首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Species-rich plant communities characteristic for succession from mesotrophic open water to fen are very rare in The Netherlands. These vegetation types used to occur in turf ponds in the low lying peatland area, created by peat dredging and filled with water due to seepage of mesotrophic, well-buffered groundwater. One of the goals of the National Nature Policy Plan is to create new opportunities for the initial terrestrialization communities through ecological engineering, e.g., restoration and creation of open water habitats. Restoration of the abiotic conditions in acidified floating fen communities is only possible by a combined measure of removal of the Sphagnum-layer and superficial drainage of surplus rain water. New turfponds have been excavated. This study showed that the abiotic conditions (i.e., water depth and water chemistry) are favorable for the development of aquatic communities characteristic of mesotrophic conditions. The aquatic plant species found in the new ponds also point in this direction, e.g., Chara major and Ch. delicatula are very abundant as are seven Potamogeton species. It is concluded that a constant discharge of groundwater and a good connectivity between the ponds and the existing remnants of plant communities desired in the area are essential for the conservation and development of these species-rich plant communities.  相似文献   

2.
3.
Submerged freshwater macrophytes decline with increasing eutrophication. This has consequences for ecosystem processes in shallow lakes and ponds as macrophytes can reduce algal blooms under eutrophic conditions. We hypothesize that the productivity of submerged vegetation, biomass change under eutrophication and the suppression of algal blooms may be affected by macrophyte community composition. To test our hypothesis, we established three macrophyte community types in 36 fishless experimental ponds: one dominated by the oligotrophic species Chara globularis, one dominated by the eutrophic species Potamogeton pectinatus and a diverse vegetation which became co-dominated by Elodea nuttallii and C. globularis, and we fertilized half of the ponds.The macrophyte communities produced different amounts of biomass and they responded differently to fertilization. The community dominated by Potamogeton produced the lowest overall biomass, but was not affected by nutrient addition. The communities dominated by Chara and co-dominated by Elodea and Chara produced more than four-fold the amount of biomass produced in Potamogeton communities under oligotrophic conditions, but were strongly negatively affected by nutrient addition.Phytoplankton abundance did not differ significantly among the plant community types, but showed large variation within community types. There was a significant negative relationship between spring macrophyte biomass and the probability of summer algal blooms. The occurrence of algal blooms coincided with low daphnid densities and high pH (>10).We conclude that the macrophyte community composition, characterized by the dominant species, strongly affected the amount of biomass production as well as the short-term response of the vegetation to nutrient enrichment. Macrophyte community composition had no direct effect on algal blooms, but can affect the occurrence of algal blooms indirectly as these occurred only in ponds with low (<100 g/m2 DW) spring macrophyte biomass.  相似文献   

4.
Biological plant invasions pose a serious threat to native biodiversity and have received much attention, especially in terrestrial habitats. In freshwater ecosystems impacts of invasive plant species are less studied. We hypothesized an impact on organisms from the water column and from the sediment. We then assessed the impact of three aquatic invasive species on the plants and macroinvertebrates: Hydrocotyle ranunculoides, Ludwigia grandiflora and Myriophyllum aquaticum. Our research on 32 ponds in Belgium indicated that the reduction in the native plant species richness was a common pattern to invasion. However, the magnitude of impacts were species specific. A strong negative relationship to invasive species cover was found, with submerged vegetation the most vulnerable to the invasion. Invertebrate richness, diversity and abundance were measured in sediments of invaded and uninvaded ponds along a gradient of H. ranunculoides, L. grandiflora, and M. aquaticum species cover. We found a strong negative relationship between invasive species cover and invertebrate abundance, probably due to unsuitable conditions of the detritus for invertebrate colonization. Taxonomic compositions of aquatic invertebrate assemblages in invaded ponds differed from uninvaded ponds. Sensitive benthos, such as mayflies were completely absent in invaded ponds. The introduction of H. ranunculoides, L. grandiflora, and M. aquaticum in Belgian ponds has caused significant ecological alterations in the aquatic vegetation and the detritus community of ponds.  相似文献   

