共查询到20条相似文献,搜索用时 0 毫秒
1.
Nielsen CB Petersen M Pedersen EB Hansen PE Christensen UB 《Bioconjugate chemistry》2004,15(2):260-269
The intercalating nucleic acid (INA) presented in this paper is a novel 1-O-(1-pyrenylmethyl)glycerol DNA intercalator that induces high thermal affinity for complementary DNA. The duplex examined contained two INA intercalators, denoted X, inserted directly opposite each other: d(C(1)T(2)C(3)A(4)A(5)C(6)X(7)C(8)A(9)A(10)G(11)C(12)T(13)):d(A(14)G(15)C(16)T(17)-T(18)G(19)X(20)G(21)T(22)T(23)G(24)A(25)G(26)). Unlike most other nucleotide analogues, DNA with INA inserted has a lower affinity for hybridizing to complementary DNA with an INA inserted directly opposite than to complementary unmodified DNA. In this study we used two-dimensional (1)H NMR spectroscopy to determine a high-resolution solution structure of the weak INA-INA duplex. A modified ISPA approach was used to obtain interproton distance bounds from NOESY cross-peak intensities. These distance bounds were used as restraints in molecular dynamics (rMD) calculations. Twenty final structures were generated for the duplex from a B-type DNA starting structure. The root-mean-square deviation (RMSD) of the coordinates for the 20 structures of the complex was 1.95 A. This rather large value, together with broad lines in the area of insertion, reflect the high degree of internal motion in the complex. The determination of the structure revealed that both intercalators were situated in the center of the helix, stacking with each other and the neighboring nucleobases. The intercalation of the INAs caused an unwinding of the helix in the insertion area, creating a ladderlike structure. The structural changes observed upon intercalation were mainly of local character; however, a broadening of the minor groove was found throughout the helix. 相似文献
2.
Controlling nucleic acid secondary structure by intercalation: effects of DNA strand length on coralyne-driven duplex disproportionation 下载免费PDF全文
Small molecules that intercalate in DNA and RNA are powerful agents for controlling nucleic acid structural transitions. We recently demonstrated that coralyne, a small crescent-shaped molecule, can cause the complete and irreversible disproportionation of duplex poly(dA)·poly(dT) into triplex poly(dA)·poly(dT)·poly(dT) and a poly(dA) self- structure. Both DNA secondary structures that result from duplex disproportionation are stabilized by coralyne intercalation. In the present study, we show that the kinetics and thermodynamics of coralyne-driven duplex disproportionation strongly depend on oligonucleotide length. For example, disproportionation of duplex (dA)16·(dT)16 by coralyne reverts over the course of hours if the sample is maintained at 4°C. Coralyne-disproportioned (dA)32· (dT)32, on the other hand, only partially reverts to the duplex state over the course of days at the same temperature. Furthermore, the equilibrium state of a (dA)16·(dT)16 sample in the presence of coralyne at room temperature contains three different secondary structures [i.e. duplex, triplex and the (dA)16 self-structure]. Even the well-studied process of triplex stabilization by coralyne binding is found to be a length-dependent phenomenon and more complicated than previously appreciated. Together these observations indicate that at least one secondary structure in our nucleic acid system [i.e. duplex, triplex or (dA)n self-structure] binds coralyne in a length-dependent manner. 相似文献
3.
An improved algorithm for the display of nucleic acid secondarystructures is presented. It is particularly suitable for largesequence segments and it automatically generates an aestheticallypleasing display of the structure with very limited overlapof strands. Structural similarities in different structuresare conserved in the display thus greatly aiding structuralhomology comparisons. Using the algorithm, we illustrate theeffect of ribosome translocation on the secondary structureof a rat neuropeptide messenger RNA.
Received on September 21, 1987; accepted on October 22, 1987 相似文献
4.
A simple algorithm is presented for the graphic display of nucleic acid secondary structure. Examples of secondary structure displays are given for tRNA, 5S RNA and part of the 16S RNA. Due to its speed, this algorithm could easily be used in conjunction with secondary structure programs which calculate various alternate structures. 相似文献
5.
We report a more efficient and well-defined algorithm for predicting a secondary structure of single-stranded nucleic acid from a primary nucleotide sequence. Using this algorithm, one- and two-dimensional bonding-probability maps of 5S rRNA of thermus thermophilus HB8 were calculated. These maps well express the stability of the secondary structure. 相似文献
6.
