首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taxol has the following effects on myogenic cultures: (a) it blocks cell replication of presumptive myoblasts and fibroblasts. (b) It induces the aggregation of microtubules into sheets or massive cables in presumptive myoblasts and fibroblasts, but not in postmitotic, mononucleated myoblasts. (c) It induces normally elongated postmitotic myoblasts to form stubby, star-shaped cells. (d) It reversibly blocks the fusion of the star-shaped myoblasts into multinucleated myotubes. (e) It augments the number of microtubules in postmitotic myoblasts, and these are assembled into interdigitating arrays of microtubules and myosin filaments. (f) Actin filaments are largely excluded from these interdigitating microtubule-myosin complexes. (g) The myosin filaments in the interdigitating microtubule-myosin arrays are aligned laterally, forming A-bands approximately 1.5 micrometers long.  相似文献   

2.
The synthesis of two components of the basal lamina, laminin and type IV collagen, and their extracellular deposition on the surface of myotubes was studied in cultures of embryonic mouse and quail skeletal muscle cells and in the rat myoblast cell line L6. Production of type IV collagen and laminin by myoblasts and muscle fibroblasts was demonstrated by incorporation of radioactive amino acids into proteins and by immunoprecipitation with specific antibodies and electrophoretic analysis of labeled proteins. Immunofluorescence staining experiments revealed strong intracellular reactions with antibodies to laminin and type IV collagen in mononucleated myogenic and fibrogenic cells. Cells of fibroblast-like morphology showed a more intense staining than bipolar, spindle-shaped cells which perhaps represented postmitotic myoblasts. Myotubes did not show detectable intracellular staining. The formation of a basal lamina on myotubes was indicated by the deposition of laminin and type IV collagen on the surface of myotubes as viewed by immunofluorescence examination of unfixed cells. Staining for extracellular laminin was stronger in mass cultures than in myogenic clones, suggesting that secretion and deposition of components of the basal lamina on the myotube surface are complex processes which may involve cooperation between myogenic and fibrogenic cells.  相似文献   

3.
Antibody against the intermediate-sized filaments from gizzard smooth muscle was used to determine the presence or absence of reacting 10-nm filaments in different cell types. The antibody against gizzard 10-nm filaments reacted with filaments in cultured smooth muscle cells, skeletal myotubes and postmitotic skeletal myoblasts. It did not bind to the 10-nm filaments present in replicating presumptive myoblasts and fibroblasts, or the 10-nm filaments in spinal ganglion cells.  相似文献   

4.
Mitosis and intermediate-sized filaments in developing skeletal muscle   总被引:81,自引:54,他引:27       下载免费PDF全文
A new class of filaments intermediate in diameter between actin and myosin filaments has been demonstrated in skeletal muscle cells cultured from chick embryos. These filaments, which account for the majority of free filaments, average 100 A in diameter. They may run for more than 2 µ in a single section and can be distinguished in size and appearance from the thick and thin filaments assembled into myofibrils. The 100-A filaments are seen scattered throughout the sarcoplasm at all stages of development and show no obvious association with the myofibrils. The 100-A filaments are particularly conspicuous in myotubes fragmented by the mitotic inhibitors, colchicine and Colcemid. In addition, filaments similar in size and appearance to those found in myotubes are present in fibroblasts, chondrocytes, and proliferating mononucleated myoblasts. The 100-A filaments are present in cells arrested in metaphase by mitotic inhibitors. Definitive thick (about 150 A) or thin (about 60 A) myofilaments are not found in skeletal myogenic cells arrested in metaphase. Myogenic cells arrested in metaphase do not bind fluorescein-labeled antibody directed against myosin or actin. For these reasons, it is concluded that not all "thin" filaments in myogenic cells are uniquely associated with myogenesis.  相似文献   

