首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in skeletal muscle cell differentiation. We show that inhibition of N-cadherin-dependent adhesion impairs the upregulation of the two cyclin-dependent kinase inhibitors p21 and p27, the expression of the muscle-specific genes myogenin and troponin T, and C2C12 myoblast fusion. To determine the nature of N-cadherin-mediated signals involved in myogenesis, we investigated whether N-cadherin-dependent adhesion regulates the activity of Rac1, Cdc42Hs, and RhoA. N-cadherin-dependent adhesion decreases Rac1 and Cdc42Hs activity, and as a consequence, c-jun NH2-terminal kinase (JNK) MAPK activity but not that of the p38 MAPK pathway. On the other hand, N-cadherin-mediated adhesion increases RhoA activity and activates three skeletal muscle-specific promoters. Furthermore, RhoA activity is required for beta-catenin accumulation at cell-cell contact sites. We propose that cell-cell contacts formed via N-cadherin trigger signaling events that promote the commitment to myogenesis through the positive regulation of RhoA and negative regulation of Rac1, Cdc42Hs, and JNK activities.  相似文献   

2.
In the present study, we have examined the insulin-signaling pathways involved in myogenesis in mouse C2C12 skeletal muscle cell line, a cellular system that expresses high number of high affinity insulin receptors. Insulin (50 nM) rapidly (5 min) stimulated beta-chain insulin receptor, activated the phosphatidylinositol (PI) 3-kinase/Akt/p70S6-kinase signaling pathway, as well as phosphorylated both p44/p42- and p38-mitogen-activated protein kinases (MAPKs). Preconfluent cells were differentiated in a serum-free medium in response to 50 nM insulin for 72 h, as revealed by the formation of multinucleated myotubes and the induction of the creatine kinase activity. This differentiation process was also monitored by the inhibition of the PCNA content and induction of the cell cycle inhibitor p21. Furthermore, insulin induced nuclear factor-kappaB (NF-kappaB) DNA binding activity and down-regulated activating protein-1 (AP-1) DNA binding activity throughout the differentiation process. The use of specific inhibitors of the insulin-signaling pathways indicated that myogenesis was precluded by treatment for 72 h with LY294002 (an inhibitor of PI 3-kinase), rapamycin (a p70S6-kinase blocker), and SB203580 or PD169316 (p38-MAPK inhibitors). These inhibitors abolished insulin induction of NF-kappaB DNA binding activity and kappaB-chloramphenicol acetyltransferase (CAT) promoter activity, maintaining expressed cytosolic IkappaB-alpha protein, and increased AP-1 DNA binding activity and TRE-CAT promoter activity. These data suggest that insulin induces myogenesis in C2C12 through PI 3-kinase/ p70S6-kinase and p38-MAPK pathways, the signaling through p44/p42-MAPK being inhibited.  相似文献   

3.
Calpeptin inhibits myoblast fusion by inhibiting the activity of calpain. However, the mechanism by which calpeptin inhibits myogenesis is not completely understood. This study examined how calpeptin affects the expression of the myogenic regulatory factors (MRFs) and the phosphorylation of p38 mitogen-activated protein kinase (MAPK) in differentiating C2C12 myoblasts. Consistent with previous reports, calpeptin inhibited the induction of μ-calpain and the formation of myotubes in these cells. In particular, calpeptin inhibited the expression of the early and mid differentiation markers including MyoD, Myf5, myogenin, and MRF4 as well as the expression of the late markers such as troponin T and myosin heavy chain (MyHC). Calpeptin also suppressed the phosphorylation of p38 MAPK in C2C12 cells. SB203580, a specific p38 inhibitor, prevented the expression of the muscle-specific markers and their fusion into myotubes in these cells, which was further accelerated in the presence of calpeptin. These findings suggest that calpeptin inhibits the myogenesis of skeletal muscle cells by down-regulating the MRFs and involving p38 MAPK signaling.  相似文献   