The ability to visualize nucleic acid secondary structure has become quite important since the advent of computer prediction and biochemical techniques that depict such structures. Manually drawing the conformations can be quite time consuming and tedious. Thus, the ability to draw with the aid of a computer the secondary structure of nucleic acid molecules is quite advantageous. This paper describes an interactive algorithm that permits one to generate such drawings which may then be used for further analysis and/or publications. 相似文献
7.
Accurate prediction of pseudoknotted nucleic acid secondary structure is an important computational challenge. Prediction algorithms based on dynamic programming aim to find a structure with minimum free energy according to some thermodynamic ("sum of loop energies") model that is implicit in the recurrences of the algorithm. However, a clear definition of what exactly are the loops in pseudoknotted structures, and their associated energies, has been lacking. In this work, we present a complete classification of loops in pseudoknotted nucleic secondary structures, and describe the Rivas and Eddy and other energy models as sum-of-loops energy models. We give a linear time algorithm for parsing a pseudoknotted secondary structure into its component loops. We give two applications of our parsing algorithm. The first is a linear time algorithm to calculate the free energy of a pseudoknotted secondary structure. This is useful for heuristic prediction algorithms, which are widely used since (pseudoknotted) RNA secondary structure prediction is NP-hard. The second application is a linear time algorithm to test the generality of the dynamic programming algorithm of Akutsu for secondary structure prediction.Together with previous work, we use this algorithm to compare the generality of state-of-the-art algorithms on real biological structures. 相似文献
8.
DNA synthesis by cultured lymphocytes: a modified method for measuring 3H-thymidine incorporation 总被引:7,自引:0,他引:7
R M Williams 《Cellular immunology》1973,9(3):435-444
A rapid, convenient and inexpensive method for harvesting lymphocyte cultures and measuring the incorporation of 3H-thymidine into trichloroacetic acid precipitable material has been developed. The basic principle is to adsorb the entire contents of a microculture well onto the cotton applicator portion of a Q-tip, precipitate the DNA, wash away unincorporated 3H-thymidine, and count the remaining 3H in a mixture of scintillation fluid plus detergent. Data presented for mixed lymphocyte cultures between allogeneic rat lymph node cells, mixed lymphocyte cultures of human peripheral blood lymphocytes, Con A stimulated mouse spleen cells, and PHA stimulated mouse spleen cells show the method to be highly reproducible with standard deviations of less than 15% of the mean for quadruplicate mixed lymphocyte cultures and in most cases less than 5% of the mean for duplicate mitogen stimulated cultures. This culture system also gives positive values for PHA stimulated DNA synthetic responses of mouse spleen cells cultured in RPMI-1640 plus penicillin and streptomycin but without exogenous serum. 相似文献
9.
10.
Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure 下载免费PDF全文
Wharam SD Marsh P Lloyd JS Ray TD Mock GA Assenberg R McPhee JE Brown P Weston A Cardy DL 《Nucleic acids research》2001,29(11):e54-E54
The formation of DNA three-way junction (3WJ) structures has been utilised to develop a novel isothermal nucleic acid amplification assay (SMART) for the detection of specific DNA or RNA targets. The assay consists of two oligonucleotide probes that hybridise to a specific target sequence and, only then, to each other forming a 3WJ structure. One probe (template for the RNA signal) contains a non-functional single-stranded T7 RNA polymerase promoter sequence. This promoter sequence is made double-stranded (hence functional) by DNA polymerase, allowing T7 RNA polymerase to generate a target-dependent RNA signal which is measured by an enzyme-linked oligosorbent assay (ELOSA). The sequence of the RNA signal is always the same, regardless of the original target sequence. The SMART assay was successfully tested in model systems with several single-stranded synthetic targets, both DNA and RNA. The assay could also detect specific target sequences in both genomic DNA and total RNA from Escherichia coli. It was also possible to generate signal from E.coli samples without prior extraction of nucleic acid, showing that for some targets, sample purification may not be required. The assay is simple to perform and easily adaptable to different targets. 相似文献
11.
Anna Pasternak Frank J. Hernandez Lars M. Rasmussen Birte Vester Jesper Wengel 《Nucleic acids research》2011,39(3):1155-1164
A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation. 相似文献
12.
