首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
beta-Amyloid (Abeta), the primary protein component of Alzheimer's plaques, is neurotoxic when aggregated into fibrils. We have devised a modular strategy for generating compounds that inhibit Abeta toxicity, based on linking a recognition element for Abeta to a disrupting element designed to interfere with Abeta aggregation. One such compound, with the 15-25 sequence of Abeta as the recognition element and a lysine hexamer as the disrupting element, altered Abeta aggregation kinetics and protected cells from Abeta toxicity [Ghanta et al. (1996) J. Biol. Chem. 271, 29525]. To optimize the recognition element, peptides of 4-8 residues composed of overlapping sequences within the 15-25 domain were synthesized, along with hybrid compounds containing those recognition sequences coupled to a lysine hexamer. None of the recognition peptides altered Abeta aggregation kinetics and only two, KLVFF and KLVF, had any protective effect against Abeta toxicity. The hybrid peptide KLVFF-KKKKKK dramatically altered Abeta aggregation kinetics and aggregate morphology and provided significantly improved protection against Abeta toxicity compared to the recognition peptide alone. In contrast, FAEDVG-KKKKKK possessed only modest inhibitory activity and had no marked effect on Abeta aggregation. The scrambled sequence VLFKF was nearly as effective a recognition domain as KLVFF, suggesting the hydrophobic characteristics of the recognition sequence are critical. None of the cytoprotective peptides prevented Abeta aggregation; rather, they increased aggregate size and altered aggregate morphology. These results suggest that coupling recognition with disrupting elements is an effective generalizable strategy for the creation of Abeta inhibitors. Significantly, prevention of Abeta aggregation may not be required for prevention of toxicity.  相似文献   

2.
Beta-Amyloid peptide (Abeta) is the main protein components of neuritic plaques and its neurotoxicity would be exposed by formation of aggregate. The aggregation inhibitors composed of an Abeta recognition element (KLVFF) and a flexible hydrophilic disrupting element (aminoethoxy ethoxy acetate and aspartate) are designed and chemically synthesized. The inhibitory effects are examined by a pigment binding assay using Congo red or thioflavin T. The present compounds suppress the formation of aggregate, and the compound DDX3 is an especially effective inhibitor. In addition, the synthesized compounds efficiently suppress the cytotoxicity of Abeta against IMR-32 neuroblastoma cells in vitro.  相似文献   

3.
Beta-Amyloid peptide (Abeta) is the main protein component of neuritic plaques in the brain of patients of Alzheimer's disease (AD), and its neurotoxicity would be exposed by the formation of aggregates. The aggregation inhibitors composed of an Abeta recognition element (KLVFF) and a hydrophilic moiety are evaluated by a novel fluorescence assay. These compounds inhibit growth of the model aggregates on the KLVFF immobilized surface. In addition, some compounds also possess disrupting activities of preformed aggregates. These compounds could be a key candidate for therapeutic drugs for AD by their novel molecular mechanisms.  相似文献   

4.
Gibson TJ  Murphy RM 《Biochemistry》2005,44(24):8898-8907
Self-association of beta-amyloid (Abeta) peptide into cross-beta-sheet fibrils induces cellular toxicity in vitro and is linked with progression of Alzheimer's disease. Previously, we demonstrated that hybrid peptides, containing a recognition domain that binds to Abeta and a disrupting domain consisting of a chain of charged amino acids, inhibited Abeta-associated toxicity in vitro and increased the rate of Abeta aggregation. In this work we examine the design parameter space of the disrupting domain. Using KLVFFKKKKKK as a base case, we tested hybrid compounds with a branched rather than linear lysine oligomer, with l-lysine replaced by d-lysine, and with lysine replaced by diaminopropionic acid. We synthesized a compound with a novel anionic disrupting domain that contained cysteine thiols oxidized to sulfates, as well as other compounds in which alkyl or ether chains were appended to KLVFF. In all cases, the hybrid compound's ability to increase solvent surface tension was the strongest predictor of its effect on Abeta aggregation kinetics. Finally, we investigated the effects of arginine on Abeta aggregation. Arginine is a well-known chaotrope but increases surface tension of water. Arginine modestly decreased Abeta aggregation. In contrast, RRRRRR slightly, and KLVFFRRRRRR greatly, increased Abeta aggregation. Thus, the influence of arginine on Abeta aggregation depends strongly on the context in which it is presented. The effect of arginine, RRRRRR, and KLVFFRRRRRR on Abeta aggregation was examined in detail using laser light scattering, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, thioflavin T fluorescence, and transmission electron microscopy.  相似文献   

