首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mycotoxins zearalenone (2.8 micrograms/g), deoxynivalenol (1.5 microgram/g), and T-2 toxin (110 ng/g) have been found in the pith of corn stalks standing in the field. Such contaminated stalks may contribute to mycotoxicoses of farm animals.  相似文献   

2.
We characterized vine shoots, cotton stalks, Leucaena leucocephala and Chamaecytisus proliferus as pulping raw materials and found C. proliferus and cotton stalks to be the best for the intended purpose on the grounds of their increased contents in holocellulose (79.73% and 72.86%) and alpha-cellulose (45.37% and 58.48%), and their decreased contents in ethanol-benzene extractables (2.64% and 1.42%), hot water solubles (2.79% and 3.33%) and 1% soda solubles (16.67% and 20.34%). These properties resulted in increased pulp yields and hence in efficient use of these two types of raw material. The previous raw materials were pulped by using an ethyleneglycol concentration of 65% at 180 degrees C for 75min, followed by beating at 1500 revolutions in a PFI refiner. The paper sheets obtained were characterized and those from C. proliferus found to be the best overall as they exhibited an increased breaking length (4644m), stretch (2.87%), burst index (2.46kN/g) tear index (0.33mNm(2)/g) and brightness (49.92% ISO); in addition C. proliferus pulp was obtained with a high-yield (62.88%). On the other hand, vine shoots provided the poorest results among the studied raw materials.  相似文献   

3.
A composite microbial system (XDC-2) was used to pretreat and hydrolyze corn stalk to enhance anaerobic digestion. The results of pretreatment indicated that sCOD concentrations of hydrolysate were highest (8,233 mg/l) at the fifth day. XDC-2 efficiently degraded the corn stalk by nearly 45%, decreasing the cellulose content by 22.7% and the hemicellulose content by 74.1%. Total levels of volatile products peaked on the fifth day. The six major compounds present were ethanol (0.29 g/l), acetic acid (0.55 g/l), 1,2-ethanediol (0.49 g/l), propionic acid (0.15 g/l), butyric acid (0.22 g/l), and glycerine (2.48 g/l). The results of anaerobic digestion showed that corn stalks treated by XDC-2 produced 68.3% more total biogas and 87.9% more total methane than untreated controls. The technical digestion time for the treated corn stalks was 35.7% shorter than without treatment. The composite microbial system pretreatment could be a cost-effective and environmentally friendly microbial method for efficient biological conversion of corn stalk into bioenergy.  相似文献   

4.
Diopsid flies have eye stalks up to a centimeter in length, displacing the retina laterally from the rest of the head. This bizarre condition, called hypercephaly, is rare, but has evolved independently among several insect orders and is most common in flies (Diptera). Earlier studies of geometrical optics and behavior have led to various hypotheses about possible adaptive advantages of eye stalks, such as enhanced stereoscopic vision while other hypothesis suggest that eye stalks are an outcome of sexual selection. Here, we focus on how these curious distortions of head/eye morphology are accompanied by changes in the neural organization of the visual system of Cyrtodiopsis quinqueguttata. Histological examinations reveal that the optic lobes, lamina (La), medulla (Me), lobula (Lo), and lobula plate (LP) are contained entirely within the fly's eye bulbs, which are located at the distal ends of the eye stalks. We report that the organization of the peripheral visual system (La and Me) is similar to that of other Diptera (e.g., Musca and Drosophila), but deeper visual areas (Lo and LP) have been more strongly modified. For example, in both the lobula and lobula plate, fewer but larger giant collector neurons are found. The most pronounced difference is the reduction in the number of wide-field vertical cells of the lobula plate, where there are only four relatively large fibers, as opposed to 11 in Musca. The “fewer but larger” neural organization may enhance the conduction velocities of these cells, but may result in a loss of spatial resolution. At the base of the eye bulb, axon bundles collect and form a long optic nerve that extends the length of the eye stalk. We suggest that this organization of the diopsid visual system provides evidence for the costs of possessing long eye stalks. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 449–468, 1998  相似文献   

5.
Pretreated sunflower stalks saccharified with a Trichoderma reesei Rut-C 30 cellulase showed 57.8% saccharification. Enzyme hydrolysate concentrated to 40 g/l reducing sugars was fermented under optimum conditions of fermentation time (24 h), pH (5.0), temperature (30 degrees C) and inoculum size (3% v/v) and, showed a maximum ethanol yield of 0.444 g/g ethanol. Ethanol production scaled up in a 1 l and a 15 l fermenter under optimum conditions revealed maximum ethanol yields of 0.439 and 0.437 g/g respectively.  相似文献   

