共查询到19条相似文献,搜索用时 78 毫秒
1.
大气氮沉降对阔叶林红壤淋溶水化学模拟研究 总被引:7,自引:0,他引:7
在氮饱和的森林生态系统中,氮沉降的增加将导致NO3-淋溶的增加及土壤酸度的提高,从而影响土壤质量及林业的可持续发展。然而,大气氮沉降对我国南方红壤地区森林生态系统中土壤的影响研究还很少,尤其是氮沉降引起的土壤淋溶液化学组成方面。研究中,以中国科学院红壤生态实验站林草生态试验区阔叶林红壤为对象,在恒温(20℃)条件下,通过土壤淋洗柱(直径10cm、高60cm)进行了8个月间隙性淋溶试验,来模拟研究不同氮输入量(0、7.8、26mg月-1.柱-1和52mg月-1柱-1)对阔叶林红壤NO3-、NH4 、SO42-、H 和土壤盐基离子(Ca2 、Mg2 、K 和Na )的淋溶和土壤酸度的影响。结果表明,随氮输入量增加,淋溶液中NO3-、EC、H 和总盐基离子逐渐增加,但淋溶液中无NH4 。不同氮处理时,土壤有机氮总表观矿化量分别为189.6、263.9、372.8mg月-1.柱-1与554.2mg柱-1,氮输入明显促进了土壤有机氮的矿化,且土壤有机氮的表观矿化量与氮输入量间呈正线性相关(R2=0.997**)。无氮(0mg月-1柱-1)、低氮(7.8mg月-1柱-1)、中氮(26mg月-1柱-1)和高氮(52mg月-1柱-1)输入处理下,土壤交换态盐基淋溶总量分别占土壤交换性盐基总量的13.6、18.4、27.7%和48.1%。不同的盐基离子对氮输入的反应不同,Ca2 和Mg2 淋溶量随氮输入量的增加而增加,对Na 和K 则无明显影响。土壤交换态离子中随淋洗液输出最多的为Ca2 (无氮、低氮、中氮和高氮输入处理的土壤交换态输出量占土壤交换态的比例分别为22.6、31.4、46.7%和82.5%),其次为Na (无氮、低氮、中氮和高氮输入处理的土壤交换态输出量占土壤交换态的比例分别为16.0、10.7、17.6%和26.3%),最少的为Mg2 (无氮、低氮、中氮和高氮输入处理的土壤交换态输出量占土壤交换态的比例分别为5.0、6.9、11.1%和16.9%),几乎没有土壤交换性K 输出。与对照相比,有氮处理后土壤中硫酸根离子的淋失量明显减少(p<0.05)。表层土壤pH值随氮输入量的增加而显著下降,各处理间差异极显著(p<0.01)。可见,大气氮沉降的增加将加速阔叶林红壤的养分淋失和土壤酸化的程度。 相似文献
2.
长期氮(N)沉降诱导了土壤养分失衡, 深刻影响着森林生态系统养分循环过程、生态功能及其可持续发展。前期研究发现N沉降下西南森林树木生长受到不同程度的磷(P)限制, 而土壤微生物是否表现出与植物养分限制特征协同的响应仍未明确。基于此, 该研究以西南山地典型人工针叶林——华山松(Pinus armandii)林为对象, 通过野外原位模拟N沉降实验, 测定了土壤有效养分供给、土壤微生物生物量(碳(C)、N、P)含量以及胞外酶活性, 结合生态酶化学计量的3种模型(比值模型、矢量分析模型与阈值元素比率模型)验证森林根际/非根际土壤中微生物是否受P养分限制。结果表明: (1) N添加下两个土壤位置(根际和非根际土壤)酸性磷酸酶(AP)活性分别显著升高52.5%和53.2%, 导致土壤酶活性N:P分别降低7.8%和4.8%; (2)矢量模型分析发现N添加下两个土壤位置的矢量角度均大于45°, 根际土壤和非根际土壤的矢量角度分别为52.2°和49.0°; (3) N添加下两个土壤位置C:P阈值(TERC:P)显著降低, 导致C:P阈值与土壤有效C:P的比值(TERC:P/AvC:P)远小于1, 且根际土壤表现更明显。综上所述, 3个模型均表明N沉降加剧了土壤微生物代谢的P限制, 且根际土壤微生物P限制程度更强, 这与土壤和微生物养分含量及其化学计量特征密切相关。该研究结果可为全球气候变化下森林生态系统的适应性管理提供重要科学依据。 相似文献
3.