5.
The thymidine analogue 5-bromodeoxyuridine (BUdR) has a differential effect on the synthesis of tissue-specific products and molecules required for growth and division. Proliferating myogenic cells cultured in BUdR fail to fuse and fail to initiate the synthesis of contractile protein filaments. Conversely, BUdR has but a minor effect on cell viability and reproductive integrity. Low concentrations of BUdR result in an enhancement of cell number relative to the controls; higher concentrations are cytotoxic. Suppression of myogenesis is reversible after at least 10 cell generations of growth in the analogue. Cells that do not synthesize DNA, such as postmitotic myoblasts and myotubes, are not affected by BUdR. Incorporation of BUdR for one round of DNA synthesis was accomplished by first incubating myogenic cells, prior to fusion, in 5-fluorodeoxyuridine (FUdR) to block DNA synthesis and collect cells in the presynthetic phase. The cells were then allowed to synthesize either normal DNA or BU-DNA for one S period by circumventing the FUdR block with BUdR or BUdR plus thymidine (TdR). The cultures were continued in FUdR to prevent dilution of the incorporated analogue by further division. After 3 days, the cultures from the FUdR-BUdR series showed the typical BUdR effect; the cells were excessively flattened and few multinucleated myotubes formed. Cells in the control cultures were of normal morphology, and multinucleated myotubes were present. These results were confirmed in another experiment in which BUdR-3H was added to 2-day cultures in which myotubes were forming. Fusion of thymidine-3H-labeled cells begins at 8 hr after the preceding S phase. In contrast, cells which incorporate BUdR-3H for one S period do not fuse with normal myotubes.  相似文献   

6.
Terminal cell differentiation entails definitive withdrawal from the cell cycle. Although most of the cells of an adult mammal are terminally differentiated, the molecular mechanisms preserving the postmitotic state are insufficiently understood. Terminally differentiated skeletal muscle cells, or myotubes, are a prototypic terminally differentiated system. We previously identified a mid-G(1) block preventing myotubes from progressing beyond this point in the cell cycle. In this work, we set out to define the molecular basis of such a block. It is shown here that overexpression of highly active cyclin E and cdk2 in myotubes induces phosphorylation of pRb but cannot reactivate DNA synthesis, underscoring the tightness of cell cycle control in postmitotic cells. In contrast, forced expression of cyclin D1 and wild-type or dominant-negative cdk4 in myotubes restores physiological levels of cdk4 kinase activity, allowing progression through the cell cycle. Such reactivation occurs in myotubes derived from primary, as well as established, C2C12 myoblasts and is accompanied by impairment of muscle-specific gene expression. Other terminally differentiated systems as diverse as adipocytes and nerve cells are similarly reactivated. Thus, the present results indicate that the suppression of cyclin D1-associated kinase activity is of crucial importance for the maintenance of the postmitotic state in widely divergent terminally differentiated cell types.  相似文献   

7.
Antibodies to muscle-specific proteins were used in immunofluorescence to monitor the development of skeletal muscle during mouse embryogenesis. At gestation day (g.d.) 9 a single layer of vimentin filament containing cells in the myotome domain of cervical somites begins to stain positively for myogenic proteins. The muscle-specific proteins are expressed in a specific order between g.d. 9 and 9.5. Desmin is detected first, then titin, then the muscle specific actin and myosin heavy chains, and finally nebulin. At g.d. 9.5 fibrous desmin structures are already present, while for the other myogenic proteins no structure can be detected. Some prefusion myoblasts display at g.d. 11 and 12 tiny and immature myofibrils. These reveal a periodic pattern of myosin, nebulin, and those titin epitopes known to occur at and close to the Z line. In contrast titin epitopes, which are present in mature myofibrils along the A band and at the A-I junction, are still randomly distributed. We propose, that the Z line connected structures and the A bands (myosin filaments) assemble independently, and that the known interaction of the I-Z-I brushes with the A bands occurs at a later developmental stage. After fusion of myoblasts to myotubes at g.d. 13 and 14 all titin epitopes show the myofibrillar banding pattern. The predominantly longitudinal orientation of desmin filaments seen in myoblasts and in early myotubes is transformed at g.d. 17 and 18 to distinct Z line connected striations. Vimentin, still present together with desmin in the myoblasts, is lost from the myotubes. Our results indicate that the putative elastic titin filaments act as integrators during skeletal muscle development. Some developmental aspects of eye and limb muscles are also described.  相似文献   