6.
This experiment determined the chemical composition, rumen degradability (aNDF in stalks and starch in kernels) and in vitro gas production of kernels from three corn hybrids treated (TT) or not treated (control, CTR) with insecticides against the European corn borer (ECB, Ostrinia nubilalis). Two whole-plant silage hybrids belonging to the FAO rating 600 and 700 maturity class (S600 and S700, respectively) and one selected for grain production (G600, FAO rating 600, Dekalb-Monsanto Agricoltura S.p.A., Lodi, Italy) were sown in two main plots (TT and CTR) of an experimental field. Two subsequent treatments of pyrethroids (25 and 1.2 g/ha of cyfluthrin and deltamethrin, respectively) were applied to the TT plots. The insecticide treatment reduced the number of damaged plants (4.5 broken plants/plot versus 0.3 broken plants/plot, P<0.01) and increased the total grain yield by 11% (13.8 t/ha versus 12.4 t/ha), while hybrids did not differ. ECB larvae which bored into the stalk tunnels modified the chemical composition of stalks and kernels. In stalks, total sugars content (i.e. glucose, fructose, sucrose) was about twice that in TT versus CTR plants (123 g/kg versus 60 g/kg DM, P<0.01), while aNDF content was higher in CTR stalks (765 versus 702 g/kg DM, P<0.01). DM degradability after 48 h of incubation of stalks was higher in TT than in CTR, both in vitro (0.360 versus 0.298, P<0.01) and in situ (0.370 versus 0.298, P<0.05), while there were no differences in aNDF degradability. Kernels from TT plots contained less DM (615 g/kg versus 651 g/kg, P<0.01) and more CP (84 g/kg and 78 g/kg DM, P<0.05) than those from CTR plots, while in situ rumen starch disappearance and in vitro gas production were similar. Corn hybrid selected for yield of grain (G600) differed from S600 and S700 due to a higher (P<0.01) content of aNDF, ADF and lignin(sa) in the stalks, and a higher starch content (696 g/kg versus 674 and 671 g/kg DM, P<0.01) and CP (87 g/kg versus 77 and 76 g/kg DM, P<0.05) in grain. The G600 hybrid produced stalks with a lower (P<0.01) aNDF rumen degradability than the S600 and S700.  相似文献   

7.
The influence of temperature in the hydrothermal treatment of sunflower stalks on the composition of the liquid fraction obtained was examined. The remaining solid fraction was subjected to ethanol pulping in order to obtain pulp that was used to produce paper sheets. The pulp was characterized in terms of yield, kappa index, viscosity, and cellulose, hemicellulose and lignin contents; and the paper sheets in terms of breaking length, stretch, burst index and tear index. Hydrothermal treatment of the raw material at 190 degrees C provided a liquid phase with maximal hemicellulose-derived oligomers and monosaccharide (glucose, xylose and arabinose) contents (26.9 and 4.2 g/L, respectively). Pulping the solid fraction obtained by hydrothermal treatment at 180 degrees C, with 70% ethanol at a liquid/solid ratio of 8:1 at 170 degrees C for 120 min provided pulp with properties on a par with those of soda pulp from the sunflower stalks, namely: 36.3% yield, 69.1% cellulose, 12.6% hemicellulose, 18.2% lignin and 551 ml/g viscosity. Also, paper sheets obtained from the ethanol pulp were similar in breaking length (3.8 km), stretch (1.23%), burst index (1.15 kN/g) and tear index (2.04 m Nm(2)/g) to those provided by soda pulp.  相似文献   

8.
A novel agro-residue, tea stalks, was tested for the production of tannase under solid-state fermentation (SSF) using Aspergillus niger JMU-TS528. Maximum yield of tannase was obtained when SSF was carried out at 28 °C, pH 6.0, liquid-to-solid ratio (v/w) 1.8, inoculum size 2 ml (1?×?108 spores/ml), 5 % (w/v) ammonium chloride as nitrogen source and 5 % (w/v) lactose as additional carbon source. Under optimum conditions, tannase production reached 62 U/g dry substrate after 96 h of fermentation. Results from the study are promising for the economic utilization and value addition of tea stalks.  相似文献   