Labeled nucleic acid probes are used as diagnostic tools by detecting changes in gene expression upon hybridization to target RNAs or DNAs that are related to specific disease genes. 5-[S-(2, 4-Dinitrophenyl)-thio]-2'-deoxyuridine analog represents an excellent nucleic acid label, containing the DNP group which functions both as a probe and as a precursor for the introduction of a variety of fluorescent groups. This study describes thermal denaturation hybridization experiments with oligonucleotides containing the 5-[S-(2,4-dinitrophenyl)-thio]-2'-deoxyuridine analog. Using molecular modeling techniques, the effects of this analog on the hybrid structure and stability were examined, including (i) analog conformation, (ii) hydrogen bonding, (iii) stacking interactions and (iv) hybrid helical geometry. This analog does not prohibitively affect the hybrid thermal stability and incorporation of the analog does not compromise the structural integrity of the double helix. In particular, the sequence-dependence of the analog effects and the dependence on the modification site relative to the end(s) of the helix were investigated. Findings described here should provide guidelines in the rational design of nucleic acid probes. 相似文献
13.
Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis 总被引:6,自引:0,他引:6
Using sequence data from the 28S ribosomal RNA (rRNA) genes of selected
vertebrates, we investigated the effects that constraints imposed by
secondary structure have on the phylogenetic analysis of rRNA sequence
data. Our analysis indicates that characters from both base-pairing regions
(stems) and non-base-pairing regions (loops) contain phylogenetic
information, as judged by the level of support of the phylogenetic results
compared with a well-established tree based on both morphological and
molecular data. The best results (the greatest level of support of
well-accepted nodes) were obtained when the complete data set was used.
However, some previously supported nodes were resolved using either the
stem or loop bases alone. Stem bases sustain a greater number of
compensatory mutations than would be expected at random, but the number is
< 40% of that expected under a hypothesis of perfect compensation to
maintain secondary structure. Therefore, we suggest that in phylogenetic
analyses, the weighting of stem characters be reduced by no more than 20%,
relative to that of loop characters. In contrast to previous suggestions,
we do not recommend weighting of stem positions by one-half, compared with
that of loop positions, because this overcompensates for the constraints
that selection imposes on the secondary structure of rRNA.
相似文献
14.
15.
A locked nucleic acid (LNA) monomer is a conformationally restricted nucleotide analogue with an extra 2'-O, 4'-C-methylene bridge added to the ribose ring. LNA-modified oligonucleotides are known to exhibit enhanced hybridization affinity toward complementary DNA and RNA. In this work, we have evaluated the hybridization thermodynamics of a series of LNA-substituted DNA octamers, modified to various extents by one to three LNA substitutions, introduced at either adenine (5'-AGCACCAG) or thymine (5'-TGCTCCTG) nucleotides. To understand the energetics, counterion effects, and the hydration contribution of the incorporation of LNA modification, a combination of spectroscopic and calorimetric techniques was used. The CD spectra of the corresponding duplexes showed that the modified duplexes adopt an A-type conformation. UV and DSC melting studies revealed that each type of duplex unfolds in a two-state transition. A complete thermodynamic profile at 5 degrees C indicated that the net effect of modification on thermodynamic parameters might be positional and that the neighboring bases flanking the modification might influence the favorable formation of the modified duplexes. Furthermore, relative to the formation of the unmodified reference duplexes, the formation of modified duplexes is accompanied by a higher uptake of counterions and a lower uptake of water molecules. 相似文献
16.
In situ studies on incorporation of nucleic acid precursors into Chlamydia trachomatis DNA. 总被引:4,自引:6,他引:4 下载免费PDF全文
Chlamydiae are obligate intracellular bacteria that are dependent on eukaryotic host cells for ribonucleoside triphosphates. The purpose of the present study was to determine whether Chlamydia trachomatis obtains deoxyribonucleotides from the host cell. The study was aided by the finding that host and parasite DNA synthesis activity could be distinguished by their differing sensitivities to aphidicolin and norfloxacin. Results from isotope incorporation experiments indicated that any nucleobase or ribonucleoside that could serve as a precursor for host DNA synthesis could also be utilized by C. trachomatis for DNA replication. C. trachomatis utilized only those precursors which the host cell converted to the nucleotide level. Pyrimidine deoxyribonucleotides were efficient precursors for host DNA synthesis; however, they were not used by C. trachomatis. On the other hand, purine deoxyribonucleosides are rapidly catabolized by host cells, it is necessary to regulate their metabolism to determine whether they serve as direct precursors for C. trachomatis DNA synthesis. This was partially achieved by using a hypoxanthine-guanine phosphoribosyltransferase-negative cell line and using deoxycoformycin and 8-aminoguanosine as inhibitors of (deoxy)adenosine deaminase and purine nucleoside phosphorylase, respectively. The results indicated that purine deoxyribonucleosides are efficiently utilized for host cell DNA synthesis even if degradation pathways are inhibited and salvage to ribonucleotides is minimized. In sharp contrast, the purine deoxyribonucleosides were utilized by C. trachomatis as precursors for DNA synthesis only when host catabolic pathways and salvage reactions were intact. High-pressure liquid chromatographic analysis of nucleotide pools extracted from host cells pulsed with radiolabeled precursors suggests that infected cells transport and phosphorylate all deoxynucleosides as effectively as mock-infected control cultures. In aggregate, these results show that chlamydiae do not take up deoxyribonucleotides from the host cells. 相似文献
17.