5.
Beta-amyloid peptides (Abeta) are the main protein components of neuritic plaques and are important in the pathogenesis of Alzheimer's disease. It is reported that Abeta itself is not toxic; however, it becomes toxic to neuronal cells once it has aggregated into amyloid fibrils by peptide-peptide interactions. In this study, to specify the molecular mechanism of aggregation, a novel fluorescence assay was designed. For this purpose, possible partial peptides (38 types of 5-mer) were synthesized on solid-phase. The molecular interactions were examined by a fluorescence probe possessing Lys-Leu-Val-Phe-Phe (KLVFF) as a molecular recognition site. KLVFF is known to be a minimum sequence for formation of the Abeta aggregate. A specific interaction was observed between labeled and immobilized KLVFF. It suggests that the aggregation of Abeta was controlled by the recognition of KLVFF itself by hydrophobic and electrostatic interactions.  相似文献   

6.
Brain tissue from Alzheimer's patients contains extracellular senile plaques composed primarily of deposits of fibrillar aggregates of beta-amyloid peptide. beta-Amyloid aggregation is postulated to be a major factor in the onset of this neurodegenerative disease. Recently proposed is the hypothesis that oligomeric intermediates, rather than fully formed insoluble fibrils, are cytotoxic. Previously, we reported the discovery of peptides that accelerate beta-amyloid aggregation yet inhibit toxicity in vitro, in support of this hypothesis. These peptides contain two domains: a recognition element designed to bind to beta-amyloid and a disrupting element that alters beta-amyloid aggregation kinetics. Here we show that the aggregation rate-enhancing activity of the disrupting element correlates strongly with its ability to increase surface tension of aqueous solutions. Using the Hofmeister series as a guide, we designed a novel peptide with terminal side-chain trimethylammonium groups in the disrupting domain. The derivatized peptide greatly increased solvent surface tension and accelerated beta-amyloid aggregation kinetics by severalfold. Equivalent increases in surface tension in the absence of a recognition domain had no effect on beta-amyloid aggregation. These results suggest a novel strategy for targeting localized changes in interfacial energy to specific proteins, as a way to selectively alter protein folding, stability, and aggregation.  相似文献   

7.
Convergent biochemical and genetic evidence suggests that the formation of beta-amyloid (Abeta) deposits in the brain is an important and, probably, seminal step in the development of Alzheimer's disease (AD). Recent studies support the hypothesis that Abeta soluble oligomers are the pathogenic species that prompt the disease. Inhibiting Abeta self-oligomerization could, therefore, provide a novel approach to treating the underlying cause of AD. Here, we designed potential peptide-based aggregation inhibitors containing Abeta amino acid sequences (KLVFF) from part of the binding region responsible for Abeta self-association (residues 16-20), with RG-/-GR residues added at their N- and C-terminal ends to aid solubility. Two such peptides (RGKLVFFGR, named OR1, and RGKLVFFGR-NH2, named OR2) were effective inhibitors of Abeta fibril formation, but only one of these peptides (OR2) inhibited Abeta oligomer formation. Interestingly, this same OR2 peptide was the only effective inhibitor of Abeta toxicity toward human neuroblastoma SH-SY5Y cells. Our data support the idea that Abeta oligomers are responsible for the cytotoxic effects of Abeta and identify a potential peptide inhibitor for further development as a novel therapy for AD.  相似文献   

