首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nucleotide Phosphohydrolase in Purified Vaccinia Virus   总被引:20,自引:12,他引:8       下载免费PDF全文
Purified infectious vaccinia virus has been shown to contain an enzyme or enzymes that remove the terminal phosphate group from adenosine triphosphate (ATP), guanosine triphosphate (GTP), uridine triphosphate (UTP), and cytidine triphosphate (CTP). The K(m) for ATP of this enzyme is 5.5 x 10(-4)m, and the relative rates of the reaction with ATP, GTP, UTP, and CTP are 1.00, 0.34, 0.15, and 0.29, respectively. The virus enzyme does not react with any of the diphosphates. The rate of the reaction is proportional to the amount of virus added and is linear for 130 min. The virus nucleotide phosphohydrolase activity is greatly stimulated by Mg(++) and very slightly stimulated by Ca(++). The small residual activity observed in the absence of divalent cations is completely inhibited by ethylenediaminetetraacetic acid. Neither Na(+) nor K(+) ions, nor any mixture of these, was found to stimulate the reaction significantly, and ouabain, at 10(-4)m, inhibited the reaction by only 27%. The response of the vaccinia enzyme to mono- and divalent cations and to ouabain indicates that the vaccinia enzyme has different properties from those associated with microsomes and mitochondria.  相似文献   

3.
Summary Thepyrimidine-3 locus ofNeurospora crassa specifies two enzyme activities, pyrimidine-specific carbamyl phosphate synthetase (CPSpyr) and aspartate transcarbamylase (ATC). ATC is translationally distal. CPSpyr, but not ATC, is subject to feedback inhibition by uridine triphosphate (UTP). To investigate the location of the feedback-specific region within the locus, inhibition of a number ofpyr-3 alleles by UTP was investigated. All CPS+ ATC- polar alleles, revertants of CPS- ATC- polar alleles, and 5-fluorouracil-resistant mutants had normal UTP response. The location of the feedback-specific region is in or close to the CPS-specific region.Supported by Science Research Council Grant B/RG/2981  相似文献   

4.
Endrizzi JA  Kim H  Anderson PM  Baldwin EP 《Biochemistry》2005,44(41):13491-13499
Cytidine triphosphate synthetases (CTPSs) synthesize CTP and regulate its intracellular concentration through direct interactions with the four ribonucleotide triphosphates. In particular, CTP product is a feedback inhibitor that competes with UTP substrate. Selected CTPS mutations that impart resistance to pyrimidine antimetabolite inhibitors also relieve CTP inhibition and cause a dramatic increase in intracellular CTP concentration, indicating that the drugs act by binding to the CTP inhibitory site. Resistance mutations map to a pocket that, although adjacent, does not coincide with the expected UTP binding site in apo Escherichia coli CTPS [EcCTPS; Endrizzi, J. A., et al. (2004) Biochemistry 43, 6447-6463], suggesting allosteric rather than competitive inhibition. Here, bound CTP and ADP were visualized in catalytically active EcCTPS crystals soaked in either ATP and UTP substrates or ADP and CTP products. The CTP cytosine ring resides in the pocket predicted by the resistance mutations, while the triphosphate moiety overlaps the putative UTP triphosphate binding site, explaining how CTP competes with UTP while CTP resistance mutations are acquired without loss of catalytic efficiency. Extensive complementarity and interaction networks at the interfacial binding sites provide the high specificity for pyrimidine triphosphates and mediate nucleotide-dependent tetramer formation. Overall, these results depict a novel product inhibition strategy in which shared substrate and product moieties bind to a single subsite while specificity is conferred by separate subsites. This arrangement allows for independent adaptation of UTP and CTP binding affinities while efficiently utilizing the enzyme surface.  相似文献   