5.
The influence of different macrophyte taxa or growth forms on biological and environmental variables is often analysed in one-lake studies. However, the unique combination of non-vegetational characteristics of a waterbody, i.e. its site identity, can be an influential factor in itself, shaping the measured parameters irrespective of the presence or absence of certain macrophyte species. In this situation, the relative strengths of all factors can be determined best in a study that explicitly accounts for differences in the identity of the waterbodies. Several functional macrophyte groups are known to provide a potent microinvertebrate refuge or permanent habitat. The objective of this study was to detect patterns in the zooplankton assemblages associated with different extensive habitats of macrophyte species and to relate these patterns to three major factors: the microhabitat, the pond identity and the seasonality in the warmer months of the year. Five ponds located in the Woluwe catchment of the Brussels-Capital Region (Belgium) were studied monthly for macrophyte and zooplankton characteristics from July until October 2005. The vegetation in the clear ponds was characterized by extensive monospecific stands (Ceratophyllum, Chara, Nitella, Potamogeton, Nuphar and filamentous algae). Zooplankton could be analysed in seven different vegetation types and in the open water zones and contained a total of 17 cladoceran and 27 rotifer genera. Principal components analysis (PCA) ordination of zooplankton communities showed a seasonal gradient and a tendency to group within-pond habitats, although they differed in macrophyte species and habitat structure. Despite the absence of clustering of similar microhabitats across ponds, percent volume infested (PVI), vegetation biomass density and Daphnia length (used as a proxy for fish predation pressure) contributed significantly positive to the Shannon zooplankton biodiversity indices. Moreover, densities of most zooplankton subgroups and of total zooplankton were significantly and positively related to PVI. It is assumed that in eutrophic ponds, extensive, often monospecific macrophyte vegetations provide an ecological environment suitable for both macrophyte-associated species and migrating pelagic zooplankton, thereby maintaining a high microinvertebrate biodiversity.  相似文献   

6.
The microcrustacean and rotifer communities associated with submerged aquatic plants were studied over a three-year period in a series of experimental ponds, created within a fenland drainage ditch. Seasonal abundance and spatial distributions were assessed. The ponds contained a varying amount of vegetation, dominated either by Ceratophyllum demersum or Stratiotes aloides and this had consequences for the ponds' animal communities. Increasing densities of Ceratophyllum were associated with increases in weed-associated entomostracans whereas increases in Stratiotes led to a general decrease in associated animals. Increases in both plant species led to reductions in abundance of Daphnia, but to differing amounts. A relatively low density plant population in the presence of zooplanktovorous fish did not provide a refuge from predation for large-bodied Cladocera.  相似文献   

7.
The paper presents the results of an examination of the phycical-chemical parameters of water together with an analysis of the chlorophyll a concentration of 12 small water bodies situated within urban and suburban areas of the city of Poznań (mid-west Poland)—typical mid-forest, strongly anthropogenically modified in the urban landscape, strongly antropogenically modified in an agricultural area and clay-pits. There were zones of open water (Unvegetated Zone) as well as zones of rush and aquatic vegetation (Vegetated Zone) distinguished in the examined ponds. The influence of the rush vegetation, nymphaeids and elodeids on the abiotic parameters of an aquatic environment was examined. Water samples were taken during the summer of 2004 from 12 stations within the open water and 24 within macrophytes. The plant matter was randomly collected in triplicate from the central part of the vegetated stand. The influence of macrophytes on the abiotic features of water was estimated using the parameter of the plant length (cm l−1) and the plant biomass (g l−1). In the studied ponds 12 aquatic macrophyte communities were distinguished. A salient feature of submerged macrophytes was a great density of plant stems along with considerebly low biomass, however, the rush vegetation (Phragmitetum communis, Typhetum latifoliae) when compared to nymphaeids (Polygonetum natantis, Potametum natantis) and elodeids (Potametum lucentis) was characterised by lower stem densities and higher biomass. The water bodies were alkaline and of pronounced hardness. In most of them high trophy conditions were found with especially high concentrations of phosphorus (96 μg l−1 on average). There was significant differentiation in the water chemistry (mainly in respect to mineral compounds) between the Vegetated and Unvegetated Zones as well as between particular aquatic macrophyte communities.  相似文献   