4.
Cross-talks among intracellular signaling pathways are important for the regulation of cell fate decisions and cellular responses to extracellular signals. Both the Notch pathway and the MAPK pathways play important roles in many biological processes, and the Notch pathway has been shown to interact with the ERK-type MAPK pathway. However, its interaction with the other MAPK pathways is unknown. Here we show that Notch signaling activation in C2C12 cells suppresses the activity of p38 MAPK to inhibit myogenesis. Our results show that Notch specifically induces expression of MKP-1, a member of the dual-specificity MAPK phosphatase, which directly inactivates p38 to negatively regulate C2C12 myogenesis. The Notch-induced expression of MKP-1 is shown to depend on RBP-J. Moreover, inhibition of MKP-1 expression by short interfering RNA suppresses p38 inactivation and partially rescues the negative regulation of myogenesis. These results reveal a novel cross-talk between the Notch pathway and the p38 MAPK pathway that is mediated by Notch induction of MKP-1.  相似文献   

5.
Ikeda K  Takayama T  Suzuki N  Shimada K  Otsuka K  Ito K 《Life sciences》2006,79(20):1936-1943
Low-intensity pulsed ultrasound (LIPUS) is known to accelerate bone regeneration, but the precise cellular mechanism is still unclear. The purpose of this study was to determine the effect of LIPUS on the differentiation of pluripotent mesenchymal cell line C2C12. The cells were cultured in differentiation medium with or without the addition of LIPUS stimulation. The ultrasound signal consisted of 1.5 MHz at an intensity of 70 mW/cm2 for 20 min for all cultures. To verify the cell lineage after LIPUS stimulation, mRNA expression of cellular phenotype-specific markers characterizing osteoblasts (Runx2, Msx2, Dlx5, AJ18), chondroblasts (Sox9), myoblasts (MyoD), and adipocytes (C/EBP, PPARgamma) was studied using real-time polymerase chain reaction analysis. The protein expression of Runx2 and activated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK) were performed using Western blotting. The mRNA expression of Runx2, Msx2, Dlx5, AJ18, and Sox9 was increased markedly by the LIPUS stimulation, whereas the expression of MyoD, C/EBP, and PPARgamma was drastically decreased. In the Western blot analysis, LIPUS stimulation increased Runx2 protein expression and phosphorylation of ERK1/2 and p38 MAPK. Our study demonstrated that LIPUS stimulation converts the differentiation pathway of C2C12 cells into the osteoblast and/or chondroblast lineage via activated phosphorylation of ERK1/2 and p38 MAPK.  相似文献   

6.
Cell migration is critical for many processes, such as angiogenesis, inflammation, development and wound healing, and is also involved in tumour progression and metastasis. Here we show that CXCL12, complement factor 5a (C5a), hepatocyte growth factor (HGF) and platelet-derived growth factor (PDGF)-BB, which stimulate cell migration, also activate p38alpha MAPK. Pharmacological inhibition of this protein kinase with SB 203580 or BIRB 0796, or the genetic ablation of p38alpha MAPK, blocked cell migration induced by the aforementioned chemo-attractants. Macrophages from mice lacking one or more of the other p38 MAPK isoforms showed normal cell migration in response to C5a. We also show that the activation of p38alpha MAPK in response to CXCL12 requires the p21-activated protein kinases (PAK)-1 and PAK-2. MAPKAP-K2 is a protein kinase that is activated by p38alpha MAPK. Reducing its expression using RNA interference blocked CXCL12-induced HeLa cell migration, while macrophages from mice that do not express MAPKAP-K2 failed to migrate in response to C5a. Moreover, RNA interference against the small heat shock protein 27 (HSP27), a physiological substrate of MAPKAP-K2, blocked the CXCL12-induced cell migration. These results demonstrate a general and essential role of the PAK-p38alpha MAPK-MAPKAP-K2-HSP27 signalling pathway in mediating the effects of chemotactic stimuli on cell migration.  相似文献   