8.
Kokkoni N  Stott K  Amijee H  Mason JM  Doig AJ 《Biochemistry》2006,45(32):9906-9918
The key pathogenic event in the onset of Alzheimer's disease (AD) is believed to be the aggregation of the beta-amyloid (Abeta) peptide into toxic oligomers. Molecules that interfere with this process may therefore act as therapeutic agents for the treatment of AD. N-Methylated peptides (meptides) are a general class of peptide aggregation inhibitors that act by binding to one face of the aggregating peptide but are unable to hydrogen bond on the other face, because of the N-methyl group replacing a backbone NH group. Here, we optimize the structure of meptide inhibitors of Abeta aggregation, starting with the KLVFF sequence that is known to bind to Abeta. We varied the meptide length, N-methylation sites, acetylation, and amidation of the N and C termini, side-chain identity, and chirality, via five compound libraries. Inhibitor activity was tested by thioflavin T binding, affinity chromatography, electron microscopy, and an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide toxicity assay. We found that inhibitors should have all d chirality, have a free N terminus but an amidated C terminus, and have large, branched hydrophobic side chains at positions 1-4, while the side chain at position 5 was less important. A single N-methyl group was necessary and sufficient. The most active compound, d-[(chGly)-(Tyr)-(chGly)-(chGly)-(mLeu)]-NH(2), was more active than all previously reported peptide inhibitors. Its related non-N-methylated analogues were insoluble and toxic.  相似文献   

9.
Decelerated degradation of beta-amyloid (Abeta) and its interaction with synaptic copper may be pathogenic in Alzheimer disease. Recently, Co(III)-cyclen tagged to an aromatic recognition motif was shown to degrade Abeta in vitro. Here, we report that apocyclen attached to selective Abeta recognition motifs (KLVFF or curcumin) can capture copper bound to Abeta and use the Cu(II) in place of Co(III) to become proteolytically active. The resultant complexes interfere with Abeta aggregation, degrade Abeta into fragments, preventing H2O2 formation and toxicity in neuronal cell culture. Because Abeta binds Cu in amyloid plaques, apocyclen-tagged targeting molecules may be a promising approach to the selective degradation of Abeta in Alzheimer disease. The principle of copper capture could generalize to other amyloidoses where copper is implicated.  相似文献   

10.
Amyloid peptides (Abeta) play a central role in the pathogenesis of Alzheimer's disease (AD). The aggregation of Abeta molecules leads to fibril and plaque formation. Fibrillogenesis is at the same time a marker and an indirect cause of AD. Inhibition of the aggregation of Abeta could be a realistic therapy for the illness. Beta sheet breakers (BSBs) are one type of fibrillogenesis inhibitors. The first BSB peptides were designed by Tjernberg et al. (1996) and Soto et al. (1998). These pentapeptides have proved their efficiency in vitro and in vivo. In the present study, the effects of two pentapeptide amides are reported. These compounds were designed by using the C-terminal sequence of the amyloid peptide as a template. Biological assays were applied to demonstrate efficiency. Modes of action were studied by FT-IR spectroscopy and molecular modeling methods.  相似文献   

11.
Amyloid fibrils associated with Alzheimer's disease and a wide range of other neurodegenerative diseases have a cross beta-sheet structure, where main chain hydrogen bonding occurs between beta-strands in the direction of the fibril axis. The surface of the beta-sheet has pronounced ridges and grooves when the individual beta-strands have a parallel orientation and the amino acids are in-register with one another. Here we show that in Abeta amyloid fibrils, Met35 packs against Gly33 in the C-terminus of Abeta40 and against Gly37 in the C-terminus of Abeta42. These packing interactions suggest that the protofilament subunits are displaced relative to one another in the Abeta40 and Abeta42 fibril structures. We take advantage of this corrugated structure to design a new class of inhibitors that prevent fibril formation by placing alternating glycine and aromatic residues on one face of a beta-strand. We show that peptide inhibitors based on a GxFxGxF framework disrupt sheet-to-sheet packing and inhibit the formation of mature Abeta fibrils as assayed by thioflavin T fluorescence, electron microscopy, and solid-state NMR spectroscopy. The alternating large and small amino acids in the GxFxGxF sequence are complementary to the corresponding amino acids in the IxGxMxG motif found in the C-terminal sequence of Abeta40 and Abeta42. Importantly, the designed peptide inhibitors significantly reduce the toxicity induced by Abeta42 on cultured rat cortical neurons.  相似文献   

12.
Inhibition of fibril assembly is a potential therapeutic strategy in neurodegenerative disorders such as prion and Alzheimer's diseases. Highly branched, globular polymers-dendrimers-are novel promising inhibitors of fibril formation. In this study, the effect of polyamidoamine (PAMAM) dendrimers (generations 3rd, 4th, and 5th) on amyloid aggregation of the prion peptide PrP 185-208 and the Alzheimer's peptide Abeta 1-28 was examined. Amyloid fibrils were produced in vitro and their formation was monitored using the dye thioflavin T (ThT). Fluorescence studies were complemented with electron microscopy. The results show that the higher the dendrimer generation, the larger the degree of inhibition of the amyloid aggregation process and the more effective are dendrimers in disrupting the already existing fibrils. A hypothesis on dendrimer-peptide interaction mechanism is presented based on the dendrimers' molecular structure.  相似文献   