9.
To understand how lignin synthesis is regulated after harvest, detached green asparagus stalks (Asparagus officinalis L.) were treated with 1 μl l−1 of 1-methylcyclopropene (1-MCP), 50 μg l−1 gibberellic acid (GA3), 2% (v:v) ethanol or 1 μl l−1 ethylene. The results showed that lignin concentration in asparagus stalks stored at room temperature rapidly increased. Three conventional precursors of lignin, 4-hydroxycinnamic acid (coumaric acid), 3,4-dihydroxycinnamic acid (caffeic acid) and 4-hydroxy-3-mythoxycinnamic acid (ferulic acid), were found to be the major phenolics in the asparagus stalks. Furthermore, the concentrations of O2 in asparagus stalks steadily increased during the storage. Deposition of lignin in harvested asparagus was significantly reduced by treating the stalks with GA3, 1-MCP or ethanol. The concentration of lignin in stalks treated with GA3, 1-MCP or ethanol was 32, 20 or 27% lower, respectively, than in controls 3 days after treatment. Treating stalks with ethylene enhanced lignin synthesis (p<0.05). The concentration of total phenol in stalks was also significantly reduced by GA3, 1-MCP and ethanol, but was enhanced by ethylene treatment. However, the concentration of active oxygen (O2−⋅) in stalks was significantly reduced by treatment with GA3, 1-MCP and ethanol, but was enhanced by treatment with ethylene. Our study show that postharvest treatment with 1-MCP, GA3 or ethanol may be applied to improve the quality of green asparagus.  相似文献   

10.
Z Kerem  Y Hadar 《Applied microbiology》1995,61(8):3057-3062
Practical utilization of the polysaccharides in the lignocellulosic complex is limited because of the high lignin content of the complex. In this study we focused on the effect of Mn on lignin and cellulose biodegradation during solid-state fermentation by the edible mushroom Pleurotus ostreatus. Preferential degradation of lignin was enhanced by the addition of Mn(II) to cotton stalks at concentrations ranging from 30 to 620 micrograms of Mn per g. This effect was most apparent when we compared mineralization rates of [14C] lignin with mineralization rates of [14C] cellulose. Enhanced selectivity was also observed when we analyzed residual organic matter at the end of the fermentation period by using crude fiber analysis. The cellulose fraction in the original material was 1.8 times larger than the cellulose fraction of lignin. The cellulose/lignin ratio increased during 32 days of solid-state fermentation from 2.5 in the control to 3.3 following the addition of Mn to the medium. The in vitro digestibility value for fermented cotton stalks was 53% of the dry matter. Addition of 600 micrograms of Mn per g to the cotton stalks resulted in a digestibility value of 65.4%. Enhancement of preferential lignin degradation could be result of either increased activity of the ligninolytic enzymes or production of Mn (III), which might preferentially degrade aromatic structures in the lignocellulosic complex.  相似文献   

11.
The lipid contents of the roots, leaf stalks, leaves and flowers of Eichhornia crassipes (Mart.) Solms (water-hyacinth) were 1.6, 0.9, 14.9 and 5.7%, respectively, on a dry-weight basis. Non-polar lipids were half the total, while glycolipids and phospholipids in approximately equal proportions constituted the remainder, except in leaf stalks, where glycolipids were a larger fraction. Among the non-polar lipids, triacyglycerols predominated, except for pigments in the leaves. Monogalactosyldiglycerides and digalactosyldiglycerides were the major glycolipids. The main phospholipids were phosphatidylcholine in the roots, phosphatidylglycerol in the leaf stalks and leaves, and phosphatidylethanolamine in the flowers. The major fatty acids were palmitic and linoleic in the roots, linoleic in the leaf stalks, palmitic in the leaves, and linolenic and linoleic in the flowers.  相似文献   

12.
The impact of features of the capillary porous structure of rape and soya stalks (as compared with those of rye straw) on the nitric acid/alkaline delignification process allowing, in particular, isolation of radiation-free cellulose and nitrolignin from radionuclide-contaminated plant material, is examined. The method for adjustment of delignification conditions on changing from the traditional annual plant raw material (rye straw) to a material with a more dense structure of the plant tissue is discussed. The morphological structure and paper-forming properties of cellulose isolated from the stalks of cereals are shown to be identical with the respective indices for cellulose isolated from the stalks of oil-bearing plants.  相似文献   

