首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
5.
6.
7.
Apolipoprotein E (apoE) is a multifunctional protein that is highly expressed in human and murine adipose tissue. Endogenous adipocyte apoE expression influences adipocyte triglyceride turnover and modulates the expression of genes involved in lipid synthesis and oxidation. We now demonstrate the regulation of adipose tissue apoE expression by nutritional status in lean and obese mice. Obesity induced by high-fat diet, or by hyperphagia in ob/ob mice, produces significant reduction of adipose tissue apoE expression at the protein and messenger RNA level. Fasting in C57BL/6J mice for 24 h significantly increased apoE protein and messenger RNA levels. In ob/ob mice, transplantation of adipose tissue from lean littermate controls to restore circulating leptin levels produced significant weight loss over 12 wk and also produced an increase in adipose tissue apoE expression. The increase in adipose tissue apoE expression in this model, however, did not require leptin. Adipose tissue apoE was also significantly increased in ob/ob mice after a 48-h fast or after 7 days of caloric restriction. In summary, obesity suppresses adipose tissue apoE expression, whereas fasting or weight loss increases it. From our previous observations, these changes in adipose tissue apoE expression will have significant impact on adipose tissue lipid flux and lipoprotein metabolism. Furthermore, these results suggest adipose tissue apoE participates in defending adipose tissue and organismal energy homeostasis in response to nutritional perturbation.  相似文献   

8.
Adrenomedullin (AM) is a potent vasodilating peptide originally isolated from human pheochromocytoma cells. This report concerns the expression and secretion of AM from adipose tissue. Northern blot analysis demonstrated marked expression of AM mRNA in mouse adipose tissue. Expression levels in adipose tissues were 2.5-3.2 times higher than in the kidney. AM mRNA level in mature adipocytes was 7.3 times higher than in the stroma-vascular fraction of adipose tissue. In mature adipocyte culture, time-dependent increase of AM peptide concentration in the culture medium was detected. AM expression was also detected in human subcutaneous adipose tissue. Adipose AM expression significantly increased in obesity mouse model, high-fat diet fed mice and ob/ob mice. These results suggest that adipose tissue, especially mature adipocytes, is major source of AM in the body, and that adipocyte-derived AM plays a pathophysiological role in obesity.  相似文献   

9.
10.
Objective: Adipocytes secrete various cytokines and matrix proteins. Several of them precipitate in obesity‐associated diseases, including atherosclerosis. In the current study, we have examined the expression of secreted protein, acidic and rich in cysteine (SPARC) in adipose tissue and its significance in obesity and coronary artery disease (CAD). Research Methods and Procedures: The SPARC mRNA expressions both in vivo and in vitro were detected by Northern blot analysis. Plasma SPARC concentrations were measured by enzyme immunosorbent assay. First, we investigated the plasma SPARC levels of 88 unrelated adult Japanese subjects (62 men and 26 women; average age: [± SD] 50 ± 12 years; body mass index [BMI]: 16 to 46 kg/m2). Additionally 31 subjects with CAD diagnosed by coronary angiography (20 men and 11 women) were also investigated. Results: Human adipose tissues expressed abundant SPARC mRNA. SPARC expression in adipose tissues was upregulated in obese db/db mice. Markedly enhanced expression of SPARC mRNA was observed in 3T3‐L1 fibroblasts during adipocyte differentiation. Consistent with these results, plasma SPARC levels proved a positive correlation with BMI in humans (r = 0.27; p < 0.01). Interestingly, plasma SPARC concentrations were significantly elevated in age‐ and BMI‐matched subjects with CAD (p < 0.05). Discussion: SPARC was expressed in adipose tissues and its expression was enhanced in obese mice. In human, plasma SPARC levels were elevated in obesity and CAD patients. This elevated SPARC may be involved in the progression of CAD.  相似文献   

