首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate structural differences between propulsory and antigravity muscles, the spatial distribution of slow (type I) and fast (type II) muscle fibres in forelimb muscles of two species of small mammals was studied, Galea musteloides and Tupaia belangeri. Serial sections through complete forelimbs were prepared. Following histochemical fibre typing, the forelimbs were reconstructed three-dimensionally using product design software. Most forelimb muscles of both species showed a homogenous distribution of type I fibres. In the supraspinatus and triceps brachii (capita longum et laterale) muscles, however, a segregation of fibre types into ”fast” superficial areas and ”slow” deep regions was observed. Slow regions contained at least 60% type I fibres and were positioned along intramuscular extensions of the tendons of insertion. The functional implications of fibre type regionalization are discussed. An analysis of intramuscular fibre type distribution during postnatal myogenesis revealed no significant differences in muscle fibre differentiation between altricial and precocial juveniles. Differences in locomotor ability probably arise from heterochronic development of connective tissue components (endo- and perimysium). Accepted: 10 June 1999  相似文献   

2.
Sarcomere length changes are central to force production and excursion of skeletal muscle. Previous modeling indicates non-uniformity of that if mechanical interaction of muscle with its surrounding muscular and connective tissues is taken into account. Hence, quantifying length changes along the fascicles of activated human muscle in vivo is crucial, but this is lacking due to technical complexities. Combining magnetic resonance imaging deformation analyses and diffusion tensor imaging tractography, the aim was to test the hypothesis that submaximal plantar flexion activity at 15% MVC causes heterogeneous length changes along the fascicles of human medial gastrocnemius (GM) muscle. A general fascicle strain distribution pattern shown for all subjects indicates that proximal track segments are shortened, whereas distal ones are lengthened (e.g., by 13% and 29%, respectively). Mean fiber direction strains of different tracts also shows heterogeneity (for up to 57.5% of the fascicles). Inter-subject variability of amplitude and distribution of fascicle strains is notable. These findings confirm the hypothesis and are solid indicators for the functionally dependent mechanics of human muscle, in vivo. Heterogeneity of fascicle strains can be explained by epimuscular myofascial force transmission. To the best of our knowledge, this is the first study, which quantified local deformations along human skeletal muscle fascicles caused by sustained submaximal activation. The present approach and indicated fascicle strain heterogeneity has numerous implications for muscle function in health and disease to estimate the muscle’s contribution to the joint moment and excursion and to evaluate mechanisms of muscle injury and several treatment techniques.  相似文献   

3.
B-mode ultrasound can be used to non-invasively image muscle fascicles during both static and dynamic contractions. Digitizing these muscle fascicles can be a timely and subjective process, and usually studies have used the images to determine the linear fascicle lengths. However, fascicle orientations can vary along each fascicle (curvature) and between fascicles. The purpose of this study was to develop and test two methods for automatically tracking fascicle orientation. Images were initially filtered using a multiscale vessel enhancement (a technique used to enhance tube-like structures), and then fascicle orientations quantified using either the Radon transform or wavelet analysis. Tests on synthetic images showed that these methods could identify fascicular orientation with errors of less than 0.06°. Manual digitization of muscle fascicles during a dynamic contraction resulted in a standard deviation of angle estimates of 1.41° across ten researchers. The Radon transform predicted fascicle orientations that were not significantly different from the manually digitized values, whilst the wavelet analysis resulted in angles that were 1.35° less, and reasons for these differences are discussed. The Radon transform can be used to identify the dominant fascicular orientation within an image, and thus used to estimate muscle fascicle lengths. The wavelet analysis additionally provides information on the local fascicle orientations and can be used to quantify fascicle curvatures and regional differences with fascicle orientation across an image.  相似文献   