13.
Glycerolated stalks of the sessile peritrich ciliate Carchesium sp. were treated with 10(-6) g ion/1 Ca2+ to disrupt the contractile spasmoneme. The resulting preparation consisted primarily of the fibrillar matrix, a dense extra-cellular meshwork of microfibrils. Some mechanical properties of this preparation have been investigated. The matrix tensile force-extension ratio relation for an initial stretch was characteristic of a soft, swollen polymer network, elastic modulus in young stalks 1.7 X 10(5) Nm-2, in mature stalks 4.0 X 10(5) Nm-2. The higher elastic modulus in mature stalks implies an increase in the interchain cross-link frequency. In young stalks, elastic modulus was found to be independent of the ambient Ca2+ concentration in the threshold range for spasmonemal contraction. Stalk relaxation was pronouncedly irreversible, showing stress softening and permanent hysteresis on repeated loading. Hysteresis was time independent and stiffness was not recovered after four hours at zero strain. Hysteresis was enhanced by repeated loading to the same tensile force. Stress-strain hysteresis at a low extension is characteristic of highly filled polymer networks in which polymer chains are interconnected via rigid filler particles as well as directly cross-linked.  相似文献   

14.
Spider silks display generally strong mechanical properties, even if differences between species and within the same species can be observed. While many different types of silks have been tested, the mechanical properties of stalks of silk taken from the egg sac of the cave spider Meta menardi have not yet been analyzed. Meta menardi has recently been chosen as the "European spider of the year 2012", from the European Society of Arachnology. Here we report a study where silk stalks were collected directly from several caves in the north-west of Italy. Field emission scanning electron microscope (FESEM) images showed that stalks are made up of a large number of threads, each of them with diameter of 6.03 ± 0.58 μm. The stalks were strained at the constant rate of 2 mm/min, using a tensile testing machine. The observed maximum stress, strain and toughness modulus, defined as the area under the stress-strain curve, are 0.64 GPa, 751% and 130.7 MJ/m(3), respectively. To the best of our knowledge, such an observed huge elongation has never been reported for egg sac silk stalks and suggests a huge unrolling microscopic mechanism of the macroscopic stalk that, as a continuation of the protective egg sac, is expected to be composed by fibres very densely and randomly packed. The Weibull statistics was used to analyze the results from mechanical testing, and an average value of Weibull modulus (m) is deduced to be in the range of 1.5-1.8 with a Weibull scale parameter (σ(0)) in the range of 0.33-0.41 GPa, showing a high coefficient of correlation (R(2) = 0.97).  相似文献   

15.
The effects of sulfuric acid, acetic acid, aqueous ammonia, sodium hydroxide, and steam explosion pretreatments of corn stalk on organic acid production by a microbial consortium, MC1, were determined. Steam explosion resulted in a substrate that was most favorable for microbial growth and organic acid productions. The total amounts of organic acids produced by MC1 on steam exploded, sodium hydroxide, sulfuric acid, acetic acid, and aqueous ammonia pretreated corn stalk were 2.99, 2.74, 1.96, 1.45, and 2.21 g/l, respectively after 3 days of fermentation at 50 °C. The most prominent organic products during fermentation of steam-exploded corn stalks were formic (0.86 g/l), acetic (0.59 g/l), propanoic (0.27 g/l), butanoic (0.62 g/l), and lactic acid (0.64 g/l) after 3 days of fermentation; ethanol (0.18 g/l), ethanediol (0.68 g/l), and glycerin (3.06 g/l) were also produced. These compounds would be suitable substrates for conversion to methane by anaerobic digestion.  相似文献   

16.
Natural cellulose fibers have been obtained from the bark of cotton stalks and the fibers have been used to develop composites. Cotton stalks are rich in cellulose and account for up to 3 times the quantity of cotton fiber produced per acre. Currently, cotton stalks have limited use and are mostly burned on the ground. Natural cellulose fibers obtained from cotton stalks are composed of approximately 79% cellulose and 13.7% lignin. The fibers have breaking tenacity of 2.9 g per denier and breaking elongation of 3% and modulus of 144 g per denier, between that of cotton and linen. Polypropylene composites reinforced with cotton stalk fibers have flexural, tensile and impact resistance properties similar to jute fiber reinforced polypropylene composites. Utilizing cotton stalks as a source for natural cellulose fibers provides an opportunity to increase the income from cotton crops and make cotton crops more competitive to the biofuel crops.  相似文献   