13.
Inhibition of amyloid fibrillogenesis and toxicity by a peptide chaperone   总被引:1,自引:0,他引:1  
Aggregation of proteins in tissues is associated with several diseases, including Alzheimer's disease. It is characterized by the accumulation of amyloid beta peptide (Abeta) in the extracellular spaces of the brain cells, resulting in neuronal death and other pathological changes. alpha-Crystallin, a small heat-shock protein in lens, and a peptide chaperone having the functional site sequence DFVIFLDVKHFSPEDLTVK of alphaA-crystallin may inhibit Abeta fibrillogenesis and toxicity. The peptide chaperone (mini-alphaA-crystallin), having an Abeta interacting domain and a complex solubilizing domain, was shown in previous studies to prevent aggregation of several proteins under denaturing conditions. In this in vitro study, using transmission electron microscopy and thioflavin T binding assay, we show that mini-alphaA-crystallin arrests the fibril formation of Abeta peptides. Mini-alphaA-crystallin also suppresses the toxic action of Abeta on rat pheochromocytoma (PC 12) cells. The wide chaperoning capability of the peptide and its ability to inhibit amyloid fibril formation and suppress toxicity suggest that mini-alphaA-crystallin may serve as a universal chaperone in controlling diseases of protein aggregation, including Alzheimer's disease.  相似文献   

14.
beta-Amyloid peptide (Abeta) is the major constituent of senile plaques, the key pathological feature of Alzheimer's disease. Abeta is physiologically produced as a soluble form, but aggregation of Abeta monomers into oligomers/fibrils causes neurotoxic change of the peptide. In nature, many microorganisms accumulate small molecule chaperones (SMCs) under stressful conditions to prevent the misfolding/denaturation of proteins and to maintain their stability. Hence, it is conceivable that SMCs such as ectoine and hydroxyectoine could be potential inhibitors against the aggregate formation of Alzheimer's Abeta, which has not been studied to date. The current work shows the effectiveness of ectoine and hydroxyectoine on the inhibition of Abeta42 aggregation and toxicity to human neuroblastoma cells. The characterization tools used for this study include thioflavin-T induced fluorescence, atomic force microscopy and cell viability assay. Considering that ectoine and hydroxyectoine are not toxic to cellular environment even at concentrations as high as 100 mM, the results may suggest a basis for the development of ectoines as potential inhibitors associated with neurodegenerative diseases.  相似文献   

15.
Beta-amyloid (Abeta), a peptide generated by proteolytic cleavage of the amyloid precursor protein (APP), is a major constituent of the neuritic plaques associated with Alzheimer's disease (AD). Up-regulation of alpha-secretase, which can hydrolyze Abeta between Lys16 and Leu17, has been proposed as a potential therapeutic strategy in the treatment of AD. Previously, we identified two light-chain antibody fragments that had proteolytic activity against Abeta, one with alpha-secretase-like activity and one with carboxypeptidase-like activity. Here we show that cleavage of Abeta40 by hk14, the light-chain antibody having carboxypeptidase-like activity, alters aggregation of Abeta and neutralizes any cytotoxic effects of the peptide. Cleavage of Abeta40 with c23.5, the light chain having alpha-secretase-like cleavage, substantially increases the aggregation rate of Abeta; however, it does not show any corresponding increase in cytotoxicity. The increase in aggregation resulting from hydrolysis by c23.5 can be attributed to the decreased solubility of the hydrolyzed products relative to the parent Abeta40, primarily the Abeta17-40 fragment. These results demonstrate that antibody fragment mediated proteolytic degradation of Abeta peptide can be a potential therapeutic route to control Abeta aggregation and toxicity in vivo. Our results also suggest that increasing alpha-secretase activity as a therapeutic route must be approached with some caution because this can lead to a substantial increase in aggregation.  相似文献   

