Pertussis toxin inhibited the effect of PGE2 dose-dependently in the range between 1 ng/ml and 1 micrograms/ml. In the cell membranes, pertussis toxin catalyzed ADP-ribosylation of a protein with an Mr of about 40,000. Pretreatment of membranes with 10 microM PGE2 in the presence of 2.5 mM MgCl2 and 100 microM GTP markedly attenuated this pertussis toxin-catalyzed ADP-ribosylation of the protein in a time-dependent manner. G12 was detected in these cells by immunoblotting with purified anti-G12 alpha antibodies. The results indicate the possible coupling of PGE2 signalling with pertussis toxin-sensitive GTP-binding protein, which is probably G12, in osteoblast-like cells.  相似文献   

17.
Prostaglandin (PG) E2 binding protein, a putative PGE2 receptor, was purified 26-fold with 0.4% recovery from canine renal outer medullary membranes solubilized with 12% digitonin with the sequential use of a Superose 12, Wheat Germ Agglutinin (WGA) Affigel 10, DEAE-5PW and Ampholine column chromatographies. The final preparation retained the binding activity specific for PGE2, but lost most of the sensitivity to guanosine-5'-(gamma-thio)triphosphate (GTP gamma S). An antibody against alpha subunit of the inhibitory guanine nucleotide-binding protein (alpha Gi)1 and alpha Gi2 or that against common sequences of alpha subunit of guanine nucleotide-binding proteins (alpha G(common)) reacted at 41 kDa protein in the sample of each step of purification, but failed to do so in the final preparation. An antibody against alpha Gi3 or alpha Go had no effect. In fact, peaks of the binding activity and immunoreactivity for alpha Gi1,2 were chromatographically separated by isoelectric focusing. Moreover, antibodies against alpha G(common) or alpha Gi1,2, but not that against alpha Gi3 and alpha Go, precipitated PGE2 binding activity in the active fractions of WGA-Affigel 10 column chromatography. These results suggest that the PGE2 receptor is an acidic glycoprotein and that Gi1 or Gi2 is physically associated with the PGE2 receptor and dissociates from the receptor protein during purification procedures.  相似文献   

18.
T Arima  T Segawa  Y Nomura 《Life sciences》1986,39(25):2429-2434
The influence of pertussis toxin on the effects of guanine nucleotide on adenylate cyclase activity were investigated in rat striatal membranes. GTP promoted and inhibited the activity at 1 and 100 microM, respectively. The inhibitory effects of GTP were abolished by pretreatment of the membranes with pertussis toxin. GppNHp (guanyl-5'-y1-beta,gamma-imidodiphosphate) exerted only stimulatory effects and pertussis toxin did not affect the effects of GppNHp. GDP at 10 and 100 microM caused significant inhibition which was completely suppressed by pertussis toxin. It is suggested that guanine nucleotide regulates the affinity of as in stimulatory GTP-binding regulatory protein to either beta gamma or catalytic units of adenylate cyclase in a flip-flop manner. Inhibitory GTP-binding regulatory protein seems to play a regulatory role in inhibiting alpha s activity supplying the beta gamma heterodimer.  相似文献   

19.
In membranes of neuroblastoma x glioma hybrid (NG108-15) cells, bradykinin (EC50 approximately equal to 5 nM) stimulates GTP hydrolysis by a high-affinity GTPase (Km approximately equal to 0.2 microM). The octapeptide, des-Arg9-bradykinin, was inactive. Stimulation of GTP hydrolysis by bradykinin and an opioid agonist was partially additive. Treatment of NG108-15 cells with pertussis toxin, which inactivates Ni, eliminated GTPase stimulation by the opioid agonist but not by bradykinin. The data suggest that bradykinin activates in NG108-15 membranes a guanine nucleotide-binding protein which is not sensitive to pertussis toxin and which may be involved in bradykinin-induced stimulation of phosphoinositide metabolism in these cells.  相似文献   

20.
Vasopressin (V2) receptors were solubilized from porcine kidney membranes with the detergent egg lysolecithin. Binding of [3H]vasopressin to the solubilized fraction was rapid, specific, and saturable. The agonist dissociation constants observed in membranes and solubilized fractions were 1.7 +/- 0.3 and 2.3 +/- 0.2 nM, respectively. In competition binding experiments, the solubilized fraction exhibited the same pharmacological profile as the membranes. Chemical crosslinking of [125I]vasopressin to the solubilized fraction followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated a 62-kDa band which was specifically labeled with [125I]vasopressin. Vasopressin binding sites from the solubilized fractions were resolved by gel filtration and ultracentrifugation on a sucrose gradient. In addition, agonist high affinity binding to V2 receptors and its sensitivity to guanine nucleotides were preserved even after solubilization in the absence of prebound agonist prior to solubilization. Addition of guanine nucleotides such as GTP gamma S decreased the specific binding of [3H]arginine vasopressin to these solubilized fractions in a dose-dependent manner, suggesting the solubilization of a V2 receptor-G protein complex. [32P]ADP ribosylation of the solubilized fraction by cholera and pertussis toxins revealed specifically labeled proteins with molecular weights of 42,000-43,000 and 39,000-41,000, respectively, on sodium dodecyl sulfate polyacrylamide gels. Furthermore [35S]GTP gamma S binding to these solubilized fractions was enhanced by vasopressin, confirming that a significant proportion of the vasopressin receptors must be closely coupled to G proteins even when these receptors are solubilized in the absence of agonist. These results are in contrast with those reported for beta, alpha 2 adrenergic and D2 dopaminergic receptor systems, but in agreement with D1 dopaminergic and A1 adenosine receptors. The molecular mechanism responsible for this difference remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号