17.
Sunflower stalks, a largely available and cheap agricultural residue lacking of economic alternatives, were subjected to steam explosion pre-treatment, the objective being to optimize pre-treatment temperature in the range 180-230°C. Enzymatic hydrolysis performed on the pre-treated solids by a cellulolytic complex (Celluclast 1.5L) and analysis of filtrates were used to select the best pre-treatment temperature. Temperature selection was based on the susceptibility to enzymatic hydrolysis of the cellulose residue and both the cellulose recovery in the solid and the hemicellulose-derived sugars recoveries in the filtrate. After 96h of enzymatic action, a maximum hydrolysis yield of 72% was attained in the water-insoluble fiber obtained after pre-treatment at 220°C, corresponding to a glucose concentration of 43.7g/L in hydrolysis media. Taking into account both cellulose recovery and hydrolysis yield, the maximum value of glucose yield referred to unpretreated raw material was also found when using steam pre-treated sunflower stalks at 220°C, obtaining 16.7g of glucose from 100g of raw material. With regard to the filtrate analysis, most of the hemicellulosic-derived sugars released during the steam pre-treatment were in oligomeric form, the highest recovery being obtained at 210°C pre-treatment temperature. Moreover, the utilisation of hemicellulosic-derived sugars as a fermentation substrate would improve the overall bioconversion of sunflower stalks into fuel ethanol.  相似文献   

18.
The synergistic effect of steam explosion pretreatment and sodium hydroxide post-treatment of Lespedeza stalks (Lespedeza crytobotrya) has been investigated in this study. In this case, Lespedeza stalks were firstly exploded at a fixed steam pressure (22.5 kg/m2) for 2–10 min. Then the steam-exploded Lespedeza stalks was extracted with 1 M NaOH at 50 °C for 3 h with a shrub to water ratio of 1:20 (g/ml), which yielded 57.3%, 53.1%, 55.4%, 52.8%, 53.2%, and 56.4% (% dry weight) cellulose rich fractions, comparing to 68.0% from non-steam-exploded material. The content of glucose in cellulose rich residues increased with increment of the steaming time and reached to 94.10% at the most severity. The similar increasing trend occurred during the dissolution of hemicelluloses. It is evident that at shorter steam explosion time, autohydrolysis mainly occurred on the hemicelluloses and the amorphous area of cellulose. The crystalline region of cellulose was depolymerized under a prolonged incubation time. The characteristics of the cellulose rich fractions in terms of FT-IR and CP/MAS 13C NMR spectroscopy and thermal analysis were discussed, and the surface structure was also investigated by SEM.  相似文献   

19.
This experiment was conducted to evaluate the effect of four harvesting methods on juice quality and storability in sweet sorghum. Three cultivars (Dale, Theis, and M81-E) were harvested at 90, 115, and 140 days after planting. Stalks were stripped of leaves and topped at the peduncle, then divided into four treatments (whole stalk, 20- or 40-cm billets, or chopped). The sorghum was stored outside at ambient temperature in a shade tent, and juice was extracted from samples removed at 0, 1, 2, and 4 days after harvest. Changes in juice Brix and sugars were reported in an earlier paper (Lingle, Tew, Rukavina, Boykin, Post-harvest changes in sweet sorghum I: Brix and sugars, BioEnergy Research 5:158–167, 2012). In this paper, we report changes in juice pH, titratable acidity (TA), and protein, starch, and mannitol concentrations. Juice pH dropped rapidly after harvest in chopped sorghum, but changed little during 4 days of storage in whole stalks or billets. Similarly, TA increased with storage time in chopped samples, but was unchanged in whole stalks and billets. Protein concentration was highly variable, and no pattern with treatment or storage time could be discerned. In whole stalks and billets, starch content slowly decreased during storage, while in chopped samples starch appeared to increase. This was most likely a result of an increase in dextran synthesized by microorganisms in those samples, which was also detected by the enzymatic starch assay. The concentration of mannitol increased with storage time in chopped samples, but not in whole stalks or billets. Within a harvest date, pH was highly correlated with total sugar, while TA and mannitol were highly negatively correlated with total sugar. The results confirm that whole stalks and billets were little changed over 4 days of storage, while chopped sorghum was badly deteriorated 1 day after harvest. Changes in pH, TA, or mannitol could be used to measure deterioration in sweet sorghum after harvest.  相似文献   

20.
We evaluated a technique that used ablated sections of corn stalks infested with larvae of Diatraea saccharalis F. to assess parasitism by Cotesia flavipes (Cameron) in a corn field. Stalkborer larvae were retrieved successfully from the artificially infested, ablated stalks for at least 96 h after deployment in the field. Levels of parasitism in ablated stalks attached to corn plants were comparable to levels of parasitism measured using whole plants that were artificially infested. Olfactometer comparisons showed preference by female C. flavipes for both whole plants and ablated stalks containing larval D. saccharalis, over uninfested stalks and plants. This technique provides a means to estimate parasitism of stalkborer larvae by C. flavipes without destructive sampling of agronomic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号