首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ku SB  Edwards GE 《Plant physiology》1977,59(5):991-999
The response of whole leaf photosynthesis of wheat (Triticum aestivum L.) in relation to soluble CO2 available to the mesophyll cells, under low (1.5%) O2 at 25, 30, and 35 C, followed Michaelis-Menten kinetics up to saturating CO2 but deviated at high CO2 levels where the experimental Vmax is considerably less than the calculated Vmax. The affinity of the leaves for CO2 during photosynthesis was similar from 25 to 35 C with Km (CO2) values of approximately 3.5 to 5 μM.  相似文献   

2.
The inhibition of photosynthesis by O2 in air-grown Chlorella pyrenoidosa was investigated using three experimental techniques (artificial leaf, aqueous method, and O2 electrode) to measure carbon assimilation. CO2 response curves were determined under different O2, pH, and temperature conditions. Regardless of the experimental technique and condition, O2 inhibition was not evident until a concentration of 50% was reached; Vmax values were reduced whereas Km (CO2) values were unaffected by the increasing O2 concentration. The response of photosynthesis to O2 was independent of CO2 and HCO3 concentrations as well as temperature. Relative rates of photosynthesis showed a 4 to 5% stimulation in 2% O2, a 12% inhibition in 50% O2, and a 24% inhibition in 100% O2. The inhibition by 50% O2 was still reversible after 20 minutes exposure whereas 100% O2 caused irreversible inhibition after only 4 minutes.  相似文献   

3.
The occurrence of photorespiration in soybean (Glycine max [L.] Merr.) leaf cells was demonstrated by the presence of an O2-dependent CO2 compensation concentration, a nonlinear time course for photosynthetic 14CO2 uptake at low CO2 and high O2 concentrations, and an O2 stimulation of glycine and serine synthesis which was reversed by high CO2 concentration. The compensation concentration was a linear function of O2 concentration and increased as temperature increased. At atmospheric CO2 concentration, 21% O2 inhibited photosynthesis at 25 C by 27%. Oxygen inhibition of photosynthesis was competitive with respect to CO2 and increased with increasing temperature. The Km (CO2) of photosynthesis was also temperature-dependent, increasing from 12 μm CO2 at 15 C to 38 μm at 35 C. In contrast, the Ki (O2) was similar at all temperatures. Oxygen inhibition of photosynthesis was independent of irradiance except at 10 mm bicarbonate and 100% O2, where inhibition decreased with increasing irradiance up to the point of light saturation of photosynthesis. Concomitant with increasing O2 inhibition of photosynthesis was an increased incorporation of carbon into glycine and serine, intermediates of the photorespiratory pathway, and a decreased incorporation into starch. The effects of CO2 and O2 concentration and temperature on soybean cell photosynthesis and photorespiration provide further evidence that these processes are regulated by the kinetic properties of ribulose-1,5-diphosphate carboxylase with respect to CO2 and O2.  相似文献   

4.
With an experimental system using mass spectrometry techniques and infra-red gas analysis of CO2 developed for aquatic plants, we studied the responses to various light intensities and CO2 concentrations of photosynthesis and O2 uptake of the red macroalga Chondrus crispus S. The CO2 exchange resistance at air-water interface which could limit the photosynthesis was experimentally measured. It allowed the calculation of the free dissolved CO2 concentration. The response to light showed a small O2 uptake (37% of net photosynthesis in standard conditions) compared to C3 plants; it was always higher than dark respiration and probably included a photoindependent part. The response to CO2 showed: (a) an O2 uptake relatively insensitive to CO2 concentration and not completely inhibited with high CO2, (b) a general inhibition of gas exchanges below 130 microliters CO2 per liter (gas phase), (c) an absence of an inverse relationship between O2 and CO2 uptakes, and (d) a low apparent Km of photosynthesis for free CO2 (1 micromolar). These results suggest that O2 uptake in the light is the sum of different oxidation processes such as the glycolate pathway, the Mehler reaction, and mitochondrial respiration. The high affinity for CO2 is discussed in relation to the use of HCO3 and/or the internal CO2 accumulation.  相似文献   