7.
The initial phase of muscle differentiation depends on the activities of protein kinases including phosphatidylinositol-3 kinase (PI-3K), the extracellular signal-regulated kinases ERK1/2 (p42 and p44), and p38 kinase. Myogenesis is also characterized by an apoptosis-resistant phenotype of myotubes. The effects of inhibitors of the above-mentioned protein kinases on myogenesis from C2C12 mouse myoblasts and on muscle cell apoptosis were examined individually over 5 successive days. The negative effects of PD98059 (5, 25, 50 microM), LY294002 (1, 5, 10 microM) and SB203580 (1, 5, 10 microM) on cell viability were evident at the initial stage of myogenesis (up to the 3rd day). On the 3rd day, nuclear expression of myogenin was suppressed dose-dependently by SB203580. In contrast, decreased cytoplasmic levels but elevated nuclear expressions of myogenin were observed in myotubes treated with PD98059 or LY294002. SB203580 treatment confirmed that p38 kinase is involved in the onset of myogenesis. The cytoplasmic and nuclear expression of NF-kappaB was elevated after treatment with the above-mentioned protein kinase inhibitors. Likewise, Bcl-2 expression in the cytosol increased. These studies might shed more light on the role of selected kinases and some survival systems in myogenesis impaired by neuromuscular disorders as well as safety of the treatment of the proliferative diseases with the kinase inhibitors.  相似文献   

8.
Liu  Shurong  Xie  Shujuan  Chen  Huafeng  Li  Bin  Chen  Zhirong  Tan  Yeya  Yang  Jianhua  Zheng  Lingling  Xiao  Zhendong  Zhang  Qi  Qu  Lianghu 《中国科学:生命科学英文版》2021,64(10):1612-1623
Skeletal muscle differentiation is a highly coordinated process that involves many cellular signaling pathways and micro RNAs(mi RNAs). A group of muscle-specific mi RNAs has been reported to promote myogenesis by suppressing key signaling pathways for cell growth. However, the functional role and regulatory mechanism of most non-muscle-specific mi RNAs with stage-specific changes during differentiation are largely unclear. Here, we describe the functional characterization of mi R-101 a/b, a pair of non-muscle-specific mi RNAs that show the largest change among a group of transiently upregulated mi RNAs during myogenesis in C2 C12 cells. The overexpression of mi R-101 a/b inhibits myoblast differentiation by suppressing the p38/MAPK,Interferon Gamma, and Wnt pathways and enhancing the C/EBP pathway. Mef2 a, a key protein in the p38/MAPK pathway, was identified as a direct target of mi R-101 a/b. Interestingly, we found that the long non-coding RNA(lnc RNA) Malat1, which promotes muscle differentiation, interacts with mi R-101 a/b, and this interaction competes with Mef2 a m RNA to relieve the inhibition of the p38/MAPK pathway during myogenesis. These results uncovered a "braking" role in differentiation of transiently upregulated mi RNAs and provided new insights into the competing endogenous RNA(ce RNA) regulatory mechanism in myoblast differentiation and myogenesis.  相似文献   

9.
Parathyroid hormone (PTH) and its related peptide regulate endochondral ossification by inhibiting chondrocyte differentiation toward hypertrophy. However, the intracellular pathway for transducing PTH/PTH-related peptide signals in chondrocytes remains unclear. Here, we show that this pathway is mediated by mitogen-activated protein kinase (MAPK) p38. Incubation of hypertrophic chondrocytes with PTH (1-34) induces an inhibition of p38 kinase activity in a time- and dose-dependent manner. Inhibition of protein kinase C prevents PTH-induced p38 MAPK inhibition, whereas inhibition of protein kinase A has no effect. Thus, protein kinase C, but not protein kinase A, is required for the inhibition of p38 MAPK by PTH. Treatment of hypertrophic chondrocytes by PTH or by p38 MAPK inhibitor SB203580 up-regulates Bcl-2, suggesting that Bcl-2 lies downstream of p38 MAPK in the PTH signaling pathway. Inhibition of p38 MAPK in hypertrophic chondrocytes by either PTH, SB303580, or both together leads to a decrease of hypertrophic marker type X collagen mRNA and an increase of the expression of prehypertrophic marker cartilage matrix protein. Therefore, inhibition of p38 converts a hypertrophic cell phenotype to a prehypertrophic one, thereby preventing precocious chondrocyte hypertrophy. Taken together, these data suggest a major role for p38 MAPK in transmitting PTH signals to regulate chondrocyte differentiation.  相似文献   