8.
Postnatal satellite cells, isolated from normal or previously denervated skeletal muscles of juvenile quails, were tested as to their capacity to participate in embryonic muscle ontogeny. They were grafted into 2-day chick embryo hosts, in place of a piece of brachial somitic mesoderm. Satellite cell implants were prepared from pellets either of freshly isolated cells or of cells precultured in vitro under proliferative conditions. Myogenic capacity of the implanted cells was attested by their ability to fuse into myotubes when cultured under differentiation conditions. In no case did the implanted satellite cells invade the adjacent wing bud or participate in wing muscle morphogenesis. They did not either give rise to myotubes at the site of implantation, nor did they even survive longer than 3 days in the embryonic environment. These negative results indicate that postnatal satellite cells, unlike embryonic myoblasts, are unable to take part in muscle embryogenesis. Although they derive from the same somitic myogenic cell line as the embryonic myoblasts, they therefore represent a differentiated non-totipotent type of myogenic cell.  相似文献   

9.
Although protein kinase C (PKC) has been shown to participate in skeletal myogenic differentiation, the functions of individual isoforms of PKC in myogenesis have not been completely elucidated. These studies focused on the role of nPKC straight theta, an isoform of the PKC family whose expression has been shown to be regulated by commitment to the myogenic lineage, myogenic differentiation and innervation. We used the myogenic cell line C(2)C(12) as a tissue culture model system to explore the role of nPKC straight theta in the formation of multinucleated myotubes. We examined endogenous levels of nPKC straight theta in C(2)C(12) cells and showed that it is expressed at low levels in myoblasts compared to mouse skeletal muscle and that expression is maintained in myotubes. We overexpressed nPKC straight theta in C(2)C(12) myoblasts and examined the ability of overexpressing cells to differentiate into myotubes. Using an nPKC straight theta - green fluorescent protein (GFP) chimera to detect transfected myoblasts, we showed that overexpressed nPKC straight theta-GFP translocates to the plasma membrane in response to phorbol ester treatment of myoblast cultures in situ. nPKC straight theta-GFP was found to be completely extracted into the detergent-soluble fraction of cell lysates and was stably expressed throughout the extent of differentiation into myotubes. No difference was seen in the ability of myoblasts either overexpressing nPKC straight theta - GFP or GFP alone to form myotubes. These studies demonstrate that overexpression of nPKC straight theta does not interfere with fusion of myoblasts into myotubes suggesting that nPKC straight theta activity is not inhibitory for myogenesis. These studies also demonstrate a method for transfecting myoblasts and identifying differentiated cells that overexpress nPKC straight theta-GFP for investigating the function of nPKC straight theta in living myotubes.  相似文献   

10.
11.
《The Journal of cell biology》1984,99(5):1856-1866
We have addressed the problem of the segregation of cell lineages during the development of cartilage and muscle in the chick limb bud. The following experiments demonstrate that early limb buds consist of at least two independent subpopulations of committed precursor cells-- those in (a) the myogenic and (b) the chondrogenic lineage--which can be physically separated. Cells obtained from stage 20, 21, and 22 limb buds were cultured for 5 h in the presence of a monoclonal antibody that was originally isolated for its ability to detach preferentially myogenic cells from extracellular matrices. The detached limb bud cells were collected and replated in normal medium. Within 2 d nearly all of the replated cells had differentiated into myoblasts and myotubes; no chondroblasts differentiated in these cultures. In contrast, the original adherent population that remained after the antibody-induced detachment of the myogenic cells differentiated largely into cartilage and was devoid of muscle. Rearing the antibody-detached cells (i.e., replicating myogenic precursors and postmitotic myoblasts) in medium known to promote chondrogenesis did not induce these cells to chondrify. Conversely, rearing the attached precursor cells (i.e., chondrogenic precursors) in medium known to promote myogenesis did not induce these cells to undergo myogenesis. The definitive mononucleated myoblasts and multinucleated myotubes were identified by muscle- specific antibodies against light meromyosin or desmin, whereas the definitive chondroblasts were identified by a monoclonal antibody against the keratan sulfate chains of the cartilage-specific sulfated proteoglycan. These findings are interpreted as supporting the lineage hypothesis in which the differentiation program of a cell is determined by means of transit through compartments of a lineage.  相似文献   