16.
Phenylazo benzenesulfonamides were designed and synthesized as beta-amyloid (Abeta40) fibril assembly inhibitors, and evaluated for inhibition of Abeta40 aggregation and neurotoxicity using rat cortical neurons. Compound 2 (LB-152) was the most potent compound in this study, and the para-NMe(2) group on the end of the phenylazo moiety may play an important role in preventing Abeta40 fibril formation. LB-152 provides a new lead for further development of potential beta-amyloid aggregation inhibitors to treat AD.  相似文献   

17.
Extracellular deposits of aggregated amyloid-beta (Abeta) peptides are a hallmark of Alzheimer disease; thus, inhibition of Abeta production and/or aggregation is an appealing strategy to thwart the onset and progression of this disease. The release of Abeta requires processing of the amyloid precursor protein (APP) by both beta- and gamma-secretase. Using an assay that incorporates full-length recombinant APP as a substrate for beta-secretase (BACE), we have identified a series of compounds that inhibit APP processing, but do not affect the cleavage of peptide substrates by BACE1. These molecules also inhibit the processing of APP and Abeta by BACE2 and selectively inhibit the production of Abeta(42) species by gamma-secretase in assays using CTF99. The compounds bind directly to APP, likely within the Abeta domain, and therefore, unlike previously described inhibitors of the secretase enzymes, their mechanism of action is mediated through APP. These studies demonstrate that APP binding agents can affect its processing through multiple pathways, providing proof of concept for novel strategies aimed at selectively modulating Abeta production.  相似文献   

18.
beta-Amyloid (Abeta) is the primary protein component of senile plaques in Alzheimer's disease (AD) and has been implicated in neurotoxicity associated with the disease. Abeta aggregates readily in vitro and in vivo, and its toxicity has been linked to its aggregation state. Prevention of Abeta aggregation has been investigated as a means to prevent Abeta toxicity associated with AD. Recently we found that Hsp20 from Babesia bovis prevented both Abeta aggregation and toxicity [S. Lee, K. Carson, A. Rice-Ficht, T. Good, Hsp20, a novel alpha-crystallin, prevents Abeta fibril formation and toxicity, Protein Sci. 14 (2005) 593-601.]. In this work, we examined the mechanism of Hsp20 interaction with Abeta1-40 and compared its activity to that of other small heat shock proteins, carrot Hsp17.7 and human Hsp27. While all three small heat shock proteins were able to prevent Abeta aggregation, only Hsp20 was able to attenuate Abeta toxicity in cultured SH-SY5Y cells. Understanding the mechanism of the Hsp20-Abeta interaction may provide insights into the design of the next generation of Abeta aggregation and toxicity inhibitors.  相似文献   

19.
scyllo-Inositol has shown promise as a potential therapeutic for Alzheimer's disease, by directly interacting with the amyloid beta (Abeta) peptide to inhibit Abeta42 fiber formation. To explore the molecular details of the inositol-Abeta42 interaction, a series of scyllo-inositol derivatives have been synthesized which contain deoxy, fluoro, chloro, and methoxy substitutions. The effects of these compounds on the aggregation cascade of Abeta42 have been investigated using electron microscopy (EM). EM analyses revealed that the 1-deoxy-1-fluoro- and 1,4-dimethyl-scyllo-inositols significantly inhibit the formation of Abeta42 fibers. The other derivatives showed some alterations in the morphology of the Abeta42 fibers produced. These findings indicate the importance of all of the hydroxyl groups of scyllo-inositol for complete inhibition of Abeta aggregation.  相似文献   

20.
The aggregation of Aβ peptide into amyloid fibrils in the brain is associated with Alzheimer's disease (AD). Inhibition of Aβ aggregation seemed a potential treatment for AD. It was previously shown that a short fragment of Aβ peptide (KLVFF, 16‐20) bound Aβ inhibited its aggregation. In this work, using KLVFF peptide, we synthesized two peptide families and then evaluated their inhibitory capacities by conventional assays such as thioflavin T (ThT) fluorescence spectroscopy, turbidity measurement, and the 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS). The effect of peptide terminal groups on its inhibitory activity was first studied. Subsequently, the influence of halogenated amino acids on peptide anti‐aggregation properties was investigated. We found that iodinated peptide with amine in the N and amide in the C termini, respectively, was the best inhibitor of Aβ fibers formation. Halogenated peptides seemed to decrease the number of Aβ fibrils; however, they did not reduce Aβ cytotoxicity. The data obtained in this work seemed promising in developing potential peptide drugs for treatment of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号