模拟氮沉降增加对寒温带针叶林土壤 CO2排放的初期影响 总被引:1,自引:0,他引:1
研究大气氮沉降增加情景下北方森林土壤CO2排放通量及其相关控制因子至关重要。在大兴安岭寒温带针叶林区建立了大气氮沉降模拟控制试验,利用静态箱-气相色谱法测定土壤CO2排放通量,同时测定土壤温度、水分、无机氮和可溶性碳含量等相关变量,分析寒温带针叶林土壤CO2排放特征及其主要驱动因子。结果表明:氮素输入没有显著改变森林土壤含水量,但降低了有机层土壤溶解性无机碳(DIC)含量,并增加有机层和矿质层土壤溶解性有机碳(DOC)含量。增氮短期内不影响土壤NH+4-N含量,但促进了土壤NO-3-N的累积。增氮倾向于增加北方森林土壤CO2排放。土壤CO2通量主要受土壤温度驱动,其次为土壤水分和DIC含量。虽然土壤温度整体上控制着土壤CO2通量的季节变化格局,但在生长旺季土壤含水量对其影响更为明显。在分析增氮对土壤CO2通量的净效应时,除了土壤温度和水分外,还要考虑土壤有效碳、氮动态的影响。 相似文献
4.
为探讨氮沉降对典型阔叶红松(Pinus koraiensis)林的影响,从2008年6月~2010年8月进行了人工模拟氮沉降实验,实验分为对照、低N、中N、高N4个处理,每个处理3个重复。所施氮肥为CO(NH2)2,以溶液的形式喷施,4个处理浓度分别为0、30、60、120 kg·hm-2·a-1。在氮沉降进行1年后,采集各处理0~20、20~40和40~60 cm的土壤样品,测定其土壤有机C、全N、碱解N和速效P、速效K。结果表明:相同处理下,有机C和全N含量随土层的加深均逐渐减少。总体上低、中N处理显著增加了土壤有机C、碱解N和速效K含量,中、高N处理显著降低了土壤速效P含量(P0.05),而对全N含量影响不显著(P0.05)。土壤有机C与土壤全N、碱解N、速效P、速效K之间存在极显著正相关关系(P0.001)。有机C和土壤养分对氮沉降的响应说明氮沉降在短期内可能影响阔叶红松林土壤碳库积累和土壤肥力水平。 相似文献
5.
为研究氮沉降对植物养分平衡的影响,对1a生杉木(Cunninghamia lanceolata(Lamb.)Hook.)幼苗进行了室内模拟试验。以NH4NO3作为外加氮源,设计了N0(0 g N m-2?a-1)、N1(6 g N m-2?a-1)、N2(12 g N m-2?a-1)、N3(24 g N m-2?a-1)和N4(48g N m-2?a-1)等5种氮沉降水平,每处理重复6次。通过1a的试验发现,杉木幼苗叶、茎、粗根和细根中的N、K、Mg含量随氮处理水平的增加而上升,但Ca在各器官中的含量则呈下降趋势;中低氮(N1,N2)对叶、茎和粗根中P的含量表现为促进作用,而高氮(N3,N4)则表现为抑制作用。幼苗各器官中的N与其他养分元素的比值随氮处理水平的增加而普遍升高,但粗根中的N/K、N/Mg则表现为下降。与对照(N0)相比,在N1、N2、N3、N4处理中,幼苗对外加氮素的表观利用率分别为60.7%、57.9%、43.3%和27.9%,随氮处理水平增加,利用率呈明显下降趋势。随着氮处理水平的增加,幼苗体内的氮分配到叶和细根中的比例增加,而分配到茎和粗根中的比例下降。因此,氮沉降明显增加了杉木幼苗各器官的氮含量,影响了幼苗的养分平衡。 相似文献
6.