10.
The Cdo-p38MAPK (p38 mitogen-activated protein kinase) signaling pathway plays important roles in regulating skeletal myogenesis. During myogenic differentiation, the cell surface receptor Cdo bridges scaffold proteins BNIP-2 and JLP and activates p38MAPK, but the spatial-temporal regulation of this process is largely unknown. We here report that KIF5B, the heavy chain of kinesin-1 motor, is a novel interacting partner of BNIP-2. Coimmunoprecipitation and far-Western study revealed that BNIP-2 directly interacted with the motor and tail domains of KIF5B via its BCH domain. By using a range of organelle markers and live microscopy, we determined the endosomal localization of BNIP-2 and revealed the microtubule-dependent anterograde transport of BNIP-2 in C2C12 cells. The anterograde transport of BNIP-2 was disrupted by a dominant-negative mutant of KIF5B. In addition, knockdown of KIF5B causes aberrant aggregation of BNIP-2, confirming that KIF5B is critical for the anterograde transport of BNIP-2 in cells. Gain- and loss-of-function experiments further showed that KIF5B modulates p38MAPK activity and in turn promotes myogenic differentiation. Of importance, the KIF5B-dependent anterograde transport of BNIP-2 is critical for its promyogenic effects. Our data reveal a novel role of KIF5B in the spatial regulation of Cdo–BNIP-2–p38MAPK signaling and disclose a previously unappreciated linkage between the intracellular transporting system and myogenesis regulation.  相似文献   

11.
We have recently shown that insulin induced myogenesis in the mouse C2C12 skeletal muscle cell line by activation of phosphatidylinositol (PI) 3-kinase/p70S6-kinase and p38-mitogen-activated protein kinase (MAPK) and downregulation of p42/p44-MAPK. This study investigated the insulin-signaling pathways involved in mitogenesis, survival, and membrane ruffling in C2C12 myoblasts, a cellular system that besides IGF-I receptors, expressed a high number of functional insulin receptors. Insulin (10 nM) rapidly stimulated beta-chain insulin receptor and IRS-1 tyrosine phosphorylation, IRS-2 being poorly and SHC not phosphorylated at all. However, an association of SHC with IRS-1 was found under insulin stimulation. Insulin stimulated IRS-1 association with p85alpha leading to the activation of PI3-kinase, and, subsequently AKT and p70S6-kinases. Moreover, both p42/p44- and p38-MAPKs resulted in phosphorylation after insulin stimulation. Insulin treatment for 24 h produced mitogenesis, as demonstrated by the increase in ((3)H)-thymidine incorporation, DNA content, the expression of PCNA and cyclin D1 proteins, and the proportion of cells in S + G2/M phases of the cell cycle. This mitogenic effect of insulin was precluded by inhibition of p70S6-kinase (either by rapamycin or by the PI3-kinase inhibitor LY294002) as well as by inhibition of p44/p42-MAPK with PD098059, but was not affected by inhibition of p38-MAPK. Serum deprivation of C2C12 myoblasts resulted in growth arrest at the GO/G1 phases of the cell cycle and apoptosis, as detected either by DNA laddering or by increase in the percentage of hypodiploid cells. Insulin rescued serum-deprived cells from apoptosis in an AKT-dependent manner, as demonstrated by the inhibition of AKT-activity by the use of LY294002 and ML-9, meanwhile neither inhibition of p70S6-kinase, nor MAPK affected insulin-induced survival. Finally, we evaluated the capacity of insulin to modulate actin cytoskeleton rearrangement. Insulin stimulation of myoblasts produced membrane ruffling and decreased actin stress fibers; this biological response being dependent of p38-MAPK, as demonstrated by the use of the p38-MAPK inhibitors SB203580 or PD169316, but independent of PI3-kinase and p42/p44-MAPK.  相似文献   