8.
9.
Rotifers are important components of freshwater ecosystems and sensitive indicators of environmental changes. This study was carried out to test the hypothesis that, among environmental variables, salinity and aquatic vegetation have significant effects on rotifer diversity and abundance. We analyzed rotifer assemblages in the littoral zone of 22 hydromorphologically different shallow waterbodies in West Azarbaijan, Iran. Rotifer diversity and abundance were not significantly associated with basin morphology, but were positively correlated with the percentage of vegetation cover. Salinity and electroconductivity positively influenced rotifer abundance, while they had significantly negative effects on rotifer diversity. Halobiont species from the genera Brachionus, Hexarthra, Synchaeta, and Notholca reached their highest abundances in the waterbodies with pronouncedly higher salinities. Our findings are in agreement with recent records showing that distinct rotifer assemblages occur in saline and non-saline waterbodies. The role of salinity and aquatic vegetation as the most important environmental drivers in shaping rotifer communities is confirmed. The results of this study suggested that environmental changes could be significant on the micro-biogeographical level, and that the interaction of salinity and observed human impact, i.e., trophic level, promote rotifer abundance as sensitive indicators of environmental changes.  相似文献   

10.
Using GPS technology and community research methods for plant communities, we investigated the distribution patterns of aquatic plant communities in the high plateaus of the Napahai Wetlands, Yunnan, China, as well as the species changes of plant communities compared with that of 24 years ago since 2005. We found that the types and numbers of aquatic plant communities have changed. Some pollution-tolerant, nutrient-loving plant communities such as Scirpus tabernaemontani, Zizania caduciflora, Myriophyllum spicatum, and Azolla imbricata flourished, while the primary aquatic plant communities were reduced or even disappeared. The number of aquatic plant communities were increased from nine to 12 with the addition of two new emergent plant communities and one new floating-leaved plant community. The increase in emergent plant communities was significant. From east to west and from south to north, various types of plant communities were continuously distributed, including floating-leaved plant communities, emergent plant communities and submerged plant communities. The composition of the communities became more complicated and the number of accompanying species increased, while the percentage ratio of dominant plant species declined. In 2005, the coverage of emergent plant communities was the largest (528.42 hm2) followed by submerged plant communities (362.50 hm2) and the floating-leaf plant communities was the smallest (70.23 hm2). The variations in the distribution of aquatic plant communities in the Napahai Wetlands reflect the natural responses to the change of the wetland ecological environment. This study indicates that human disturbances have led to an inward movement of the wetland shoreline, a decrease in water quality and a reduction in wetland habitat. __________ Translated from Acta Ecologica Sinica, 2006, 26(11): 3624–3630 [译自: 生态学报]  相似文献   

11.
Plant communities as a tool in temporary ponds conservation in SW Portugal   总被引:1,自引:1,他引:0  
Temporary ponds are seasonal wetlands annually subjected to extreme and unstable ecological conditions, neither truly aquatic nor truly terrestrial. This habitat and its flora have been poorly studied and documented because of the ephemeral character of the flora, the changeable annual weather that has a great effect on the small, herbaceous taxa and the declining abundance of temporary ponds. The objectives of this study are: (a) to define plant community diversity in terms of floristic composition of ephemeral wetlands in SW Portugal, (b) to identify temporary pond types according to their vegetation composition and (c) to identify those ponds that configure the European community priority habitat (3170* – Mediterranean temporary ponds). Vegetation sampling was conducted in 29 ponds, identifying 168 species grouped among 15 plant communities. Soil texture, pH, organic C and N content were measured, but only N and percent of clay appear to be related with the distribution of each community type. The results showed that ephemeral wetlands could be classified into four type: vernal pools, marshlands, deep ponds and disturbed wetlands. Vernal pools correspond to the Mediterranean temporary ponds (3170*), protected as priority habitat under the EU Habitats Directive. Submersed Isoetes species (Isoetes setaceum and Isoetes velatum) represents, together with Eryngium corniculatum, the indicator species for vernal pools. We identify also indicator plant communities of this priority habitat, namely I. setaceum and E. corniculatumBaldellia ranunculoides plant communities. In this region, the conservation of temporary ponds has so far been compatible with traditional agricultural activities, but today these ponds are endangered by the intensification of agriculture and the loss of traditional land use practices and by the development of tourism. Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008  相似文献   