11.
The expression and potential functional role of aggrecan in adipogenesis and adipose tissue development was investigated in murine models of obesity. Aggrecan, as well as the two aggrecanases ADAMTS-4 and ADAMTS-5 (A Disintegrin And Metalloproteinase with Thrombospondin motif) mRNAs, are expressed in subcutaneous (SC) and gonadal (GON) adipose tissues of mice. Their presence was confirmed by western blotting using adipose tissue extracts. In mice with nutritionally induced obesity (high fat diet) as well as in lean controls, aggrecan mRNA expression was downregulated whereas ADAMTS-4 and ADAMTS-5 were upregulated with time. In mice with genetically determined obesity (ob/ob), ADAMTS-5 mRNA was upregulated in both SC and GON adipose tissues, as compared to wild-type (WT) mice (p<0.001). Enhanced aggrecanase expression levels in these tissues were associated with significantly elevated levels of G1-NITEGE, a degradation product of aggrecan. Thus, aggrecan levels were high at the early stages of adipose tissue development in mice, whereas its production decreased and its degradation increased during development of obesity. A functional role of aggrecan in promoting early stages of adipogenesis is supported by the findings that it stimulated the in vitro differentiation of 3T3-F442A preadipocytes and the de novo in vivo accumulation of fat in Matrigel plaques injected into WT mice. Proteoglycans in the extracellular matrix of adipose tissue, such as aggrecan, may contribute to the regulation of lipid uptake and obesity in mice.  相似文献   

12.
13.
Elevated levels of the hormone resistin, which is secreted by fat cells, are proposed to cause insulin resistance and to serve as a link between obesity and type 2 diabetes. In this report we show that resistin expression is significantly decreased in the white adipose tissue of several different models of obesity including the ob/ob, db/db, tub/tub, and KKA(y) mice compared with their lean counterparts. Furthermore, in response to several different classes of antidiabetic peroxisome proliferator-activated receptor gamma agonists, adipose tissue resistin expression is increased in both ob/ob mice and Zucker diabetic fatty rats. These data demonstrate that experimental obesity in rodents is associated with severely defective resistin expression, and decreases in resistin expression are not required for the antidiabetic actions of peroxisome proliferator-activated receptor gamma agonists.  相似文献   

14.
Monocyte chemoattractant protein-1 (MCP-1), an important chemokine whose expression is increased during the course of obesity, plays a role in macrophage infiltration into obese adipose tissue. This study was designed to elucidate the role of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in the induction of MCP-1 during the course of adipocyte hypertrophy. We examined the time course of MKP-1 and MCP-1 mRNA expression and extracellular signal-regulated kinase (ERK) phosphorylation in the adipose tissue from mice rendered mildly obese by a short term high fat diet. We also studied the role of MKP-1 in the induction of MCP-1 in 3T3-L1 adipocytes during the course of adipocyte hypertrophy. MCP-1 mRNA expression was increased, followed by ERK activation and down-regulation of MKP-1, an inducible dual specificity phosphatase to inactivate ERK, in the adipose tissue at the early stage of obesity induced by a short term high fat diet, when macrophages are not infiltrated. Down-regulation of MKP-1 preceded ERK activation and increased production of MCP-1 in 3T3-L1 adipocytes in vitro during the course of adipocyte hypertrophy. Adenovirus-mediated restoration of MKP-1 in hypertrophied 3T3-L1 adipocytes reduced the otherwise increased ERK phosphorylation, thereby leading to the significant reduction of MCP-1 mRNA expression. This study provides evidence that the down-regulation of MKP-1 is critical for increased production of MCP-1 during the course of adipocyte hypertrophy.  相似文献   

15.
In support of leptin's physiological role as humoral signal of fat mass, we have shown that adipocyte volume is a predominant determinant of leptin mRNA levels in anatomically distinct fat depots in lean young mice in the postabsorptive state. In this report, we investigated how obesity may affect the relationship between leptin mRNA levels and adipocyte volume in anatomically distinct fat depots in mice with genetic (Lep(ob)/Lep(ob) and A(y)/+), diet-induced, and aging-related obesity. In all of the obese mice examined, tissue leptin mRNA levels relative to the average adipocyte volume were lower in the perigonadal and/or retroperitoneal than in the inguinal fat depots and were lower than those of the lean young mice in the perigonadal fat depot. A close, positive correlation between leptin mRNA level and adipocyte volume was present from small to hypertrophic adipocytes within each perigonadal and inguinal fat pad in the obese mice, but the slopes of the regression lines relating leptin mRNA level to adipocyte volume were significantly lower in the perigonadal than in the inguinal fat pads of the same mice. These results suggest that obesity per se is associated with a decreased leptin gene expression per unit of fat mass in mice and that the positive correlation between leptin mRNA level and adipocyte volume is an intrinsic property of adipocytes that is not disrupted by adipocyte hypertrophy in obese mice.  相似文献   

