首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major species of glutathione S-transferase (GST), Pugf, was highly purified from pumpkin flowers. Two-dimensional electrophoresis of the purified enzyme gave two adjacent protein spots. The specific activity of the purified enzyme was 2.4 micromol min(-1) mg(-1) protein for 1-chloro-2,4-dinitrobenzene. This value is one to two orders of magnitude lower than that of pumpkin tau-type GSTs. The expression pattern of Pugf in healthy pumpkin plants and responses to various stresses were examined by western blotting. Pugf was found in high concentrations in petioles, stems, and roots as well as flowers, and was more abundant in expanding young organs than in fully expanded mature organs. Dehydration caused a slight increase in its concentration, but high and low temperatures, salty stress, and 2,4-dichlorophenoxyacetic acid seemed to have no effects. A cDNA encoding Pugf was cloned and sequenced. Sequence comparison with other plant GSTs suggested that it should be classified as a phi-type GST.  相似文献   

2.
The effect of esculetin and some related coumarins (coumarin, 7-hydroxycoumarin and scopoletin) on growth of pumpkin (Cucurbita maxima Duch.) seedlings and the activities of pumpkin glutathione S-transferases (GSTs) were investigated. Coumarin and esculetin affected the growth of seedlings. The hypocotyls of affected seedlings became weak and bent at the mid region, roots became very soft with brownish discoloration, and finally seedlings died. Among the compounds tested, only esculetin inhibited CmGSTU3 and CmGSTU2 activities measured with 1-chloro-2,4-dinitrobenzene (CDNB) and at a concentration of 22 μM, it inhibited the activity of CmGSTU3 by 50 %.  相似文献   

3.
4.
5.
Glutathione S-transferases (GSTs; EC 2.5.1.18) are encoded by a gene family. Some GSTs have the capacity to bind to indole-3-acetic acid (IAA), whereas the gene expression of other GSTs is regulated by auxin. In order to assess a possible physiological significance of the auxin binding of GST, we investigated effects of auxins on the activity of GST expressed in Escherichia coli. cDNA cloning was carried out for the fifth gene ( GST5 ) of GST in Arabidopsis. Although the deduced amino acid sequence of GST5 was remotely related to that of the other Arabidopsis GSTs (less than 20% identical), the GST5 protein (GST5) expressed in E. coli showed GST activity. Apparent Km values of GST5 are 0.86 and 1.29 m M for glutathione (GSH) and 1-chloro-2,4-dinitrobenzene, respectively. IAA, 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (1-NAA) and 2-NAA inhibited the enzyme activity competitively with respect to GSH. The apparent Ki of IAA is 1.56 m M . Salicylic acid inhibited GST activity in a noncompetitive manner. 2,4-D was the most inhibitory among the tested chemicals. GST5 bound to GSH-immobilized agarose gel was effectively eluted by IAA. These results indicate that IAA and the related substances bind to GST5 at the GSH-binding site, and exclude the possibility that the compounds could be substrates for GST5. Although the Ki value of IAA is too high for any physiological consequences, it might be assumed that GST activity is modulated in vivo by an auxin-related substance(s). The steady-state level of the GST5 mRNA was increased by wounding, heat shock, and spraying buffer on the plant, but was not influenced by auxin treatment.  相似文献   

6.
7.
8.
Two auxin-inducible glutathione S-transferase (GST, EC 2.5.1.18) isozymes from tobacco (Nicotiana tabacum, White Burley) were partially characterized. GST1-1 and GST2-1 are members of a recently identified new type of plant GST isozymes that we will here refer to as type III. Both enzymes were active, with 1-chloro-2,4-dinitrobenzene as a substrate, when expressed in bacteria as fusion proteins. The apparent Km for 1-chloro-2,4-dinitrobenzene was found to be 0.85 [plus or minus] 0.25 mM for GST1-1 and 0.20 [plus or minus] 0.15 mM for GST2-1. The apparent Km for glutathione was similar for both enzymes, 0.40 [plus or minus] 0.15 mM. The in vitro activity of both enzymes could be inhibited by the synthetic auxin 2,4-dichlorophenoxyacetic acid, with an apparent Ki of 80 [plus or minus] 40 [mu]M for GST1-1 and 200 [plus or minus] 100 [mu]M for GST2-1. The GST1-1 was also inhibited by structurally related substances, such as 2,4-dichlorobenzoic acid, with a roughly similar Ki. The nonchlorinated structures benzoic acid and phenoxyacetic acid did not inhibit. p-Chloroisobutyric acid, or clofibric acid, an auxin-transport inhibitor, was found to be an active inhibitor as well. The strongest inhibitor identified, however, was a phenylacetic acid derivative, ethacrynic acid, which showed an apparent Ki of 5 [plus or minus] 5 [mu]M for both enzymes. This substance is a known inducer as well as a substrate of specific mammalian GSTs. The results presented here indicate that the type III plant GSTs might be involved in the metabolism or transport of chlorinated substances that are structurally related to auxins. The possibility that auxins are endogenous ligands or substrates for GSTs is discussed.  相似文献   