5.
Keck RW 《Plant physiology》1976,58(4):552-555
The carbon dioxide compensation concentration of Panicum milioides was less than that of soybean over the range of 15 to 35 C. In soybean (Glycine max [L.] Merr. cv. Wayne), the compensation concentration was directly proportional to O2 concentration. In P. milioides, the compensation concentration was near zero up to 10% O2 and then increased linearly with higher O2, although the slope of the response was less than that in soybean. Leaf extracts of P. milioides contained 3-fold higher phosphoenolpyruvate carboxylase activity than soybean leaf extracts. Oxygen inhibition of photosynthesis and carboxy-lation efficiency was less in P. milioides than that observed in soybean. The affinity of P. millioides ribulose-1,5-di-P carboxylase for CO2 appeared to be slightly greater than that of soybean. The affinity of both enzymes for O2 was similar. The reduced response of the compensation concentration and photosynthesis to O2 in P. milioides may be explained by photosynthetic phosphoenolpyruvate carboxylase fixation and by an apparent increased affinity of ribulose-1,5-di-P carboxylase for CO2.  相似文献   

6.
The regulation of ribulose-1,5-bisphosphate (RuBP) carboxylase (rubisco) activity in Phaseolus vulgaris was studied under moderate CO2 and high light, conditions in which photosynthesis in C3 plants can be insensitive to changes in O2 partial pressure. Steady state RuBP concentrations were higher, the calculated rate of RuBP use was lower and the activation state of rubisco was lower in low O2 relative to values observed in normal O2. It is suggested that the reduced activity of rubisco observed here is related to feedback effects which occur when the rate of net CO2 assimilation approaches the maximum capacity for starch and sucrose synthesis (triose phosphate utilization). The activation state of rubisco was independent of O2 partial pressure when light or CO2 was limiting for photosynthesis. Reduced activity of rubisco was also observed at limiting light. However, in this species light dependent changes in the concentration of an inhibitor of rubisco controlled the apparent Vmax of rubisco in low light while changes in the CO2-Mg2+ dependent activation of rubisco controlled the apparent Vmax in high light.  相似文献   

7.
The effect of 21% O2 and 3% O2 on the CO2 exchange of detached wheat leaves was measured in a closed system with an infrared carbon dioxide analyzer. Temperature was varied between 2° and 43°, CO2 concentration between 0.000% and 0.050% and light intensity between 40 ft-c and 1000 ft-c. In most conditions, the apparent rate of photosynthesis was inhibited in 21% O2 compared to 3% O2. The degree of inhibition increased with increasing temperature and decreasing CO2 concentration. Light intensity did not alter the effect of O2 except at light intensities or CO2 concentrations near the compensation point. At high CO2 concentrations and low temperature, O2 inhibition of apparent photosynthesis was absent. At 3% O2, wheat resembled tropical grasses in possessing a high rate of photosynthesis, a temperature optimum for photosynthesis above 30°, and a CO2 compensation point of less than 0.0005% CO2. The effect of O2 on apparent photosynthesis could be ascribed to a combination of stimulation of CO2 production during photosynthesis, and inhibition of photosynthesis itself.  相似文献   

8.
The effects of elevated atmospheric CO2 concentration on growth of forest tree species are difficult to predict because practical limitations restrict experiments to much shorter than the average life-span of a tree. Long-term, process-based computer models must be used to extrapolate from shorter-term experiments. A key problem is to ensure a strong flow of information between experiments and models. In this study, meta-analysis techniques were used to summarize a suite of photosynthetic model parameters obtained from 15 field-based elevated [CO2] experiments on European forest tree species. The parameters studied are commonly used in modelling photosynthesis, and include observed light-saturated photosynthetic rates (Amax), the potential electron transport rate (Jmax), the maximum Rubisco activity (Vcmax) and leaf nitrogen concentration on mass (Nm) and area (Na) bases. Across all experiments, light-saturated photosynthesis was strongly stimulated by growth in elevated [CO2]. However, significant down-regulation of photosynthesis was also observed; when measured at the same CO2 concentration, photosynthesis was reduced by 10–20%. The underlying biochemistry of photosynthesis was affected, as shown by a down-regulation of the parameters Jmax and Vcmax of the order of 10%. This reduction in Jmax and Vcmax was linked to the effects of elevated [CO2] on leaf nitrogen concentration. It was concluded that the current model is adequate to model photosynthesis in elevated [CO2]. Tables of model parameter values for different European forest species are given.  相似文献   