模拟氮沉降对荆条灌木“肥岛”土壤养分的影响 总被引:1,自引:0,他引:1
氮沉降的增加,可能会对土壤养分造成更为显著的影响,目前关于大气氮沉降对植物"肥岛"效应中土壤养分的影响鲜有报道。于河南省太行山南麓地区,以NH_4NO_3为供施氮源,按土层深度采集土样,以模拟氮沉降方法(3个水平,无氮CK、低氮2g N m~(-2)a~(-1)处理、中氮12g N m~(-2)a~(-1)处理和高氮24g N m~(-2)a~(-1)处理),分析了氮沉降对太行山荆条灌木(Vitex negundo L.var.)"肥岛"土壤中有机质、全氮和速效磷含量的影响。结果表明:灌木"肥岛"中全氮和速效磷含量,总体表现出随氮沉降量增长而增加的趋势;氮沉降显著增加了土壤表层有机质、氮、磷的含量;高氮沉降与CK相比引起的各土层间养分差异更显著;随着氮沉降水平的增加,冠幅内外和土层间养分差异增大,土壤养分的增长率随之加大;氮沉降在一定程度内加剧了"肥岛"的富集效应,且氮沉降量越大,这种富集效应越显著。这些研究结果可为研究灌木"肥岛"对外源氮的响应机制及保育作用提供参考。 相似文献
7.
红壤旱坡地农田生态系统养分循环和平衡 总被引:39,自引:5,他引:39
通过田间定位试验从生态系统的角度比较研究了中亚热带红壤低丘岗地几种主要旱坡地农田生态系统的水土流失、养分循环和平衡特征、土壤养分消长动态及空间分异,结果表明:水土流失是红壤旱坡地生态系统养分损失的重要途径之一,固体径流具有养分富集现象,速效养分损失以地表径流为主,水土流失养分损失量大小顺序为:有机碳>全钾>速效钾>全氮>全磷>水解氮>速效磷;免耕覆盖和垄作能显著减少水土流失及养分损失量;红壤旱地淋溶也是养分,尤其是氮素损失的重要途径;在养分平衡有盈余状况下,土壤养分水平是可以逐步提高的,其中,土壤速效磷、速效钾提高的速度较快,土壤全氮、有机质和全磷也有所提高,但仍处于较低水平;复合农林系统中,土壤养分存在明显的空间分异,农作物区域由于养分投入较高,土壤养分水平明显高于林木区域。 相似文献
8.
杉木人工林凋落物生态化学计量与土壤有效养分对长期模拟氮沉降的响应 总被引:2,自引:0,他引:2
凋落物分解的快慢和养分释放的速度决定了生态系统中土壤有效养分的供应。探讨全球变化条件下森林生态系统凋落物与土壤养分的变化规律,有利于深入认识凋落物-土壤相互作用的养分调控因素,从而揭示生态系统C、N、P循环。通过模拟氮沉降增加试验,分4个水平处理,分别为0、60、120、240 kg N hm~(-2)a~(-1)。模拟氮沉降13年后,分析了杉木人工林凋落物中不同组分(落叶、落枝、落果)生态化学计量与土壤有效养分(有效氮、碱解氮、速效磷、速效钾)的关系。结果表明:氮沉降(N1、N2和N3)显著提高了落叶和落枝的N含量,平均增幅分别为35.27%和32.21%;高水平氮沉降(N3)处理显著降低了落叶和落枝的C/N,平均降幅分别为25.95%和22.32%,但N3增加了落枝和落果N/P,平均增幅分别为38.4%和31.7%;氮沉降对凋落物各组分的C、P和C/P均影响不显著。氮沉降处理显著增加了土壤NO_3~--N和NH_4~+-N含量,均表现为N3N2N1N0,其中NO_3~--N含量更容易受氮沉降处理的影响,表现为更大的增幅。N2显著增加0—20 cm土层的碱解氮含量,N1显著降低0—20 cm土层的速效钾,但氮沉降对速效磷含量没有影响。凋落物生态化学计量与土壤有效养分之间的Pearson相关和冗余分析(RDA)表明,凋落物生态化学计量与土壤有效养分之间关系紧密,凋落物P含量(蒙特卡罗检验,P=0.018)和C/P比值(P=0.037)对土壤有效养分影响显著。凋落物中C/N比值、C/P比值与土壤有效养分呈显著负相关,其比值越高越不利于土壤有效养分的累积。 相似文献
9.