5.
UDP-glucose (UDP-G), the direct precursor of cellulose, is known to be produced from UTP and glucose-1-phosphate. In an attempt to increase UTP biosynthesis, 5-fluorouridine (5-FUR: a pyrimidine analog)-resistant mutants were obtained using Acetobacter xylinum subsp. nonacetoxidans 757 as the parent strain. One of the 5-FUR-resistant mutants, FUR-35, showed about 40% higher cellulose productivion compared to the parent strain. Intracellular levels of UTP and UDP-G in FUR-35 was found to be higher than those in the parent strain. The carbamyl phosphate synthetase II (CPS) activity of FUR-35 was higher than that of the parent strain and the feedback inhibition of CPS by UTP in FUR-35 had been released compared with that in the parent strain. These results suggest that the increased cellulose production of FUR-35 was attributable to its higher of intracellular UDP-G level resulting from increased UTP biosynthesis.  相似文献   

6.
In animals, UTP feedback inhibition of carbamyl phosphate synthetase II (CPSase) controls pyrimidine biosynthesis. Suppressor of black (Su(b) or rSu(b)) mutants of Drosophila melanogaster have elevated pyrimidine pools, and this mutation has been mapped to the rudimentary locus. We report that rSu(b) is a missense mutation resulting in a glutamate to lysine substitution within the second ATP binding site (i.e. CPS.B2 domain) of CPSase. This residue corresponds to Glu780 in the Escherichia coli enzyme (Glu1153 in hamster CAD) and is universally conserved among CPSases. When a transgene expressing the Glu-->Lys substitution was introduced into Drosophila lines homozygous for the black mutation, the resulting flies exhibited the Su(b) phenotype. Partially purified CPSase from rSu(b) and transgenic flies carrying this substitution exhibited a dramatic reduction in UTP feedback inhibition. The slight UTP inhibition observed with the Su(b) enzyme in vitro was due mainly to chelation of Mg2+ by UTP. However, the Km values for glutamate, bicarbonate, and ATP obtained from the Su(b) enzyme were not significantly different from wild-type values. From these experiments, we conclude that this residue plays an essential role in the UTP allosteric response, probably in propagating the response between the effector binding site and the ATP binding site. This is the first CPSase mutation found to abolish feedback inhibition without significantly affecting other enzyme catalytic parameters.  相似文献   

7.
B Turk  R Awad  E V Usova  I Bj?rk  S Eriksson 《Biochemistry》1999,38(26):8555-8561
Deoxycytidine kinase (dCK) is an enzyme with broad substrate specificity which can phosphorylate pyrimidine and purine deoxynucleosides, including important antiviral and cytostatic agents. In this study, stopped-flow experiments were used to monitor intrinsic fluorescence changes induced upon binding of various phosphate donors (ATP, UTP, and the nonhydrolyzable analogue AMP-PNP) and the acceptor dCyd to recombinant dCK. Monophasic kinetics were observed throughout. The nucleotides as well as dCyd bound to the enzyme by a two-step mechanism, involving a rapid initial equilibrium step, followed by a protein conformational change that is responsible for the fluorescence change. The bimolecular association rate constants for nucleotide binding [(4-10) x 10(3) M-1 s-1] were 2-3 orders of magnitude lower than those for dCyd binding [(1.3-1.5 x 10(6) M-1 s-1]. This difference most likely is due predominantly to the large difference in the forward rate constants of the conformational changes (0.04-0.26 s-1 vs 560-710 s-1). Whereas the kinetics of the binding of ATP, UTP, and AMP-PNP to dCK showed some differences, UTP exhibiting the tightest binding, no significant differences were observed for the binding of dCyd to dCK in the presence or absence of phosphate donors. However, the binding of dCyd to dCK in the presence of ATP or UTP was accompanied by a 1.5- or 3-fold higher quenching amplitude as compared with dCyd alone or in the presence of AMP-PNP. We conclude that ATP and UTP induce a conformational change in the enzyme, thereby enabling efficient phosphoryl transfer.  相似文献   