9.
When intact nodulated roots of soybean (Glycine max L. Merr. nodulated with Bradyrhizobium japonicum strain USDA 16) were exposed to an atmosphere lacking N2 gas (Ar:O2 80:20), total nitrogenase activity (measured as H2 evolution) and respiration (CO2 evolution) declined with time of exposure. In Ar-inhibited nodules, when the O2 concentration in the rhizosphere was increased in a linear `ramp' of 2.7% per minute, 93% of the original H2 evolution and 99% of the CO2 evolution could be recovered. The internal nodule O2 concentration (estimated from leghemoglobin oxygenation) declined to 56% of its initial value after 60 minutes of Ar:O2 exposure and could be partially recovered by the linear increases in O2 concentration. Nodule gas permeability, as estimated from the lag in ethylene production following exposure of nodules to acetylene, decreased to 26% of its initial value during the Ar-induced decline. Collectively, the results provide direct evidence that the Ar-induced decline results from decreased nodule gas permeability and indicate that the decline in permeability, rather than being immediate, occurs gradually over the period of Ar:O2 exposure.  相似文献   

10.
A mass spectrometer with a membrane inlet was used to monitor light-driven O2 evolution, O2 uptake, and CO2 uptake in suspensions of algae (Scenedesmus obliquus). We observed the following. (a) The rate of O2 uptake, which, in the presence of iodoacetamide, replaces the uptake of CO2, showed a distinct plateau (Vmax) beyond ~30% O2 and was half-maximal at ~8% O2. We concluded that this light-driven O2 uptake process, which does not involve carbon compounds, is saturated at lower O2 concentrations than are photorespiration and glycolate formation. (b) In the absence of inhibitor, O2 evolution was relatively unaffected by the presence or absence of CO2. During the course of CO2 depletion, electron flow to CO2 was replaced by an equivalent flow to O2. (c) There was a distinct delay between the cessation of CO2 uptake and the increase in O2 uptake. We ascribe this delay to the transient utilization of another electron acceptor—possibly bicarbonate or another bound form of CO2.  相似文献   

11.
Ku SB  Edwards GE 《Plant physiology》1977,59(5):986-990
The magnitude of the percentage inhibition of photosynthesis by atmospheric levels of O2 in the C3 species Solanum tuberosum L., Medicago sativa L., Phaseolus vulgaris L., Glycine max L., and Triticum aestivum L. increases in a similar manner with an increase in the apparent solubility ratio of O2/CO2 in the leaf over a range of solubility ratios from 25 to 45. The solubility ratio is based on calculated levels of O2 and CO2 in the intercellular spaces of leaves as derived from whole leaf measurements of photosynthesis and transpiration. The solubility ratio of O2/CO2 can be increased by increased leaf temperature under constant atmospheric levels of O2 and CO2 (since O2 is relatively more soluble than CO2 with increasing temperature); by increasing the relative levels of O2/CO2 in the atmosphere at a given leaf temperature, or by increased stomatal resistance. If the solubility ratio of O2/CO2 is kept constant, as leaf temperature is increased, by varying the levels of O2 or CO2 in the atmosphere, then the percentage inhibition of photosynthesis by O2 is similar. The decreased solubility of CO2 relative to O2 (decreased CO2/O2 ratio) may be partly responsible for the increased percentage inhibition of photosynthesis by O2 under atmospheric conditions with increasing temperature.  相似文献   