In recent years, the use of high-level ab initio calculations has allowed for the intrinsic conformational properties of nucleic acid building blocks to be revisited. This has provided new insights into the intrinsic conformational energetics of these compounds and its relationship to nucleic acids structure and dynamics. In this article we review recent developments and present new results. New data include comparison of various levels of theory on conformational properties of nucleic acid building blocks, calculations on the abasic sugar, known to occur in vivo in DNA, on the TA conformation of DNA observed in the complex with the TATA box binding protein, and on inosine. Tests of the Hartree-Fock (HF), second-order M?ller-Plesset (MP2), and Density Functional Theory/Becke3, Lee, Yang and Par (DFT/B3LYP) levels of theory show the overall shape of backbone torsional energy profiles (for gamma, epsilon, and chi) to be similar for the different levels, though some systematic differences are identified between the MP2 and DFT/B3LYP profiles. The east pseudorotation energy barrier in deoxyribonucleosides is also sensitive to the level of theory, with the HF and DFT/B3LYP east barriers being significantly lower (approximately 2.5 kcal/mol) than the MP2 counterpart (approximately 4.0 kcal/mol). Additional calculations at various levels of theory suggest that the east barrier in deoxyribonucleosides is between 3.0 and 4.0 kcal/mol. In the abasic sugar, the west pseudorotation energy barrier is found to be slightly lower than the east barrier and the south pucker is favored more than in standard nucleosides. Results on the TA conformation suggest that, at the nucleoside level, this conformation is significantly destabilized relative to the global energy minimum, or relative to the A- and B-DNA conformations. Deoxyribocytosine would destabilize the TA conformation more than other bases relative to the A-DNA conformation, but not relative to the B-DNA conformation. 相似文献
18.
Zhang AM Huang J Weng XC Li JX Ren LG Song ZB Xiong XQ Zhou X Cao XP Zhou Y 《化学与生物多样性》2007,4(2):215-223
The interaction between CT-DNA and the zinc phthalocyanine ZnPc (1) was studied by UV/VIS and fluorescence titration, as well as by thermal denaturation. ZnPc was found to strongly bind to CT-DNA (K(app)=7.35 x 10(5) M(-1)) in a non-intercalative mode. The photosensitized cleavage of pBR322 DNA was found to efficiently proceed via singlet-oxygen ((1)O(2)) production. Further, ZnPc (1) caused site-specific scission of guanine (G) bases around the bulge of the hairpin oligonucleotides OD1-OD3, as clearly shown by gel-electrophoresis experiments. 相似文献
19.
20.
The reversibility of alkylation by a quinone methide intermediate (QM) avoids the irreversible consumption that plagues most reagents based on covalent chemistry and allows for site specific reaction that is controlled by the thermodynamics rather than kinetics of target association. This characteristic was originally examined with an oligonucleotide QM conjugate, but broad application depends on alternative derivatives that are compatible with a cellular environment. Now, a peptide nucleic acid (PNA) derivative has been constructed and shown to exhibit an equivalent ability to delivery the reactive QM in a controlled manner. This new conjugate demonstrates high selectivity for a complementary sequence of DNA even when challenged with an alternative sequence containing a single T/T mismatch. Alternatively, alkylation of noncomplementary sequences is only possible when a template strand is present to colocalize the conjugate and its target. For efficient alkylation in this example, a single-stranded region of the target is required adjacent to the QM conjugate. Most importantly, the intrastrand self-adducts formed between the PNA and its attached QM remained active and reversible over more than 8 days in aqueous solution prior to reaction with a chosen target added subsequently. 相似文献