9.
10.
Modulation of GST P1-1 activity by polymerization during apoptosis   总被引:3,自引:0,他引:3  
Glutathione S-transferases (GSTs, EC 2.5.1.18) belong to a large family of functionally different enzymes that catalyze the S-conjugation of glutathione with a wide variety of electrophilic compounds including carcinogens and anticancer drugs. Drug resistance may result from reduction in apoptosis of neoplastic cells when exposed to antineoplastic drugs. The c-Jun N-terminal Kinase (JNK) belongs to the family of stress kinases and has been shown to be required for the maximal induction of apoptosis by DNA-damaging agents. Recently, an inhibition of JNK activity by GST P1-1, which was reversed by polymerization induced by oxidative stress, has been reported in 3T3-4A mouse fibroblast cell lines. The finding that GST P1-1 might inhibit JNK activity and that it is frequently highly expressed in tumor tissues suggests its possible implication in "apoptosis resistance" during antineoplastic therapy. We investigated the modulation of GST P1-1 during apoptosis in a neoplastic T-cell line (Jurkat) induced by hydrogen peroxide and etoposide. Apoptosis was paralleled by the appearance of a dimeric form of GST P1-1 on western blotting, associated with an increase in the Km(GSH) and a reduction in GST P1-1 specific activity toward 1-chloro-2,4-dinitrobenzene, which reached statistical significance only in H(2)O(2)-treated cells. Our data seem to suggest that H(2)O(2) and etoposide may partly act through a process of partial inactivation of the GST P1-1, possibly involving the "G" site in the process of dimerization, and thus favoring programmed cell death.  相似文献   

11.
Glutathione transferases (GSTs) from the tau class (GSTU) are unique to plants and have important roles in stress tolerance and the detoxification of herbicides in crops and weeds. A fluorodifen-induced GST isoezyme (GmGSTU4-4) belonging to the tau class was purified from Glycine max by affinity chromatography. This isoenzyme was cloned and expressed in Escherichia coli, and its structural and catalytic properties were investigated. The structure of GmGSTU4-4 was determined at 1.75 Å resolution in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). The enzyme adopts the canonical GST fold but with a number of functionally important differences. Compared with other plant GSTs, the three-dimensional structure of GmGSTU4-4 primarily shows structural differences in the hydrphobic substrate binding site, the linker segment and the C-terminal region. The X-ray structure identifies key amino acid residues in the hydrophobic binding site (H-site) and provides insights into the substrate specificity and catalytic mechanism of the enzyme. The isoenzyme was highly active in conjugating the diphenylether herbicide fluorodifen. A possible reaction pathway involving the conjugation of glutathione with fluorodifen is described based on site-directed mutagenesis and molecular modeling studies. A serine residue (Ser13) is present in the active site, at a position that would allow it to stabilise the thiolate anion of glutathione and enhance its nucleophilicity. Tyr107 and Arg111 present in the active site are important structural moieties that modulate the catalytic efficiency and specificity of the enzyme, and participate in kcat regulation by affecting the rate-limiting step of the catalytic reaction. A hitherto undescribed ligand-binding site (L-site) located in a surface pocket of the enzyme was also found. This site is formed by conserved residues, suggesting it may have an important functional role in the transfer and delivery of bound ligands, presumably to specific protein receptors.  相似文献   

12.
Glutathione transferases (GSTs) mainly catalyze the nucleophilic addition of glutathione to a large variety of hydrophobic molecules participating to the vacuole compartmentalization of many toxic compounds. In this work, the putative tolerance of transgenic tobacco plants over-expressing CsGSTU genes towards the chloroacetanilide herbicide alachlor was investigated. Our results show that the treatment with 0.0075 mg cm-3 of alachlor strongly affects the growth of both wild type and transformed tobacco seedlings with the sole exception of the transgenic lines overexpressing CsGSTU2 isoform that are barely influenced by herbicide treatment. In order to correlate the in planta studies with enzyme properties, recombinant CsGSTs were in vitro expressed and tested for GST activity using alachlor as substrate. The recombinant GSTU2 enzyme was twice more active than GSTU1 in conjugating alachlor to GSH thus indicating that CsGSTU2 might play a crucial role in the plant defense against the herbicide. Moreover, as a consequence of the infiltration with a bacterial suspension of the P. syringae pv. tabaci, transgenic tobacco plants but not wild type plants bestowed the capability to limit toxic metabolite diffusion through plant tissues as indicated by the absence of chlorotic halos formation. Consequently, the transgenic tobacco plants described in the present study might be utilized for phytoremediation of residual xenobiotics in the environment and might represent a model for engineering plants that resist to pathogen attack.  相似文献   