12.
Gas exchange measurements and noninvasive leghemoglobin (Lb) spectrophotometry (nodule oximetry) were used to monitor nodule responses to shoot removal in alfalfa (Medicago sativa L. cv Weevlchek) and birdsfoot trefoil (Lotus corniculatus L. cv Fergus). In each species, total nitrogenase activity, measured as H2 evolution in Ar:O2 (80:20), decreased to <50% of the initial rate within 1 hour after detopping, and net CO2 production decreased to about 65% of the initial value. In a separate experiment in which nodule oximetry was used, nodule O2 permeability decreased 50% within 5 hours in each species. A similar decrease in the O2-saturated respiration rate (Vmax) for the nodule central zone occurred within 5 hours in birdsfoot trefoil, but only after 24 hours in alfalfa. Lb concentration, also measured by oximetry, decreased after 48 to 72 hours. The decrease in permeability preceded the decrease in Vmax in each species. Vmax may depend mainly on carbohydrate availability in the nodule. If so, then the decrease in permeability could not have been triggered by decreasing carbohydrate availability. Both oximetry and gas exchange data were consistent with the hypothesis that, for the cultivars tested, carbohydrate availability decreased more rapidly in birdsfoot trefoil than in alfalfa nodules. Fractional Lb oxygenation (initially about 0.15) decreased during the first 24 hours after detopping but subsequently increased to >0.65 for a majority of nodules of each species. This increase could lead to O2 inactivation of nitrogenase.  相似文献   

13.
Chen CP  Zhu XG  Long SP 《Plant physiology》2008,148(2):1139-1147
Application of the widely used Farquhar model of photosynthesis in interpretation of gas exchange data assumes that photosynthetic properties are homogeneous throughout the leaf. Previous studies showed that heterogeneity in stomatal conductance (gs) across a leaf could affect the shape of the measured leaf photosynthetic CO2 uptake rate (A) versus intercellular CO2 concentration (Ci) response curve and, in turn, estimation of the critical biochemical parameters of this model. These are the maximum rates of carboxylation (Vc,max), whole-chain electron transport (Jmax), and triose-P utilization (VTPU). The effects of spatial variation in Vc,max, Jmax, and VTPU on estimation of leaf averages of these parameters from A-Ci curves measured on a whole leaf have not been investigated. A mathematical model incorporating defined degrees of spatial variability in Vc,max and Jmax was constructed. One hundred and ten theoretical leaves were simulated, each with the same average Vc,max and Jmax, but different coefficients of variation of the mean (CVVJ) and varying correlation between Vc,max and Jmax (Ω). Additionally, the interaction of variation in Vc,max and Jmax with heterogeneity in VTPU, gs, and light gradients within the leaf was also investigated. Transition from Vc,max- to Jmax-limited photosynthesis in the A-Ci curve was smooth in the most heterogeneous leaves, in contrast to a distinct inflection in the absence of heterogeneity. Spatial variability had little effect on the accuracy of estimation of Vc,max and Jmax from A-Ci curves when the two varied in concert (Ω = 1.0), but resulted in underestimation of both parameters when they varied independently (up to 12.5% in Vc,max and 17.7% in Jmax at CVVJ = 50%; Ω = 0.3). Heterogeneity in VTPU also significantly affected parameter estimates, but effects of heterogeneity in gs or light gradients were comparatively small. If Vc,max and Jmax derived from such heterogeneous leaves are used in models to project leaf photosynthesis, actual A is overestimated by up to 12% at the transition between Vc,max- and Jmax-limited photosynthesis. This could have implications for both crop production and Earth system models, including projections of the effects of atmospheric change.  相似文献   

14.
The effect of O2 on the CO2 exchange of detached leaves of corn (Zea mays), wheat (Triticum vulgare), oats (Avena sativa), barley (Hordeum vulgare), timothy (Phleum pratense) and cat-tail (Typha angustifolia) was measured with a Clark oxygen electrode and infrared carbon dioxide analysers in both open and closed systems.

Corn leaves did not produce CO2 in the light at any O2 concentration, as was shown by the zero CO2 compensation point and the absence of a CO2 burst in the first minute of darkness. The rate of photosynthesis was inhibited by O2 and the inhibition was not completely reversible. On the other hand, the steady rate of respiration after a few minutes in the dark was not affected by O2.

These results were interpreted as indicating the absence of any measurable respiration during photosynthesis. Twelve different varieties of corn studied all responded to O2 in the same way.

The other 5 monocotyledons studied did produce CO2 in the light. Moreover, the CO2 compensation point increased linearly with O2 indicating a stimulation of photorespiration.

The implications of the lack of photorespiration in studies of primary productivity are discussed.