12.
Myostatin regulates cell survival during C2C12 myogenesis   总被引:5,自引:0,他引:5  
During the myogenic process in vitro, proliferating myoblasts withdraw irreversible from the cell cycle, acquire an apoptosis-resistant phenotype, and fuse into mature myotubes. The key factor regulating both myocyte cell cycle exit and viability during this transition is the the cyclin-dependent kinase inhibitor p21(cip1). Here we show that the expression of myostatin, a TGF-beta superfamily member known to act as a negative regulator of muscle growth, is upregulated in the course of C2C12 cells myogenesis. We also show that transient transfection of C2C12 myobasts with an expression vector encoding mouse myostatin cDNA efficiently inhibits cell proliferation. Paradoxically, myostatin cDNA overexpression also enhances the survival of differentiating C2C12 myocytes, probably by a mechanism involving, at least in part, upregulation of p21(cip1) mRNA. Our results suggest that myostatin role in myogenesis is more complex than initially suggested and involves another level of regulation apart from inhibition of myoblast proliferation.  相似文献   

13.
14.
The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in cell differentiation, but the signaling mechanisms by which it is activated during this process are largely unknown. Cdo is an immunoglobulin superfamily member that functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that the Cdo intracellular region interacts with JLP, a scaffold protein for the p38alpha/beta MAPK pathway. Cdo, JLP, and p38alpha/beta form complexes in differentiating myoblasts, and Cdo and JLP cooperate to enhance levels of active p38alpha/beta in transfectants. Primary myoblasts from Cdo(-/-) mice, which display a defective differentiation program, are deficient in p38alpha/beta activity, and the expression of an activated form of MKK6 (an immediate upstream activator of p38) rescues the ability of Cdo(-/-) cells to differentiate. These results document a novel mechanism of signaling during cell differentiation: the interaction of a MAPK scaffold protein with a cell surface receptor.  相似文献   

15.
Hepatitis B virus X protein (pX) is implicated in hepatocarcinogenesis by an unknown mechanism. Employing a cellular model linked to pX-mediated transformation, we investigated the role of the previously reported Stat3 activation by pX in hepatocyte transformation. Our model is composed of a differentiated hepatocyte (AML12) 3pX-1 cell line that undergoes pX-dependent transformation and a dedifferentiated hepatocyte (AML12) 4pX-1 cell line that does not exhibit transformation by pX. We report that pX-dependent Stat3 activation occurs only in non-pX-transforming 4pX-1 cells and conclude that Stat3 activation is not linked to pX-mediated transformation. Maximum Stat3 transactivation requires Ser727 phosphorylation, mediated by mitogenic pathway activation. Employing dominant negative mutants and inhibitors of mitogenic pathways, we demonstrate that maximum, pX-dependent Stat3 transactivation is inhibited by the p38 mitogen-activated protein kinase (MAPK)-specific inhibitor SB 203580. Using transient-transreporter and in vitro kinase assays, we demonstrate for the first time that pX activates the p38 MAPK pathway only in 4pX-1 cells. pX-mediated Stat3 and p38 MAPK activation is Ca(2+) and c-Src dependent, in agreement with the established cellular action of pX. Importantly, pX-dependent activation of p38 MAPK inactivates Cdc25C by phosphorylation of Ser216, thus initiating activation of the G(2)/M checkpoint, resulting in 4pX-1 cell growth retardation. Interestingly, pX expression in the less differentiated hepatocyte 4pX-1 cells activates signaling pathways known to be active in regenerating hepatocytes. These results suggest that pX expression in the infected liver effects distinct mitogenic pathway activation in less differentiated versus differentiated hepatocytes.  相似文献   