刘建才;陈金玲;金光泽 《植物研究》2014,34(1):121-130
为探讨氮沉降对典型阔叶红松(Pinus koraiensis)林的影响,从2008年6月~2010年8月进行了人工模拟氮沉降实验,实验分为对照、低N、中N、高N4个处理,每个处理3个重复。所施氮肥为CO(NH2)2,以溶液的形式喷施,4个处理浓度分别为0、30、60、120 kg·hm-2·a-1。在氮沉降进行1年后,采集各处理0~20、20~40和40~60 cm的土壤样品,测定其土壤有机C、全N、碱解N和速效P、速效K。结果表明:相同处理下,有机C和全N含量随土层的加深均逐渐减少。总体上低、中N处理显著增加了土壤有机C、碱解N和速效K含量,中、高N处理显著降低了土壤速效P含量(P<0.05),而对全N含量影响不显著(P>0.05)。土壤有机C与土壤全N、碱解N、速效P、速效K之间存在极显著正相关关系(P<0.001)。有机C和土壤养分对氮沉降的响应说明氮沉降在短期内可能影响阔叶红松林土壤碳库积累和土壤肥力水平。 相似文献
10.
目前,高寒草甸对全球温室效应的贡献仍具有不确定性,而随着N沉降的增加,该系统温室体气排放也必将发生变化。为揭示高寒草甸对N沉降的响应机制,探讨其对全球变化的反馈作用,利用人工添加氮素的方法,于2014年生长季(6-9月)在那曲地区那曲县设置不同水平N添加梯度(0、7、20kg hm~(-2)a~(-1)和40 kg hm~(-2)a~(-1)),模拟氮沉降增加对藏北高寒草甸温室气体排放的影响。经过1a的研究结果表明:1)施氮显著促进了CO_2排放但对CH_4的吸收和N_2O的排放无显著影响。总体而言,添加氮素明显增加了温室气体排放总量,其中N2O处理下高寒草甸温室气体排放总量最高。2)回归分析结果表明,CO_2与NPP(总生物量)和TOC(土壤有机碳)线性相关(P0.05),而与TN(总氮)、NH_4~+-N和NO_3~--N均无显著相关关系(P0.05),CH_4与TN/NPP/TOC/NH_4~+-N/NO_3~--N均不相关(P0.05),N_2O与NPP/TOC/NO_3~--N均显著线性相关(P0.05),而与TN/NH_4~+-N不相关。综合初步研究结果,未来氮沉降增加条件下,藏北高寒草甸温室气体排放通量将有可能明显增加,从而对气候变化产生重要的反馈作用。 相似文献
11.
De Schrijver A Geudens G Augusto L Staelens J Mertens J Wuyts K Gielis L Verheyen K 《Oecologia》2007,153(3):663-674
Converting deciduous forests to coniferous plantations and vice versa causes environmental changes, but till now insight into
the overall effect is lacking. This review, based on 38 case studies, aims to find out how coniferous and deciduous forests
differ in terms of throughfall (+stemflow) deposition and seepage flux to groundwater. From the comparison of coniferous and
deciduous stands at comparable sites, it can be inferred that deciduous forests receive less N and S via throughfall (+stemflow)
deposition on the forest floor. In regions with relatively low open field deposition of atmospheric N (<10 kg N ha−1 year−1), lower NH4+ mean throughfall (+stemflow) deposition was, however, reported under conifers compared to deciduous forest, while in regions
with high atmospheric N pollution (>10 kg N ha−1 year−1), the opposite could be concluded. The higher the open field deposition of NH4+, the bigger the difference between the coniferous and deciduous throughfall (+stemflow) deposition. Furthermore, it can be
concluded that canopy exchange of K+, Ca2+ and Mg2+ is on average higher in deciduous stands. The significantly higher stand deposition flux of N and S in coniferous forests
is reflected in a higher soil seepage flux of NO3−, SO42−, K+, Ca2+, Mg2+ and Al(III). Considering a subset of papers for which all necessary data were available, a close relationship between throughfall
(+stemflow) deposition and seepage was found for N, irrespective of the forest type, while this was not the case for S. This
review shows that the higher input flux of N and S in coniferous forests clearly involves a higher seepage of NO3− and SO42− and accompanying cations K+, Ca2+, Mg2+ and Al(III) into the groundwater, making this forest type more vulnerable to acidification and eutrophication compared to
the deciduous forest type. 相似文献
12.