16.
Oxidative stress and low-grade inflammation have been implicated in obesity and insulin resistance. As a selenium transporter, ubiquitously expressed selenoprotein P (SeP) is known to play a role in the regulation of antioxidant enzyme activity. However, SeP expression and regulation in adipose tissue in obesity and its role in inflammation and adipocyte biology remain unexplored. In this study, we examined Sepp1 gene expression and regulation in adipose tissue of obese rodents and characterized the role of Sepp1 in adipose inflammation and adipogenesis in 3T3-L1 adipocytes. We found that Sepp1 gene expression was significantly reduced in adipose tissue of ob/ob and high-fat diet-induced obese mice as well as in primary adipose cells isolated from Zucker obese rats. Rosiglitazone administration increased SeP protein expression in adipose tissue of obese mice. Treatment of either TNFα or H(2)O(2) significantly reduced Sepp1 gene expression in a time- and dose-dependent manner in 3T3-L1 adipocytes. Interestingly, Sepp1 gene silencing resulted in the reduction in glutathione peroxidase activity and the upregulation of inflammatory cytokines MCP-1 and IL-6 in preadipocytes, leading to the inhibition of adipogenesis and adipokine and lipogenic gene expression. Most strikingly, coculturing Sepp1 KD cells resulted in a marked inhibition of normal 3T3-L1 adipocyte differentiation. We conclude that SeP has an important role in adipocyte differentiation via modulating oxidative stress and inflammatory response.  相似文献   

17.
Obesity increases the risk for metabolic and cardiovascular disease, and adipose tissue plays a central role in this process. Ceramide, the key intermediate of sphingolipid metabolism, also contributes to obesity-related disorders. We show that a high fat diet increased ceramide levels in the adipose tissues and plasma in C57BL/6J mice via a mechanism that involves an increase in gene expression of enzymes mediating ceramide generation through the de novo pathway (e.g. serine palmitoyltransferase) and via the hydrolysis of sphingomyelin (acid sphingomyelinase and neutral sphingomyelinase). Although the induction of total ceramide in response to the high fat diet was modest, dramatic increases were observed for C16, C18, and C18:1 ceramides. Next, we investigated the relationship of ceramide to plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of plasminogen activation and another key player in obesity. PAI-1 is consistently elevated in obesity and thought to contribute to increased artherothrombotic events and more recently to obesity-mediated insulin resistance. Interestingly, the changes in ceramide were attenuated in mice lacking PAI-1. Mechanistically, mice lacking PAI-1 were protected from diet-induced increase in serine palmitoyltransferase, acid sphingomyelinase, and neutral sphingomyelinase mRNA, providing a mechanistic link for decreased ceramide in PAI-1-/- mice. The decreases in plasma free fatty acids and adipose tumor necrosis factor-alpha in PAI-1-/- mice may have additionally contributed indirectly to improvements in ceramide profile in these mice. This study has identified a novel link between sphingolipid metabolism and PAI-1 and also suggests that ceramide may be an intermediary molecule linking elevated PAI-1 to insulin resistance.  相似文献   