  相似文献   

15.
Oxygen Stimulation of Apparent Photosynthesis in Flaveria linearis   总被引:3,自引:1,他引:2       下载免费PDF全文
A plant was found in the C3-C4 intermediate species, Flaveria linearis, in which apparent photosynthesis is stimulated by atmospheric O2 concentrations. A survey of 44 selfed progeny of the plant showed that the O2 stimulation of apparent photosynthesis was passed on to the progeny. When leaves equilibrated at 210 milliliters per liter O2 were transferred to 20 milliliters per liter O2 apparent photosynthesis was initially stimulated, but gradually declined so that at 30 to 40 minutes the rate was only about 80 to 85% of that at 210 milliliters per liter O2. Switching from 20 to 210 milliliters per liter caused the opposite transition in apparent photosynthesis. All other plants of F. linearis reached steady rates within 5 minutes after switching O2 that were 20 to 24% lower in 210 than in 20 milliliters per liter O2. At low intercellular CO2 concentrations and low irradiances, O2 inhibition of apparent photosynthesis of the aberrant plant was similar to that in normal plants, but at an irradiance of 2 millimoles quanta per square meter per second and near 300 microliters per liter CO2 apparent photosynthesis was consistently higher at 210 than at 20 milliliters per liter O2. In morphology and leaf anatomy, the aberrant plant is like the normal plants in F. linearis. The stimulation of apparent photosynthesis at air levels of O2 in the aberrant plant is similar to other literature reports on observations with C3 plants at high CO2 concentrations, high irradiance and/or low temperatures, and may be related to limitation of photosynthesis by triose phosphate utilization.  相似文献   

16.
Physiological regulation of nodule gas permeability has a central role in the response of legumes to such diverse factors as drought, defoliation, and soil nitrate. A new method for quantifying nodule respiration and O2 permeability, based on noninvasive spectrophotometry of leghemoglobin, was evaluated using intact, attached nodules of Lotus corniculatus. First, the relationship between nodule respiration (O2 consumption) rate and internal O2 concentration was determined from the rate of decrease in fractional oxygenation of leghemoglobin (FOL) under N2. The rate of increase of FOL under 100% O2 was then used to calculate nodule O2 permeability, after correcting for respiration. Inactivation of nitrogenase by exposure to 100% O2 for 15 minutes led to decreases in both permeability and O2-saturated respiration (Vmax), but the brief (<15 seconds) exposures to 100% O2 required by the assay itself had little effect on either parameter. A gradual increase in external O2 concentration from 20 to 40% resulted in a reversible decrease in permeability, but no change in Vmax. The new method is likely to be useful for research on nodule physiology and might also be applicable to agronomic research and crop improvement programs.  相似文献   

17.
Oxygen inhibition of photosynthesis was studied with intact spinach (Spinacia oleracea L.) chloroplasts which exhibited very high rates of photosynthetic CO2 reduction and were insensitive to additions of photosynthetic intermediates when CO2 was available at saturating concentrations. Photosynthetic rates were measured polarographically as O2 evolution, and the extent of the reduction of substrate was estimated from the amount of O2 evolved. With CO2 as substrate, inhibition of photosynthesis by O2 was dependent on pH. At pH values above 8, rates of O2 evolution were strongly inhibited by O2 and only a fraction of the added bicarbonate was reduced before O2 evolution ceased. The extent of O2 evolution declined with increasing O2 concentration and decreasing initial bicarbonate concentration. At pH 7.2, the initial photosynthetic rate was inhibited about 30% at high O2 levels, but the extent of O2 evolution was unaffected and most of the added bicarbonate was reduced. Photosynthetic O2 evolution with 3-phosphoglycerate as substrate was similarly dependent on pH and O2 concentration. In contrast, there was little effect of O2 and pH on oxaloacetate-dependent oxygen evolution. Acid-base shift experiments with osmotically shocked chloroplasts showed that ATP formation was not affected by O2. The results are discussed in terms of a balance between photosynthetic O2 evolution and O2 consumption by the ribulose diphosphate oxygenase reaction.  相似文献   