12.
Plant communities were examined in ponds in Brittany (north-west France) and then classified into six types reflecting different trophic levels: oligotrophic, oligodystrophic, mesotrophic, meso-dystrophic, meso-eutrophic an eutrophic. In 45 of these ponds, aquatic snails were sampled in order to determine the relationship between the gastropod species richness and the water trophic levels as indicated by plant community types. The second aim of this study was to determine whether some gastropod species were characteristic of a particular trophic level. The number of plant communities in the ponds was also taken into consideration.A trophic gradient was found along the F1 axis on the principal plane of the correspondence analyses. The species richnesses low or zero and especially the lymneid, Lymnaea glabra were close to the oligo-dystrophic and oligotrophic communities. In contrast, the highest numbers of snail species (5 and above) were found in the most eutrophic ponds where Hippeutis complanatus, Planorbis planorbis, Lymnaea stagnalis and Planorbarius corneus were particularly common. The latter species inhabited the ponds including on average the greatest number of macrophyte communities but no significant differences were found between snail species. The ponds which contained the greatest numbers of plant communities included the richest gastropod communities (7 and more) but also the poorest ones (0 or 1 species). Relationships between freshwater snails, macrophytes and trophic levels are discussed.Laboratoire de Zoologie et d'Ecophysiologie  相似文献   

13.
1. Habitat loss is a major driver of biodiversity decline worldwide. Temporary waterbodies are especially vulnerable because they are sensitive both to human impact and to climatic variations. Pond‐breeding amphibians are often dependent on temporary waterbodies for their reproduction, and hence are sensitive to loss of temporary ponds. 2. Here we present the results of a 5‐year study regarding the use of temporary aquatic habitats by amphibians in a hydrologically modified area of Eastern Europe (Romania). The annual number of aquatic habitats varied between 30 and ~120. Each aquatic habitat was characterised by a number of variables such as: ‘type’ (pond, drainage ditch and archaeological ditch), ‘hydroperiod’ (number of weeks the ponds were filled in a given year), ‘depth’ (cm), ‘area’ (m2) and the density of predatory insects (‘predation’). The turnover rate for each amphibian species for each wetland was calculated based on the pond occupancy. 3. Eight amphibian species were recorded from the aquatic habitats. Hydroperiod was the most important variable, positively influencing wetland use by amphibians and their reproductive success. Most species preferred drainage ditches for reproduction, and the reproductive success was highest in this habitat type every year. For most of the species, the local extinction rate was higher than the colonisation rate in the first 4 years, but the situation reversed in the last year of the study when wetland use by amphibians sharply increased because of high rainfall. 4. This study confirms the importance for amphibians of maintaining and managing aquatic habitat diversity at small spatial scales. Man‐made aquatic habitats such as drainage ditches may be important habitats for amphibians, and this should be considered in restoration activities.  相似文献   