12.
It is well established that during muscle regeneration, the satellite cells which are in a state of mitotic arrest, can initiate cell division to produce myoblasts which subsequently fuse to form myotubes. However, whether myonuclei, contained within damaged myotubes, or “freed” as a result of the trauma, play any role in muscle regeneration remains unresolved. In myogenic cultures, it is possible to obtain renewed myogenesis when initial cultures are sub-cultured. The aim of this study, was to obtain evidence of the participation by myonuclei of primary cultures in myogenesis which occurs subsequently in secondary cultures. In culture, myonuclei can be labelled with H3-thymidine and their ultimate fate, either as “free” myonuclei or myonuclei associated with disrupted myotubes can be followed unequivocally. Three types of experiments are performed: (i) Primary myogenic cultures containing only myotubes are subcultured. (ii) Primary myogenic cultures containing myotubes with labelled myonuclei are disrupted and subcultured. (iii) Primary myogenic cultures containing myotubes with unlabelled myonuclei are mixed with labelled mononucleated myogenic cells and sub-cultured. In all instances no evidence of myogenesis from myonuclei is obtained. It is concluded that myonuclei, which were rendered postmitotic during myogenesis, remain so when muscle is disrupted and cannot re-enter the mitotic cycle.  相似文献   

13.
Vascular endothelial cells cultured from guinea pig aorta or portal vein contain naturally occurring bundles of 100 A (diameter) filaments that completely encircle the nucleus. These rings are phase lucent and birefringent when examined with the light microscope. Perinuclear bundles of 100 A filaments were also seen in endothelial cells in vivo, indicating that they are a normal cytoplasmic component. These filaments did not decorate with S-1, and were not disrupted by glyceination. With these cells, experiments were designed to answer the following questions: (a) does Colcemid have an effect on these naturally occuring bundles? And (b) do these filaments remain during cell division? Endothelial cells grown in the presence of Colcemid were followed over 24 h. The perinuclear ring coiled into a juxtanuclear cap that consisted of disorganized arrays of 100 A filaments. This "coiling" effect was not blocked by cycloheximide, an inhibitor of protein synthesis. In another experiment, dividing cells were examined. During division the bundle of filaments is passively pulled in half into the daughter cells. These bundles did not disappear during the mitosis when mitotic spindle microtubules assemble. These studies suggest that Colcemid may exert a direct effect on 100 A filaments, independent of microtubules. Since these filaments do not disappear during mitosis, it is possible that in these cells the 100 A filaments and tubulin do not share a common pool of precursor proteins.  相似文献   

14.
Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a "myosheet," was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.  相似文献   

15.
Summary Non-myogenic cells were isolated from the breast muscle of 10-day-old chicken embryos employing Percoll density centrifugation. In culture, these cells exhibited the spread out, stellate morphology of fibroblast-like cells. They also exhibited receptor-mediated binding of plateletderived growth factor (PDGF). Such binding was not detected in cultures of predominantly myogenic cells isolated by the Percoll density centrifugation from the same muscle. Percoll-isolated myogenic and fibrogenic cell populations were also analyzed by two-dimensional polyacrylamide gel electrophoresis immediately after removal from the muscle. This analysis revealed at least six polypeptides specific to the fibroblasts but not detected in the myogenic cell population. In addition, at least eight polypeptides found in the myogenic population were barely detectable, or lacking altogether from the fibroblast-like cells. Ultrastructural analysis of the freshly isolated cells demonstrated that the fibroblasts were larger than the myoblasts and that their cytoplasm contained many vesicles. We conclude that the fibrogenic and myogenic cells isolated by Percoll from embryonic muscle express cell type-specific characteristics. Moreover, based on the PDGF binding studies, the fibrogenic cells can be categorized as true fibroblasts.  相似文献   

16.
A cell culture consisting mainly of satellite cells and mononuclear myoblasts was derived from femoral muscles of infant (aged 3–7 days) and adult rats. Satellite cells identified by expression of the specific marker Pax7 accounted for approximately 80% of the isolated cell fraction. Mononuclear myoblasts represented by proliferating and postmitotic cell pools were identified immunocytochemically by the expression of markers Ki67 and desmin. Differentiation of satellite cells and myoblasts in the culture depended on the concentration of Ca2+ in the culture medium (F12 with different Ca2+ concentrations or DMEM). Differentiation of myogenic cells manifested in myoblasts fusion, formation of myotubes, and expression of myosin in myofibrils was observed only in the medium with a high Ca2+ concentration (2mM). Satellite cells and myoblasts from the muscles of newborn and adult rats did not differ noticeably in their capacity for differentiation.  相似文献   