18.
Photosynthetic CO2 and O2 exchange was studied in two moss species, Hypnum cupressiforme Hedw. and Dicranum scoparium Hedw. Most experiments were made during steady state of photosynthesis, using 18O2 to trace O2 uptake. In standard experimental conditions (photoperiod 12 h, 135 micromoles photons per square meter per second, 18°C, 330 microliters per liter CO2, 21% O2) the net photosynthetic rate was around 40 micromoles CO2 per gram dry weight per hour in H. cupressiforme and 50 micromoles CO2 per gram dry weight per hour in D. scoparium. The CO2 compensation point lay between 45 and 55 microliters per liter CO2 and the enhancement of net photosynthesis by 3% O2versus 21% O2 was 40 to 45%. The ratio of O2 uptake to net photosynthesis was 0.8 to 0.9 irrespective of the light intensity. The response of net photosynthesis to CO2 showed a high apparent Km (CO2) even in nonsaturating light. On the other hand, O2 uptake in standard conditions was not far from saturation. It could be enhanced by only 25% by increasing the O2 concentration (saturating level as low as 30% O2), and by 65% by decreasing the CO2 concentration to the compensation point. Although O2 is a competitive inhibitor of CO2 uptake it could not replace CO2 completely as an electron acceptor, and electron flow, expressed as gross O2 production, was inhibited by both high O2 and low CO2 levels. At high CO2, O2 uptake was 70% lower than the maximum at the CO2 compensation point. The remaining activity (30%) can be attributed to dark respiration and the Mehler reaction.  相似文献   

19.
The effects of aminoacetonitrile (a competitive inhibitor of glycine oxidation) on net photosynthesis, glycolate pathway intermediates, and ribulose-1,5-bisphosphate (RuBP) levels have been investigated at different O2 and CO2 concentrations with soybean (Glycine max)[L] Merr. cv Pioneer 1677) leaf discs floated on 25 millimolar aminoacetonitrile (AAN) for 50 minutes prior to assay.

At 2% O2 and 200 or 330 microliters per liter CO2, the inhibitor had no effect on the rate of net photosynthesis and RuBP levels when compared with the control levels. At 11% to 60% O2, AAN caused a decrease in net photosynthesis in addition to the inhibition by O2. This extra inhibition ranged from 22% to 59% depending on the O2 and CO2 concentrations. The levels of RuBP, however, were 1.3 to 2.7 times higher than in the control plants at the same O2 concentrations. At 40% O2 and 200 microliters per liter CO2, the inhibitor caused a 6-fold increase in glycine and more than 2-fold increase in glyoxylate levels, whereas those of glycolate decreased by approximately one-half.

The decrease in net photosynthesis observed with AAN is not the result of the depletion of the RuBP pool due to the lack of recycling of carbon from the glycolate pathway to the Calvin cycle. The higher levels of RuBP caused by AAN in photorespiratory conditions, suggest that RuBP carboxylase was inhibited. Glyoxylate could be a possible candidate for the inhibition of the enzyme but what is known so far about its inhibitory properties in vitro may not fit the existing in vivo conditions. An alternative explanation for the inhibition is proposed.

  相似文献   

20.
There has been much interest in the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) as a target for engineering an increase in net CO2 fixation in photosynthesis. Improvements in the enzyme would lead to an increase in the production of food, fiber, and renewable energy. Although the large subunit contains the active site, a family of rbcS nuclear genes encodes the Rubisco small subunits, which can also influence the carboxylation catalytic efficiency and CO2/O2 specificity of the enzyme. To further define the role of the small subunit in Rubisco function, small subunits from spinach, Arabidopsis, and sunflower were assembled with algal large subunits by transformation of a Chlamydomonas reinhardtii mutant that lacks the rbcS gene family. Foreign rbcS cDNAs were successfully expressed in Chlamydomonas by fusing them to a Chlamydomonas rbcS transit peptide sequence engineered to contain rbcS introns. Although plant Rubisco generally has greater CO2/O2 specificity but a lower carboxylation Vmax than Chlamydomonas Rubisco, the hybrid enzymes have 3–11% increases in CO2/O2 specificity and retain near normal Vmax values. Thus, small subunits may make a significant contribution to the overall catalytic performance of Rubisco. Despite having normal amounts of catalytically proficient Rubisco, the hybrid mutant strains display reduced levels of photosynthetic growth and lack chloroplast pyrenoids. It appears that small subunits contain the structural elements responsible for targeting Rubisco to the algal pyrenoid, which is the site where CO2 is concentrated for optimal photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号