13.
14.
Glutathione S-transferases (GSTs) from the phi (GSTF) and tau (GSTU) classes are unique to plants and play important roles in stress tolerance and secondary metabolism as well as catalyzing the detoxification of herbicides in crops and weeds. We have cloned and functionally characterized a group of GSTUs from wheat treated with fenchlorazole-ethyl, a herbicide safener. One of these enzymes, TaGSTU4-4, was highly active in conjugating the chemically distinct wheat herbicides fenoxaprop and dimethenamid. The structure of TaGSTU4-4 has been determined at 2.2 A resolution in complex with S-hexylglutathione. This enzyme is the first tau class GST structure to be determined and most closely resembles the omega class GSTs, but without the unique N-terminal extension or active site cysteine. The X-ray structure identifies key amino acid residues in the hydrophobic binding site and provides insights into the substrate specificity of these enzymes.  相似文献   

15.
The expression of different isoenzymes of glutathione transferase (GST), i.e. the cytosolic subunits GSTA1/A2, A3, A4, A5, M1/2, M2 and P1, T2, and the microsomal GST in follicles of different sizes and in corpora lutea from porcine ovary, was investigated by Western blotting. No immunoreactivity was obtained with anti-rat GSTT2 or anti-rat microsomal GST polyclonal antibodies. In contrast, GSTA1/A2, A3, A4, A5, M1/2, M2 and P1 are all expressed in the cytosol from porcine ovaries. In general, the highest levels of these GST isoenzymes were present in the cytosol from corpora lutea, in agreement with measurements of activity towards 1-chloro-2,4-dinitrobenzene. Immunoreactivity with anti-rat GSTP1 was only obtained with follicles. The cytosolic GSTs from follicles and corpora lutea were affinity purified on glutathione-Sepharose and separated by reversed-phase high-performance liquid chromatography in order to quantitate the different subunits. A peak corresponding to the class pi subunit was present in follicles. This peak was also seen with corpora lutea, although at very low level. There were four peaks containing class mu subunits. The remaining peaks were concluded to contain the class alpha subunits, except for two peaks which are suggested to contain proteins other than GSTs. The levels of the different subunits were quantitated on the basis of the areas under the peaks and the relative amounts in follicles of different sizes and in corpora lutea corresponded well with the Western blot analysis.  相似文献   

16.
Esaka M  Fujisawa K  Goto M  Kisu Y 《Plant physiology》1992,100(1):231-237
Ascorbate oxidase expression in pumpkin (Cucurbita spp.) tissues was studied. Specific ascorbate oxidase activities in pumpkin leaf and stem tissues were about 2 and 1.5 times that in the fruit tissues, respectively. In seeds, little ascorbate oxidase activity was detected. Northern blot analyses showed an abundant ascorbate oxidase mRNA in leaf and stem tissues. Fruit tissues had lower levels of ascorbate oxidase mRNA than leaf and stem tissues. Ascorbate oxidase mRNA was not detected in seeds. Specific ascorbate oxidase activity gradually increased during early seedling growth of pumpkin seeds. The increase was accompanied by an increase in ascorbate oxidase mRNA. When ascorbate oxidase activity in developing pumpkin fruits was investigated, the activities in immature fruits that are rapidly growing at 0, 2, 4, and 7 d after anthesis were much higher than those in mature fruits at 14 and 30 d after anthesis. The specific activity and mRNA of ascorbate oxidase markedly increased after inoculation of pumpkin fruit tissues into Murashige and Skoog's culture medium in the presence of an auxin such as 2,4-dichlorophenoxyacetic acid (2,4-D) but not in the absence of 2,4-D. In the presence of 10 mg/L of 2,4-D, ascorbate oxidase mRNA was the most abundant. Thus, ascorbate oxidase is induced by 2,4-D. These results indicate that ascorbate oxidase is involved in cell growth. In pumpkin callus, ascorbate oxidase activity could be markedly increased by adding copper. Furthermore, immunological blotting showed that the amount of ascorbate oxidase protein was also increased by adding copper. However, northern blot analyses showed that ascorbate oxidase mRNA was not increased by adding copper. We suggest that copper may control ascorbate oxidase expression at translation or at a site after translation.  相似文献   