16.
Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activation between the PI 3-kinase/Akt and p38 MAPK pathways that is essential for efficient myoblast differentiation. During myoblast differentiation, Akt kinase activity correlated with S473 but not T308 phosphorylation and occurred 24 h after p38 activation. Inhibition or activation of p38 with SB203580, dominant-negative p38, or MKK6EE regulated Akt kinase activity. Analysis of Akt isoforms revealed a specific increase in Akt2 protein levels that coincided with AktS473 phosphorylation during myogenesis and an enrichment of S473-phosphorylated Akt2. Akt2 promoter activity and protein levels were regulated by p38 activation, thus providing a mechanism for communication. Subsequent Akt activation by S473 phosphorylation was PI 3-kinase dependent and specific for Akt2 rather than Akt1. Complementary to p38-mediated transactivation of Akt, activation or inhibition of PI 3-kinase regulated p38 activity upstream of MKK6, demonstrating reciprocal communication and positive feedback characteristic of myogenic regulation. Our findings have identified novel communication between p38 MAPK and PI 3-kinase/Akt via Akt2.  相似文献   

17.
18.
The purpose of this study was to determine the effect of mechanical stress on the differentiation of the pluripotent mesenchymal cell line C2C12. C2C12 cells were cultured continuously under compressive force (0.25-2.0 g/cm(2)). After mechanical stress loading, the levels of expression of mRNAs and proteins for phenotype-specific markers of osteoblasts (Runx2, Msx2, Dlx5, Osterix, AJ18), chondroblasts (Sox5, Sox9), myoblasts (MyoD), and adipocytes (PPAR gamma) were measured by real-time polymerase chain reaction analysis and Western blot analysis, respectively. The expression of activated p38 mitogen-activated protein kinase (p38 MAPK) was measured by Western blotting and/or ELISA. Loading 0.5 g/cm(2) of compressive force significantly increased the expression levels of Runx2, Msx2, Dlx5, Osterix, Sox5, and Sox9. In contrast, the expression levels of AJ18, MyoD, and PPAR gamma were decreased by exposure to 0.5 g/cm(2) of compressive force. Loading 0.5 g/cm(2) of compressive force also induced the phosphorylation of p38 MAPK. SB203580, which is a specific inhibitor of p38 MAPK, inhibited the compressive force-induced phosphorylation of p38 MAPK and partially blocked compressive force-induced Runx2 mRNA expression. These results demonstrate that compressive force stimulation directs the differentiation pathway of C2C12 cells into the osteoblast and chondroblast lineage via activated phosphorylation of p38 MAPK.  相似文献   

19.
20.
In chick skeletal muscle cell primary cultures, we previously demonstrated that 1alpha,25(OH)2-vitamin D3 [1alpha,25(OH)2D3], the hormonally active form of vitamin D, increases the phosphorylation and activity of the extracellular signal-regulated mitogen-activated protein (MAP) kinase isoforms ERK1 and ERK2, their subsequent translocation to the nucleus and involvement in DNA synthesis stimulation. In this study, we show that other members of the MAP kinase superfamily are also activated by the hormone. Using the muscle cell line C2C12 we found that 1alpha,25(OH)2D3 within 1 min phosphorylates and increases the activity of p38 MAPK. The immediately upstream mitogen-activated protein kinase kinases 3/6 (MKK3/MKK6) were also phosphorylated by the hormone suggesting their participation in p38 activation. 1Alpha,25(OH)2D3 was able to dephosphorylate/activate the ubiquitous cytosolic tyrosine kinase c-Src in C2C12 cells and studies with specific inhibitors imply that Src participates in hormone induced-p38 activation. Of relevance, 1alpha,25(OH)2D3 induced in the C2C12 line the stimulation of mitogen-activated protein kinase activating protein kinase 2 (MAPKAP-kinase 2) and subsequent phosphorylation of heat shock protein 27 (HSP27) in a p38 kinase activation-dependent manner. Treatment with the p38 inhibitor, SB203580, blocked p38 phosphorylation caused by the hormone and inhibited the phosphorylation of its downstrean substrates. 1Alpha,25(OH)2D3 also promotes the phosphorylation of c-jun N-terminal protein kinases (JNK 1/2), the response is fast (0.5-1 min) and maximal phosphorylation of the enzyme is observed at physiological doses of 1alpha,25(OH)2D3 (1 nM). The relative contribution of ERK-1/2, p38, and JNK-1/2 and their interrelationships in hormonal regulation of muscle cell proliferation and differentiation remain to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号