14.
Invasions of Typha (cattail) and/or Phragmites (common reed) in wetland ecosystems result in changes in species richness, diversity and composition of vascular plants. These invasions are particularly harmful in lakes where threatened species and/or communities are found. The spread of two species of Typha (T. angustifolia and T. latifolia) and of Phragmites australis in the Stagnone Lake, on Capraia Island (Tuscan Archipelago — Mediterranean sea) was studied. We report this progressive invasion, documented by means of a series of vegetation maps (1991, 1995, 1998 and 2009). The expansion rate of the three invasive helophytes and the shrinking of the aquatic communities were studied using a GIS system. The impact of the spread of these three species on the floristic characteristics of the plant communities and the lake vegetation in general, was analysed by means of 15 plots of 1 m2 in 2000 and in 2009. Statistical analysis of the two series shows a significant change in the floristic composition of the communities as a result of the invasion process. Many important groups of species, such as many aquatic species, decrease in number and in cover value.  相似文献   

15.
Four farm ponds in various stages of Chara vulgaris succession -from the initial invasion of the alga to its nearly complete replacement-were followed each week from ice cover to ice cover. Chemical, physical, and biological parameters were analyzed in order to determine differences between ponds and to discover the biological and physicochemical factors associated with succession in Chara vulgaris ponds. The data were analyzed statistically by intraclass (single factor) analysis of variance, the Student's t-test, and stepwise multiple regression analysis.The initial invasion of C. vulgaris appeared to be preceded by a lowering of the nutrient levels of the pond by Zygnematales growth and by the substrate-stabilizing growth of Rhizoclonium sp. Chara-dominated ponds had significantly lower free CO2, bicarbonate alkalinity, and total hardness readings. Carbonate alkalinity, low phytoplankton productivity, high dissolved O2, low phosphate, and high Secchi disk readings were also characteristic of ponds in which C. vulgaris was dominant.In ponds where C. vulgaris appeared in the process of being replaced, the physicochemical factors were more closely associated with phytoplankton productivity and diversity and less closely with submerged vegetation species.Succession from C. vulgaris domination to a Najas-Potamogeton community appeared to involve shading of the former by the latter and was accelerated by the smothering effect of decaying debris caused by Gloeotrichia sp.In the final stages of succession, turbid conditions resulting from the lack of substrate-stabilizing vegetation and increased phytoplankton growth appear to have discouraged C. vulgaris growth early in the season.  相似文献   

16.
Four aged Madison County, New York farm ponds were selected to see if various treatments could be used to restore the water quality. One pond was untreated and used as a control; another pond was partially drained and exposed to the drying and oxidizing effects of the air over the fall and winter; the other two ponds were drained and the accumulated sediment removed by bulldozing. In these latter two ponds, Chara vulgaris vegetation was inoculated following the restoration process. C. vulgaris growth rapidly became the dominant producer where this inoculation was accomplished in the fall of 1976, and it is expected that the other pond will also become a C. vulgaris pond in 1978 — after its oogonia have undergone the requisite winter dormancy period.Early C. vulgaris growth was found to be associated with clear water conditions and lessened phytoplankton growth; short, bushy, light-inhibited growth by the algae stabilized the bottom against wind-caused turbidity because of its rhizoidal growth within the substrate. Pioneer C. vulgaris growth was also found to be highly productive, significantly lowering the pond's CO2 readings.Investigators of aquatic systems are cautioned to be cognizant of the effect of epiphytic growth on successional events in such environments. Such epiphytes are surely important, if not prime, causes of the demise of various aquatic macrophytes.The partial draining and exposing of a pond over the fall and winter did not yield significantly improved water conditions.  相似文献   