8.
The nucleoside triphosphate pools of two cytidine auxotrophic mutants of Salmonella typhimurium LT-2 were studied under different conditions of pyrimidine starvation. Both mutants, DP-45 and DP-55, are defective in cytidine deaminase and cytidine triphosphate (CTP) synthase. In addition, DP-55 has a requirement for uracil (uridine). Cytidine starvation of the mutants results in accumulation of high concentrations of uridine triphosphate (UTP) in the cells, while the pools of CTP and deoxy-CTP drop to undetectable levels within a few minutes. Addition of deoxycytidine to such cells does not restore the dCTP pool, indicating that S. typhimurium has no deoxycytidine kinase. From the kinetics of UTP accumulation during cytidine starvation, it is concluded that only cytidine nucleotides participate in the feedback regulation of de novo synthesis of UTP; both uridine and cytidine nucleotides participate in the regulation of UTP synthesis from exogenously supplied uracil or uridine. Uracil starvation of DP-55 in presence of cytidine results in extensive accumulation of CTP, suggesting that CTP does not regulate its own synthesis from exogenous cytidine. Analysis of the thymidine triphosphate (dTTP) pool of DP-55 labeled for several generations with (32)P-orthophosphate and (3)H-uracil in presence of (12)C-cytidine shows that only 20% of the dTTP pool is derived from uracil (via the methylation of deoxyuridine monophosphate); 80% is apparently synthesized from a cytidine nucleotide.  相似文献   

9.
1. Uridine triphosphate (UTP), uridine diphosphate (UDP), cytidine triphosphate (CTP), and deoxythymidine triphosphate (TTP) caused concentration-dependent increases in the release of thromboxane A2 (TXA2) from cultured glia prepared from the newborn rat cerebral cortex. Although each of the pyrimidine nucleotides displayed similar potencies, CTP and TTP were considerably less effective than either UTP or UDP. The purine nucleotide ATP was equally as potent as the pyrimidine nucleotides but was marginally less effective than either UTP or UDP.2. The ability of UTP, UDP, TTP, and CTP to promote TXA2 release from cultured glia was inhibited in a concentration-dependent manner by suramin and was markedly reduced when incubations were performed either in Ca2+-free medium or on cultures which had been maintained in serum-free growth medium for 4 days prior to experimentation.3. Challenges with UTP and UDP in combination were found to elicit a response which was no different from the effects of these nucleotides alone; in addition, their effects were reversed by the phospholipase A2 inhibitor ONO-RS-082. A slight reduction in UTP-and UDP-stimulated TXA2 release was observed in cultures grown in the presence of leucine methyl ester, a treatment reported to limit microglial survival.4. These results suggest that glia are targets for extracellular pyrimidine nucleotides and that their ability to release eicosanoids from these cells may be important in the brain's response to damage.  相似文献   

10.
Dihydroorotate dehydrogenase (DHODH; EC 1.3.99.11) is a central enzyme of pyrimidine biosynthesis and catalyzes the oxidation of dihydroorotate to orotate. DHODH is an important target for antiparasitic and cytostatic drugs since rapid cell proliferation often depends on the de novo synthesis of pyrimidine nucleotides. We have cloned the pyr4 gene encoding mitochondrial DHODH from the basidiomycetous plant pathogen Ustilago maydis. We were able to show that pyr4 contains a functional mitochondrial targeting signal. The deletion of pyr4 resulted in uracil auxotrophy, enhanced sensitivity to UV irradiation, and a loss of pathogenicity on corn plants. The biochemical characterization of purified U. maydis DHODH overproduced in Escherichia coli revealed that the U. maydis enzyme uses quinone electron acceptor Q6 and is resistant to several commonly used DHODH inhibitors. Here we show that the expression of the human DHODH gene fused to the U. maydis mitochondrial targeting signal is able to complement the auxotrophic phenotype of pyr4 mutants. While U. maydis wild-type cells were resistant to the DHODH inhibitor brequinar, strains expressing the human DHODH gene became sensitive to this cytostatic drug. Such engineered U. maydis strains can be used in sensitive in vivo assays for the development of novel drugs specifically targeted at either human or fungal DHODH.  相似文献   