17.
Growth of embryonic skeletal muscle occurs by fusion of multinucleated myotubes with differentiated, fusion-capable myoblasts. Selective recognition seems to prevent fusion of myotubes with nonmyogenic cells such as muscle fibroblasts, endothelial cells, or nerve cells, but the nature of the signal is as yet unknown. Here we provide evidence that one of the selection mechanisms may be the enhanced affinity for laminin of myogenic cells as compared to fibrogenic cells. Growing myotubes in myoblast cultures accumulate laminin and type IV collagen on their surface in patches and strands as the first step in assembling a continuous basal lamina on mature myofibers (U. Kühl, R. Timpl, and K. von der Mark (1982), Dev. Biol. 93, 344-359). Fibronectin, on the other hand, assembles into an intercellular fibrous meshwork not associated with the free myotube surface. Over a brief time period (10-20 min) myoblasts from embryonic mouse thigh muscle adhere faster to laminin than do fibroblasts from the same tissue; these adhere faster to fibronectin. When a mixture of the cells is plated for 20 min on laminin/type IV collagen substrates, only myogenic cells adhere, giving rise to cultures with more than 90% fusion after 2 weeks; on fibronectin/type I collagen in the same time primarily fibroblastic cells adhere, giving rise to cultures with less than 10% nuclei in myotubes. The differential affinities of myoblasts for basement membrane constituents and of fibroblasts for interstitial connective tissue components may play a role in sorting out myoblasts from fibroblasts in skeletal muscle development.  相似文献   

18.
Differentiation of muscle cells to form postmitotic myotubes is usually viewed as being negatively controlled by medium components, sometimes designated "mitogens." However, we have found that a family of mitogenic agents, the insulin-like growth factors (IGFs), are potent stimulators of differentiation in myoblasts which act by inducing expression of the myogenin gene. We show here that this action of the IGFs occurs even when these growth factors are not added to the cell medium; upon transfer to low-serum "differentiation medium," myoblasts begin active expression of the IGF-II gene, at both the mRNA and protein levels. Furthermore, autocrine secretion of IGF-II is essential for the process of terminal differentiation of the cells. These conclusions are based upon four lines of evidence. (1) The rate of spontaneous differentiation in several sublines of myogenic cells correlates with their level of expression of IGF-II. (2) C2 and Sol 8 cells, which secrete high levels of IGF-II, are relatively insensitive to exogenous IGFs, in contrast to L6 lines, which exhibit lower levels of IGF-II gene expression. (3) An antisense oligodeoxyribonucleotide complementary to the first five codons of IGF-II inhibits myogenic differentiation in the absence but not in the presence of exogenous IGF-II. (4) Spontaneous differentiation in response to autocrine IGF-II involves the same mechanism that occurs in cells stimulated by the IGFs, i.e. elevation of expression of the myogenin gene.  相似文献   

19.
20.
S A La Rocca  M Grossi  G Falcone  S Alemà  F Tatò 《Cell》1989,58(1):123-131
We have analyzed mixed cultures of normal mammalian fibroblastic cells and transformed quail myoblasts to investigate whether the presence of an excess of normal cells could suppress the phenotype of transformed quail cells. In such mixed cultures, only v-myc-transformed cells were growth-arrested, whereas v-src-transformed myoblasts were essentially unaffected. Growth arrest appeared to reflect reversion from the transformed state, including re-expression of the myogenic differentiation program. The v-myc-transformed myoblasts were phenotypically corrected also by differentiating normal quail myoblasts, giving rise to hybrid myotubes containing nuclei from both cell types. The differential behavior of transformed cells closely paralleled the efficiency with which they established metabolic cooperation with adjacent normal cells. Our results indicate that unrestrained proliferation associated with transformation is responsible for v-myc-induced block of myogenic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号