17.
18.
Five glutathione S-transferase (GST, EC 2.5.1.18) forms were purified from human liver by S-hexylglutathione affinity chromatography followed by chromatofocusing, and their subunit structures and immunological relationships to rat liver glutathione S-transferase forms were investigated. They were tentatively named GSTs I, II, III, IV and V in order of decreasing apparent isoelectric points (pI) on chromatofocusing. Their subunit molecular weights assessed on SDS-polyacrylamide gel electrophoresis were 27 (Mr X 10(-3)), 27, 27.7,27 and 26, respectively, (26, 26, 27, 26, and 24.5 on the assumption of rat GST subunit Ya, Yb and Yc as 25, 26.5 and 28, respectively), indicating that all forms are composed of two subunits identical in size. However, it was suggested by gel-isoelectric focusing in the presence of urea that GSTs I and IV are different homodimers, consisting of Y1 and Y4 subunits, respectively, which are of identical Mr but different pI, while GST II is a heterodimer composed of Y1 and Y4 subunits. This was confirmed by subunit recombination after guanidine hydrochloride treatment. GST III seemed to be identical with GST-mu with regard to Mr and pI. GST V was immunologically identical with the placental GST-pi. On double immunodiffusion or Western blotting using specific antibodies to rat glutathione S-transferases, GST I, II and IV were related to rat GST 1-1 (ligandin), GST III(mu) to rat GST 4-4 (D), and GST V (pi) to rat GST 7-7 (P), respectively. GST V (pi) was increased in hepatic tumors.  相似文献   

19.
By BLAST searching a large expressed sequence tag database for glutathione S-transferase (GST) sequences we have identified 25 soybean (Glycine max) and 42 maize (Zea mays) clones and obtained accurate full-length GST sequences. These clones probably represent the majority of members of the GST multigene family in these species. Plant GSTs are divided according to sequence similarity into three categories: types I, II, and III. Among these GSTs only the active site serine, as well as another serine and arginine in or near the "G-site" are conserved throughout. Type III GSTs have four conserved sequence patches mapping to distinct structural features. Expression analysis reveals the distribution of GSTs in different tissues and treatments: Maize GSTI is overall the most highly expressed in maize, whereas the previously unknown GmGST 8 is most abundant in soybean. Using DNA microarray analysis we observed increased expression among the type III GSTs after inducer treatment of maize shoots, with different genes responding to different treatments. Protein activity for a subset of GSTs varied widely with seven substrates, and any GST exhibiting greater than marginal activity with chloro-2,4 dinitrobenzene activity also exhibited significant activity with all other substrates, suggesting broad individual enzyme substrate specificity.  相似文献   

20.
Glutathione S-transferases (GSTs) are multifunctional enzymes present in virtually all organisms. Besides having an essential role in cellular detoxification, they also perform various other functions, including responses in stress conditions and signaling. GSTs are highly studied in plants and animals; however, the knowledge regarding GSTs in cyanobacteria seems rudimentary. In this study, we report the characterization of a highly pH stable GST from the model cyanobacterium- Synechocystis PCC 6803. The gene sll0067 was expressed in Escherichia coli (E. coli), and the protein was purified to homogeneity. The expressed protein exists as a homo-dimer, which is composed of about 20 kDa subunit. The results of the steady-state enzyme kinetics displayed protein’s glutathione conjugation activity towards its class specific substrate- isothiocyanate, having the maximal activity with phenethyl isothiocyanate. Contrary to the poor catalytic activity and low specificity towards standard GST substrates such as 1-chloro-2,4-dinitrobenzene by bacterial GSTs, PmGST B1-1 from Proteus mirabilis, and E. coli GST, sll0067 has broad substrate degradation capability like most of the mammalian GST. Moreover, we have shown that cyanobacterial GST sll0067 is catalytically efficient compared to the best mammalian enzymes. The structural stability of GST was studied as a function of pH. The fluorescence and CD spectroscopy in combination with size exclusion chromatography showed a highly stable nature of the protein over a broad pH range from 2.0 to 11.0. To the best of our knowledge, this is the first GST with such a wide range of pH related structural stability. Furthermore, the presence of conserved Proline-53, structural motifs such as N-capping box and hydrophobic staple further aid in the stability and proper folding of cyanobacterial GST- sll0067.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号