11.
12.
We have measured the 'core' mammalian carbamoyl-phosphate synthetase II (CPSII) activity, using NH4Cl as the nitrogen-donating substrate and trapping carbamoyl phosphate as urea through its reaction with ammonium ions. When ATP and magnesium ion concentrations are close to those found in the cell, the substrate saturation curves for ammonia and bicarbonate are hyperbolic, giving Km (NH3) values of 166 microM at high ATP concentrations and 26 microM at low ATP concentrations, while the Km (bicarbonate) is 1.4 mM at both ATP concentrations used. These values for the Km (NH3) are lower than previously reported for CPS II, and closer to the values for the mitochondrial counterpart. The Km for ammonia and bicarbonate are not altered by phosphorylation of the multienzyme polypeptide CAD, which contains the first three enzyme activities of pyrimidine biosynthesis. The CPS II activity is lower with an excess of either ATP or magnesium ions, causing the apparently sigmoid dependence of activity upon ATP concentration to be enhanced at low concentrations of free magnesium ions. The feedback inhibitor, UTP, acts by stabilising a state with a low affinity for magnesium ions and for ATP. In the presence of the activator, 5-phosphoribosyl diphosphate (PRibPP), the enzyme has a higher affinity for magnesium ions and thus the ATP dependence of the activity is hyperbolic. Phosphorylation of CAD similarly activates the CPS II enzyme by increasing the affinity for magnesium ions and by pushing the equilibrium away from the low-affinity UTP-stabilised state. Using our improved assay procedure, we observe a very large activation by PRibPP of carbamoylphosphate synthesis at low concentrations of magnesium ions, and we find that unlike UTP, the activator PRibPP is able to act on the phosphorylated enzyme.  相似文献   

13.
14.
Yeast mutants deficient in orotidine-5'-phosphate (OMP) pyrophosphorylase activity have been obtained. The gene encoding this enzyme is unlinked to the four pyrimidine genes previously described. The specific activity of OMP pyrophosphorylase remains constant under all of the physiological conditions used to repress, to derepress, or to induce pyrimidine biosynthesis. This enzyme appears, therefore, to escape the scheme of regulation by mixed repression and induction controlling the other enzymes of the pyrimidine pathway.  相似文献   

15.
Whereas the chemotactic peptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe), induced NADPH-oxidase-catalyzed superoxide (O2-) formation in human neutrophils, purine and pyrimidine nucleotides per se did not stimulate NADPH oxidase but enhanced O2- formation induced by submaximally and maximally stimulatory concentrations of fMet-Leu-Phe up to fivefold. On the other hand, FMet-Leu-Phe primed neutrophils to generate O2- upon exposure to nucleotides. At a concentration of 100 microM, purine nucleotides enhanced O2- formation in the effectiveness order adenosine 5'-O-[3-thio]triphosphate (ATP[gamma S]) greater than ITP greater than guanosine 5'-O-[3-thio]triphosphate (GTP[gamma S]) greater than ATP = adenosine 5'-O-[2-thio]triphosphate (Sp-diastereomer) = GTP = guanosine 5'-O-[2-thio]diphosphate (GDP[beta S] = ADP greater than adenosine 5'-[beta, gamma-imido]triphosphate = adenosine 5'-O-[2-thio]triphosphate] (Rp-diastereomer). Pyrimidine nucleotides stimulated fMet-Leu-Phe-induced O2- formation in the effectiveness order uridine 5'-O-[3-thio]triphosphate (UTP[gamma S]) = UTP greater than CTP. Uracil (UDP[beta S]) = uridine 5'-O[2-thio]triphosphate (Rp-diastereomer) (Rp)-UTP[beta S]) = UTP greater than CTP. Uracil nucleotides were similarly effective potentiators of O2- formation as the corresponding adenine nucleotides. GDP[beta S] and UDP[beta S] synergistically enhanced the stimulatory effects of ATP[gamma S], GTP[gamma S] and UTP[gamma S]. Purine and pyrimidine nucleotides did not induce degranulation in neutrophils but potentiated fMet-Leu-Phe-induced release of beta-glucuronidase with similar nucleotide specificities as for O2- formation. In contrast, nucleotides per se induced aggregation of neutrophils. Treatment with pertussis toxin prevented aggregation induced by both nucleotides and fMet-Leu-Phe. Our results suggest that purine and pyrimidine nucleotides act via nucleotide receptors, the nucleotide specificity of which is different from nucleotide receptors in other cell types. Neutrophil nucleotide receptors are coupled to guanine-nucleotide-binding proteins. As nucleotides are released from cells under physiological and pathological conditions, they may play roles as intercellular signal molecules in neutrophil activation.  相似文献   