17.
The cyanobacterial species composition of nine Greek waterbodies of different type and trophic status was examined during the warm period of the year (May–October). Cyanobacterial water blooms were observed in all waterbodies. Forty-six cyanobacterial taxa were identified, 11 of which are known to be toxic. Eighteen species are reported for the first time in these waterbodies, 8 of which are known to produce toxins. Toxin producing species were found in all of the waterbodies and were primarily dominant in bloom formations (e.g., Microcystis aeruginosa, Anabaena flos-aquae, Aphanizomenon flos-aquae and Cylindrospermopsis raciborskii). Cosmopolitan species (e.g., M. aeruginosa), pantropic (e.g., Anabaenopsis tanganyikae) and holarctic species (e.g., Anabaena flos-aquae) were encountered. Shallow, eutrophic waterbodies had blooms dominated by Microcystis species and were characterized by phytoplankton association M. Anabaena and Aphanizomenon species of association H were dominant in waterbodies with low dissolved inorganic nitrogen and thermal stratification in the summer. Total cyanobacterial biovolumes (CBV) ranged from 7 to 9,507 cm3 m−3 and were higher than Alert Level 2 and Guidance Level 2 (10 cm3 m−3; World Health Organization; WHO) in seven of the waterbodies. Chlorophyll a concentrations ranged from 6 to 90,000 mg m−3 and were higher than Alert Level 2 and Guidance Level 2 (50 mg m−3; WHO) in eight of the waterbodies. There is also an elevated risk of acute toxicosis (Guidance Level 3; WHO) in five waterbodies. Water of an undesirable quality, hazardous to humans and animals occurs in several Greek waterbodies.  相似文献   

18.
Biodiversity patterns in cladoceran communities were investigated in urban waterbodies in relation with residential land use, pond management, and waterbody environments. We evaluated species richness in the pelagic and littoral zones of eighteen waterbodies of a large Canadian city. Gamma diversity (26 species) observed at a small scale in the urban survey was important comparatively to large-scale surveys of lakes. Beta diversity ranged from 1 to 8 species among waterbodies. We tested if littoral species greatly contributed to regional diversity in urban waterbodies. Littoral species (Chydoridae, Ilyocryptidae, Macrothricidae, Polyphemidae) accounted for 58% of the total species pool. We distinguished five cladoceran assemblages associated to different waterbodies (temporary ponds, permanent lakes, and wetlands). Cladoceran communities were more diverse and variable in permanent lakes than in temporary ponds. Changes in cladoceran species assemblages among waterbodies were driven by variations in waterbody size and phosphorus enrichment, macrophyte and algal biomass, urban density, pond management practices, and the presence of potential predators as fish and macroinvertebrates. Our study indicates that both artificial ponds and lakes and natural wetlands are valuable habitats for the conservation of cladoceran biodiversity and rare endemic species in urban regions. Further research on pond management strategies promoting urban aquatic biodiversity should be undertaken.  相似文献   

19.
We evaluated the use of a simple rake sampling technique for predicting the biomass of submersed aquatic vegetation. Vegetation sampled from impounded areas of the Mississippi River using a rake sampling technique, was compared with vegetation harvested from 0.33-m2 quadrats. The resulting data were used to model the relationship between rake indices and vegetation biomass (total and for individual species). We constructed linear regression models using log-transformed biomass data for sites sampled in 1999 and 2000. Data collected in 2001 were used to validate the resulting models. The coefficient of determination (R 2) for predicting total biomass was 0.82 and ranged from 0.59 (Potamogeton pectinatus) to 0.89 (Ceratophyllum demersum) for individual species. Application of the model to estimate total submersed aquatic vegetation is illustrated using data collected independent of this study. The accuracy and precision of the models tested indicate that the rake method data may be used to predict total vegetation biomass and biomass of selected species; however, the method should be tested in other regions, in other plant communities, and on other species. Handling editor: S. M. Thomaz  相似文献   

20.
The fish rotan (Perccottus gleniiDybowski) was accidentally introduced into European Russia from the Amur River basin. Rotan is capable of colonising small waterbodies – favourable breeding sites of native amphibians. To reveal its influence on the native aquatic fauna, monitoring of small waterbodies has been carried out since 1994 in the region of Lake Glubokoe Reserve (Moscow Province, Russia). The fish's diet includes a wide range of animal species of all trophic levels. Rotan considerably decreases the species richness of aquatic macroinvertebrates and larval amphibians. As a rule, most amphibian species (Triturus cristatus, T. vulgaris, Rana temporaria, R. arvalis, R. lessonae) and the fish Carassius carassius failed to breed successfully in ponds inhabited by rotan. In contrast, the toad Bufo bufo bred successfully in such sites because its larvae are distasteful to rotan. Rotan–amphibian interactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号