Soil pH is critically important in regulating soil nutrients and thus influencing the biodiversity and ecosystem functions of terrestrial ecosystems. Despite the ongoing threat of nitrogen (N) pollution especially in the fast-developing regions, it remains unclear how increasing N deposition affects soil pH across global terrestrial ecosystems. By conducting a global meta-analysis with paired observations of soil pH under N addition and control from 634 studies spanning major types of terrestrial ecosystems, we show that soil acidification increases rapidly with N addition amount and is most severe in neutral-pH soils. Grassland soil pH decreases most strongly under high N addition while wetlands are the least acidified. By extrapolating these relationships to global mapping, we reveal that atmospheric N deposition leads to a global average soil pH decline of −0.16 in the past 40 years and regions encompassing Eastern United States, Southern Brazil, Europe, and South and East Asia are the hotspots of soil acidification under N deposition. Our results highlight that anthropogenically amplified atmospheric N deposition has profoundly altered global soil pH and chemistry. They suggest that atmospheric N deposition is a major threat to global terrestrial biodiversity and ecosystem functions. 相似文献
13.
Acidic deposition, nutrient leaching and forest growth 总被引:9,自引:0,他引:9
George H. Tomlinson 《Biogeochemistry》2003,65(1):51-81
Studies in Germany and confirmed in North America established that the forest decline that developed in the late 1970's and 80's resulted from a deficiency in one or more of the nutrient cations: Ca2+, Mg2+, and K+. These nutrients are essential to the structure of the foliage, to photosynthesis and to the growth of the trees. The reactions and mechanisms involved in the entry of nutrients to the soil, their storage, and rate of transfer to the soil solution, and through it, to the fine roots and to the leaves at the top of the tree are reviewed. The continuing material balance studies carried out on a watershed at the Hubbard Brook Experimental Forest in New Hampshire allow a unique analysis of the changes caused in these nutrient transfers by acid rain. The nutrient cations are stored in the soil by adsorption on negatively charged clay, and the presence of an acid is required for their release to the soil solution. In pre-industrial times this acid was H2CO3, which was subsequently displaced from the soil solution by H2SO4 and HNO3, as a result of acid deposition. The effect of the increased concentration of the negatively charged SO4
2– and NO3
– anions seeping through the soil, compared with that of the HCO3
– that had been previously present, resulted in a substantially increased rate of transfer of an equivalent of Ca2+ and other positively charged nutrient cations from the soil to the soil solution. The increased concentration of Ca2+ in the soil solution resulted in both an initial increase in the rate of biomass growth and in a simultaneous increase in the rate of Ca2+ loss in the effluent soil solution from the watershed. It was found that this increased rate of removal of Ca2+ from the watershed soil had become greater than its rate of input to the soil from weathering and from dust and rain. As a result, the large Ca2+ inventory that had built up in the soil as a result of the reduced leaching in the years prior to the entry of acid rain, that started in about the1880's, was eventually depleted in the hardwood forest at Hubbard Brook in the 1980's, about 100 years later. With insufficient Ca2+ available for its continuing transfer, net biomass growth on the watershed stopped. This resulted from the rate of tree mortality becoming equal to that of the small incremental growth of a few trees on the watershed. The future growth of forests is at risk from the long-term effects of acid deposition. The fundamental nature of the reactions involved indicates that similar growth anomalies are occurring in other forests impacted by acid rain. These changes from normal biomass growth can affect the amount of CO2 stored in the biomass, of importance to our understanding of Global Warming. 相似文献
14.
Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest 总被引:23,自引:0,他引:23
PETER HÖGBERG HOUBAO FAN † MAUD QUIST ‡ DAN BINKLEY§ CARL OLOF TAMM¶ 《Global Change Biology》2006,12(3):489-499
Relations among nitrogen load, soil acidification and forest growth have been evaluated based on short‐term (<15 years) experiments, or on surveys across gradients of N deposition that may also include variations in edaphic conditions and other pollutants, which confound the interpretation of effects of N per se. We report effects on trees and soils in a uniquely long‐term (30 years) experiment with annual N loading on an un‐polluted boreal forest. Ammonium nitrate was added to replicated (N=3) 0.09 ha plots at two doses, N1 and N2, 34 and 68 kg N ha?1 yr?1, respectively. A third treatment, N3, 108 kg N ha?1 yr?1, was terminated after 20 years, allowing assessment of recovery during 10 years. Tree growth initially responded positively to all N treatments, but the longer term response was highly rate dependent with no gain in N3, a gain of 50 m3 ha?1 stemwood in N2 and a gain of 100 m3 ha?1 stemwood in excess of the control (N0) in N1. High N treatments caused losses of up to 70% of exchangeable base cations (Ca2+, Mg2+, K+) in the mineral soil, along with decreases in pH and increases in exchangeable Al3+. In contrast, the organic mor‐layer (forest floor) in the N‐treated plots had similar amounts per hectare of exchangeable base cations as in the N0 treatment. Magnesium was even higher in the mor of N‐treated plots, providing evidence of up‐lift by the trees from the mineral soil. Tree growth did not correlate with the soil Ca/Al ratio (a suggested predictor of effects of soil acidity on tree growth). A boron deficiency occurred on N‐treated plots, but was corrected at an early stage. Extractable NH4+ and NO3?were high in mor and mineral soils of on‐going N treatments, while NH4+ was elevated in the mor only in N3 plots. Ten years after termination of N addition in the N3 treatment, the pH had increased significantly in the mineral soil; there were also tendencies of higher soil base status and concentrations of base cations in the foliage. Our data suggest the recovery of soil chemical properties, notably pH, may be quicker after removal of the N‐load than predicted. Our long‐term experiment demonstrated the fundamental importance of the rate of N application relative to the total amount of N applied, in particular with regard to tree growth and C sequestration. Hence, experiments adding high doses of N over short periods do not mimic the long‐term effects of N deposition at lower rates. 相似文献
15.
重庆酸雨区马尾松纯林改造对土壤酸化特征及团聚体稳定性的影响 总被引:1,自引:0,他引:1
马尾松对酸沉降危害极其敏感,生产实践中往往通过林分改造来应对酸沉降危害。为掌握酸雨区马尾松纯林改造对土壤酸化环境的影响及科学指导经营管理,采用空间代替时间的方法,对重庆铁山坪林场的马尾松纯林及其阔叶化改造后的香樟林、木荷林、马尾松×香樟混交林和马尾松×木荷混交林土壤养分、酸化特征及团聚体稳定性进行研究。结果表明:(1)除木荷混交林的腐殖质层土壤有机碳和全氮含量显著增加外,其他森林类型总体均减少(P<0.05);香樟林及其混交林的各层土壤全磷和全钾含量均增加,但木荷林及其混交林均减少(P<0.05)。(2)改造为香樟林及其混交林能显著提高土壤pH值、交换性盐基离子含量和盐基饱和度,降低交换性Al3+含量,但改造为木荷林及其混交林则总体对土壤酸化特征影响不明显(P>0.05)。(3)木荷林及其混交林淀积层的水稳性大团聚体含量增加,香樟林及其混交林则是微团聚体含量增加(P<0.05)。(4)改造对各森林类型腐殖质层和木荷林淋溶层及淀积层的土壤团聚体稳定性均无显著影响,但能增强马尾松混交林和香樟林淋溶层或淀积层的土壤团聚体稳定性(P<0.05)。综合来看,改造能改变土壤酸化环境,但各森林类型的影响不同,改造为香樟林或其混交林的改善效果总体好于木荷林或其混交林。因而对酸雨区马尾松纯林改造,还应根据改造树种特性及林分特征,科学确定相应的改造方法,尤其应注重改造林分的全过程抚育经营,以营造良好的林下环境。 相似文献
16.