18.
Long chain fatty acid transport is selectively up-regulated in adipocytes of Zucker fatty rats, diverting fatty acids from sites of oxidation toward storage in adipose tissue. To determine whether this is a general feature of obesity, we studied [(3)H]oleate uptake by adipocytes and hepatocytes from 1) homozygous male obese (ob), diabetic (db), fat (fat), and tubby (tub) mice and from 2) male Harlan Sprague-Dawley rats fed for 7 weeks a diet containing 55% of calories from fat. V(max) and K(m) were compared with controls of the appropriate background strain (C57BL/6J or C57BLKS) or diet (13% of calories from fat). V(max) for adipocyte fatty acid uptake was increased 5-6-fold in ob, db, fat, and tub mice versus controls (p < 0.001), whereas no differences were seen in the corresponding hepatocytes. Similar changes occurred in fat-fed rats. Of three membrane fatty acid transporters expressed in adipocytes, plasma membrane fatty acid-binding protein mRNA was increased 9-11-fold in ob and db, which lack a competent leptin/leptin receptor system, but was not increased in fat and tub, i.e. in strains with normal leptin signaling capability; fatty acid translocase mRNA was increased 2.2-6.5-fold in tub, ob, and fat adipocytes, but not in db adipocytes; and only marginal changes in fatty acid transport protein 1 mRNA were found in any of the mutant strains. Adipocyte fatty acid uptake is generally increased in murine obesity models, but up-regulation of individual transporters depends on the specific pathophysiology. Leptin may normally down-regulate expression of plasma membrane fatty acid binding protein.  相似文献   

19.
Leucine-rich glioma inactivated 3 (LGI3) is a secreted protein and a member of LGI/epitempin family. We previously showed that LGI3 was highly expressed in brain and played regulatory roles in neuronal exocytosis and differentiation. Besides the nervous system, LGI3 was shown to be expressed in diverse tissues. In this study, we found that LGI3 and its receptor candidate ADAM23 were expressed in adipose tissues and 3T3-L1 cells. 3T3-L1 preadipocytes secreted a 60-kDa protein, a major secreted form of LGI3, which declined with adipocyte differentiation. LGI3 was also expressed in adipose tissue macrophages in the ob/ob mice and in macrophage cell line. The 60-kDa LGI3 protein was selectively increased in the ob/ob adipose tissues comparing with the lean mice. Pull-down experiments, coimmunoprecipitation and immunocytochemistry indicated that LGI3 associated with ADAM23 in adipose tissues and 3T3-L1 cells. Knockdown of LGI3 or ADAM23 by siRNA increased adipogenesis in 3T3-L1 cells. Treatment with LGI3 protein did not affect preadipocyte proliferation but attenuated adipogenesis and this effect was reversed by siRNA-mediated knockdown of ADAM23. Taken together, we propose that LGI3 may be a candidate adipokine that is perturbed in obesity and suppresses adipogenesis through its receptor, ADAM23.  相似文献   

20.
Objective: Secreted protein acidic and rich in cysteine (SPARC) is expressed in most tissues and is also secreted by adipocytes. The associations of SPARC mRNA expression in visceral adipose tissue (VAT), subcutaneous abdominal adipose tissue (SAT), serum SPARC concentration, and metabolic parameters in Korean women are investigated. Design and Methods: This is a cross‐sectional study. Fifty‐eight women were recruited, of whom 15 women who underwent bariatric surgery for morbid obesity (BMI mean ± SD: 40.2±5.7 kg/m2), 16 who underwent metabolic surgery for type 2 diabetes (BMI: 28.9±4.5 kg/m2), and, as a control group, 27 who underwent gynecological surgery (BMI: 22.7±2.4 kg/m2). Anthropometric variables, metabolic parameters, SPARC mRNA expression in adipose tissue, and serum SPARC concentration were measured. Results: In all subjects, SPARC mRNA expression was significantly higher in SAT than in VAT. Serum SPARC concentrations (mean ± SE) in morbidly obese subjects, subjects with type 2 diabetes, and normal weight subjects were 267.3±40.2 ng/mL, 130.4±33.0 ng/mL, and 53.1±2.8 ng/mL, respectively. SPARC mRNA in SAT was significantly correlated with BMI, whereas SPARC mRNA in VAT was significantly correlated with BMI and VAT area. Serum SPARC concentration was significantly correlated with BMI, waist circumference, total adipose tissue area, and SAT area. After BMI adjustment, serum SPARC concentration was significantly correlated with fasting insulin concentration and HOMA‐IR score. Multivariate regression analysis showed that BMI and HOMA‐IR were independently associated with serum SPARC concentration. Conclusions: Serum SPARC concentration is significantly correlated with obesity indices and might be influenced by insulin resistance. These findings suggest that SPARC may contribute to the metabolic dysregulation associated with obesity in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号