16.
17.
Biochemical and genetic studies on the arginine-requiring auxotrophs derived from a Serratia marcescens strain were carried out. The arg mutants were classified into seven biochemical groups based on their growth response to five precursors of arginine biosynthesis and enzyme deficiency. Reciprocal transduction tests among those arg mutants divided them into three linkage groups, and the fine mapping in each of the groups by two- or three-point crosses revealed the following arrangement of loci. (1) arg44–thy11–lys1; (2) met1–glt2–argE–(arg19–arg51)–arg120–argG–argH; (3) arg33–pyr4. Five of the seven biochemically distinct arg mutants belonged to the second linkage group, and they constituted an arg-gene cluster. A characteristic feature of the arg-gene cluster of S. marcescens is that it involves argG, which was previously reported only in the Proteus group of Enterobacteriaceae.  相似文献   

18.
The possibility of translocation of the transposons Tn5 and Tn10 into the genome of Yersinia pestis, with the subsequent mutagenic effect was demonstrated. We revealed transposon harbouring clones at frequency 10(-4) to 10(-2). Derivatives of P1cml clr100ts phage served as vectors. Insertion of Tn10 transposon induced mutations in ilv, ser, arg, pur, pro, leu, nic, tyr, gua genes. The number of the insertion sites on the chromosome obtained for Tn5 was the same, these being arg, ade, pyr, leu, gua, trp, his, pan, ilv. The majority of auxotrophs did not revert. Occasionally, revertants were observed at frequencies 10(-8) to 10(-6). Unlike Escherichia coli, reversion was not accompanied by the loss of transposons. The rearrangements induced by transposons, presumably, near the insertion site, as well as duplications of transposons followed by incorporation of copies into novel sites, led to the appearance of additional defective genes, which made it possible to select various types of polyauxotrophs. Based on reiteration of coinciding double and triple mutant markers, we proposed a linkage group of genes within a segment of Y. pestis chromosome: lys ... tyr - ser - arg - ilv - leu - gua - ade(pur) - pro ... his ... pyr ... trp. The reasons for peculiarities of the behaviour of transposons in Y. pestis bacteria are discussed.  相似文献   

19.
Deoxyguanosine kinase, which catalyses the phosphorylation of deoxyguanosine to form deoxyguanosine 5'-monophosphate, was purified 1024-fold from extracts to newborn-pig skin. This activity requires the presence of a bivalent cation and a nucleoside triphosphate, which functions as a phosphate donor, ATP being twice as effective as CTP or GTP and 4 times as effective as UTP. The enzyme appears to have a molecular weight of 58500 as determined by Sephadex-column chromatography. Optimal enzymic activity was observed at pH 8.0; however, the enzyme remained active over a broad pH range of 5.5-9.0. Several deoxyribonucleoside and ribonucleoside monophosphates and triphosphates were tested as effectors of catalytic activity. Effective inhibitors were dGMP [Ki(app.) = 7.6 x 10(-5) M] and dGTP [Ki(app.) = 2.1 x 10(-5) M]. Both of these inhibitors acted in a competitive manner. A Km(app.) of 3.2 x 10(-7) M was measured for deoxyguanosine and a Km(app.) of 3.3 mM was determined for MgATP. Of the four major deoxynucleosides tested, this catalytic activity appears to phosphorylate only deoxyguanosine; thus the enzyme is a specific deoxyguanosine kinase.  相似文献   

20.
A 10.5-kilobase PstI endonuclease fragment encoding the entire Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster was cloned in Escherichia coli by transformation of a carB strain to uracil-independent growth. The cloned fragment also complemented E. coli pyrB, pyrC, pyrD, pyrE, and pyrF mutants. From the ability of subclones to complement E. coli pyr mutants, the gene order was deduced to be pyrBCADFE. The B. subtilis pyrB gene was shown to be expressed in E. coli, but synthesis of the enzyme was not repressible by the addition of uracil to the growth medium. The approximate molecular weights of the polypeptides encoded by B. subtilis pyrA, pyrB, pyrC, pyrD, pyrE, and pyrF were found to be 110,000, 36,000, 46,000, 34,000, 25,000, and 27,000, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号