Aims We conducted a simulated nitrogen (N) and sulfur (S) deposition experiment from 2006 to 2012 to answer the following questions: (i) does chronic N and S deposition decrease cation concentrations in the soil and foliage of understory plant species, and (ii) does chronic N and S deposition decrease plant diversity and alter species composition of the understory plant community in a boreal forest in western Canada where intensifying industrial activities are increasing N and S deposition.
Methods Our field site was a mixedwood boreal forest stand located ~100 km southeast of Fort McMurray, Alberta, Canada. The experiment involved a 2 × 2 factorial design, with two levels each of N (0 and 30 kg N ha-1 yr-1; applied as NH4NO3) and S addition (0 and 30 kg S ha-1 yr-1; applied as Na2SO4). Four blocks were established in July 2006, each with four plots of 20 × 20 m randomly assigned to the treatments. Soil and understory vegetation were sampled and cover (%) of individual species of herb (height ≤ 0.5 m) and shrub (height 0.5–1 m) layers was determined in August 2012.
Important findings Seven years after the treatments began, N addition increased dissolved organic carbon and N in the mineral soil (P < 0.05), whereas S addition decreased exchangeable cations (P < 0.05) in the forest floor. In the shrub layer, species evenness, and overall diversity were decreased by N addition (P < 0.05) due to increases in abundance of nitrophilous species and S addition (P < 0.01) due to decreased cation concentrations in soils. Total shrub cover decreased with S addition (P < 0.10). Nitrogen and S addition affected neither species richness nor evenness in the herb layer. However, permutational multivariate analysis of variance and non-metric multidimensional scaling analyses (based on plant cover) indicated that the effect of N and S addition on understory plant species composition in the both shrub and herb layers was species-specific. Addition of N decreased foliar phosphorus and potassium concentrations in some species, suggesting potential risk of N-meditated nutrient imbalance in those species. Our results indicate that long-term elevated levels of N and S deposition can negatively impact plant nutrition and decrease the diversity of the understory plant community in boreal forests in northern Alberta, Canada. However, considering that the current N and S deposition rates in northern Alberta are much lower than the rates used in this study, N and S deposition should not negatively affect plant diversity in the near future. 相似文献
17.
Understanding the factors regulating the concentrations of basic cations in soils and surface waters is critical if rates of recovery are to be predicted in response to decreases in acidic deposition. Using a dynamic simulation model (PnET-BGC), we evaluated the extent to which atmospheric deposition of strong acids and associated leaching by strong anions, atmospheric deposition of basic cations through changes in emissions of particulate matter, and historical forest cutting have influenced soil pools of exchangeable basic cations and the acid-base status of stream water at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire. Historical deposition of basic cations was reconstructed from regression relationships with particulate matter emissions. Simulation results indicate that the combination of these factors has resulted in changes in the percent soil base saturation, and stream pH and acid neutralizing capacity (ANC) from pre-industrial estimates of 20%, 6.3 and 45 eq L–1, respectively, to current values of 10%, 5.0 and –5 eq L–1, respectively. These current values fall within the critical thresholds at which forest vegetation and aquatic biotic are at risk from soil and surface water acidification due to acidic deposition. While the deposition of strong acid anions had the largest impact on the acid-base status of soil and stream water, the reduction in deposition of basic cations associated with reductions in particulate emissions was estimated to have contributed about 27% of the depletion in soil Ca2+ exchange pool and 15% of the decreases in stream water concentrations of basic cations. Decline in stream water concentrations of basic cation occurred under both increasing and decreasing exchangeable pools, depending on the process controlling the acid base status of the ecosystem. Model calculations suggest that historical forest cutting has resulted in only slight decreases in soil pools of exchangeable basic cations, and has had a limited effect on stream ANC over the long-term. 相似文献
18.
模拟氮沉降增加条件下土壤团聚体对酶活性的影响 总被引:7,自引:0,他引:7
氮沉降增加改变了森林土壤生态系统物质输入,影响土壤生物及酶活性,而土壤团聚体内相对稳定的微域生境可能减弱或延缓土壤生物和酶对氮沉降增加的响应强度。以广东省东莞大岭山森林公园荷木人工林为研究对象,用模拟N沉降方法,分析了2011年12月到2012年11月一年内氮沉降增加条件下表层混合土壤和土壤团聚体内脲酶、蔗糖酶和酸性磷酸酶活性的变化及影响因素,旨在理解氮沉降增加条件下土壤团聚体对酶活性的影响。结果表明:氮沉降增加对表层混合土壤中脲酶和蔗糖酶的抑制作用不显著,而酸性磷酸酶受氮沉降显著影响,表现为低氮(50 kg N hm-2a-1)促进,高氮(300 kg N hm-2a-1)抑制的规律。表层土壤团聚体内脲酶活性随氮沉降增加而降低,N300处理显著低于对照;蔗糖酶和酸性磷酸酶活性随氮沉降增加先降低后增加,N100处理最低,分别比其他处理降低了6.46%—25.53%和42.33%—68.25%。试验区内各粒径土壤团聚体内酶活性高于混合土壤,且随团聚体粒径增加酶活性均为先增加后降低。不同粒径土壤团聚体的3种酶活性均以2—5 mm最高,但脲酶、酸性磷酸酶在各团聚体粒径间差异不显著,蔗糖酶活性2—5 mm显著高于5—8 mm。土壤酶相对活性指数和相对活性综合指数结果显示,超过85%的团聚体粒径内的相对酶活性指数大于1,而土壤酶相对活性综合指数均大于1。以上结果表明,氮沉降增加条件下土壤团聚体对其团聚体内的土壤酶活性有隔离保护作用,但其隔离保护效果与酶的种类和土壤团聚体粒径有关。 相似文献
19.
Xiankai Lu Qinggong Mao Frank S. Gilliam Yiqi Luo Jiangming Mo 《Global Change Biology》2014,20(12):3790-3801
Elevated anthropogenic nitrogen (N) deposition has greatly altered terrestrial ecosystem functioning, threatening ecosystem health via acidification and eutrophication in temperate and boreal forests across the northern hemisphere. However, response of forest soil acidification to N deposition has been less studied in humid tropics compared to other forest types. This study was designed to explore impacts of long‐term N deposition on soil acidification processes in tropical forests. We have established a long‐term N‐deposition experiment in an N‐rich lowland tropical forest of Southern China since 2002 with N addition as NH4NO3 of 0, 50, 100 and 150 kg N ha?1 yr?1. We measured soil acidification status and element leaching in soil drainage solution after 6‐year N addition. Results showed that our study site has been experiencing serious soil acidification and was quite acid‐sensitive showing high acidification (pH(H2O)<4.0), negative water‐extracted acid neutralizing capacity (ANC) and low base saturation (BS,< 8%) throughout soil profiles. Long‐term N addition significantly accelerated soil acidification, leading to depleted base cations and decreased BS, and further lowered ANC. However, N addition did not alter exchangeable Al3+, but increased cation exchange capacity (CEC). Nitrogen addition‐induced increase in SOC is suggested to contribute to both higher CEC and lower pH. We further found that increased N addition greatly decreased soil solution pH at 20 cm depth, but not at 40 cm. Furthermore, there was no evidence that Al3+ was leaching out from the deeper soils. These unique responses in tropical climate likely resulted from: exchangeable H+ dominating changes of soil cation pool, an exhausted base cation pool, N‐addition stimulating SOC production, and N saturation. Our results suggest that long‐term N addition can contribute measurably to soil acidification, and that shortage of Ca and Mg should receive more attention than soil exchangeable Al in tropical forests with elevated N deposition in the future. 相似文献