4.
Evaluation of the relationships between muscle structure and digging function in fossorial species is limited. Badgers and other fossorial specialists are expected to have massive forelimb muscles with long fascicles capable of substantial shortening for high power and applying high out‐force to the substrate. To explore this hypothesis, we quantified muscle architecture in the thoracic limb of the American badger (Taxidea taxus) and estimated the force, power, and joint torque of its intrinsic musculature in relation to the use of scratch‐digging behavior. Architectural properties measured were muscle mass, belly length, fascicle length, pennation angle, and physiological cross‐sectional area. Badgers possess hypertrophied shoulder flexors/humeral retractors, elbow extensors, and digital flexors. The triceps brachii is particularly massive and has long fascicles with little pennation, muscle architecture consistent with substantial shortening capability, and high power. A unique feature of badgers is that, in addition to elbow joint extension, two biarticular heads (long and medial) of the triceps are capable of applying high torques to the shoulder joint to facilitate retraction of the forelimb throughout the power stroke. The massive and complex digital flexors show relatively greater pennation and shorter fascicle lengths than the triceps brachii, as well as compartmentalization of muscle heads to accentuate both force production and range of shortening during flexion of the carpus and digits. Muscles of most functional groups exhibit some degree of specialization for high force production and are important for stabilizing the shoulder, elbow, and carpal joints against high limb forces generated during powerful digging motions. Overall, our findings support the hypothesis and indicate that forelimb muscle architecture is consistent with specializations for scratch‐digging. Quantified muscle properties in the American badger serve as a comparator to evaluate the range of diversity in muscle structure and contractile function that exists in mammals specialized for fossorial habits. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The present study investigated the mechanical properties of tendon fascicles from the anterior and posterior human patellar tendon. Collagen fascicles from the anterior and posterior human patellar tendon in healthy young men (mean +/- SD, 29.0 +/- 4.6 yr, n = 6) were tested in a mechanical rig. A stereoscopic microscope equipped with a digital camera recorded elongation. The fascicles were preconditioned five cycles before the failure test based on pilot data on rat tendon fascicle. Human fascicle length increased with repeated cycles (P < 0.05); cycle 5 differed from cycle 1 (P < 0.05), but not cycles 2-4. Peak stress and yield stress were greater for anterior (76.0 +/- 9.5 and 56.6 +/- 10.4 MPa, respectively) than posterior fascicles (38.5 +/- 3.9 and 31.6 +/- 2.9 MPa, respectively), P < 0.05, while yield strain was similar (anterior 6.8 +/- 1.0%, posterior 8.7 +/- 1.4%). Tangent modulus was greater for the anterior (1,231 +/- 188 MPa) than the posterior (583 +/- 122 MPa) fascicles, P < 0.05. In conclusion, tendon fascicles from the anterior portion of the human patellar tendon in young men displayed considerably greater peak and yield stress and tangent modulus compared with the posterior portion of the tendon, indicating region-specific material properties.  相似文献   

6.
The muscle fiber fascicles of the temporo-masseter complex of the cat were minutely dissected. Some heads were embedded in paraffin while others were put into methyl-methacrylate resin and sections were made. The results of this anatomical study demonstrate that this complex consists of the masseter muscle, the temporal muscle and two well individualized transitional fascicles: the maxillomandibularis and zygomato-comandibularis muscles. The masseter and temporal muscles are composed of individualized compartments in which the orientation and aponeuroses of the fibers of which they are composed differ with regard to the centric occlusion plane. The masseter muscle consists of a superficial fascicle made up of two layers, an intermediate fascicle, and a deep fascicle composed of two layers. The temporal muscle consists of one anterior orbital part and one posterior temporal part. This structure is in accordance with the mammalian archetype described by Gaspard and Saban. These findings should lead towards a homology-based nomenclature founded on comparative anatomy studies of mammalian species. Such a classification would permit the comparison of results obtained from physiological and histochemical studies of these complex muscle fibers when they are published by different researchers.  相似文献   

7.
The aim of the present study was to investigate the behavior of human muscle fascicles during dynamic contractions. Eight subjects performed maximal isometric dorsiflexion contractions at six ankle joint angles and maximal isokinetic concentric and eccentric contractions at five angular velocities. Tibialis anterior muscle architecture was measured in vivo by use of B-mode ultrasonography. During maximal isometric contraction, fascicle length was shorter and pennation angle larger compared with values at rest (P < 0.01). During isokinetic concentric contractions from 0 to 4.36 rad/s, fascicle length measured at a constant ankle joint angle increased curvilinearly from 49.5 to 69.7 mm (41%; P < 0.01), whereas pennation angle decreased curvilinearly from 14.8 to 9.8 degrees (34%; P < 0.01). During eccentric muscle actions, fascicles contracted quasi-isometrically, independent of angular velocity. The behavior of muscle fascicles during shortening contractions was believed to reflect the degree of stretch applied to the series elastic component, which decreases with increasing contraction velocity. The quasi-isometric behavior of fascicles during eccentric muscle actions suggests that the series elastic component acts as a mechanical buffer during active lengthening.  相似文献   

8.
Neurophysiology - Surface EMGs and activity of 73 single motor units (MUs) of the m. triceps brachii caput laterale (TBcl) and 25 units of the m. biceps brachii caput longum (BBcl) were recorded in...  相似文献   

9.
For detailed analyses of muscle adaptation mechanisms during growth, ageing or disease, reliable measurements of muscle architecture are required. Diffusion tensor imaging (DTI) and DTI tractography have been used to reconstruct the architecture of human muscles in vivo. However, muscle architecture measurements reconstructed with conventional DTI techniques are often anatomically implausible because the reconstructed fascicles do not terminate on aponeuroses, as real muscle fascicles are known to do. In this study, we tested the reliability of an anatomically constrained DTI-based method for measuring three-dimensional muscle architecture. Anatomical magnetic resonance images and diffusion tensor images were obtained from the left legs of eight healthy participants on two occasions one week apart. Muscle volumes, fascicle lengths, pennation angles and fascicle curvatures were measured in the medial and lateral gastrocnemius, soleus and the tibialis anterior muscles. Averaged across muscles, the intraclass correlation coefficient was 0.99 for muscle volume, 0.81 for fascicle length, 0.73 for pennation angle and 0.76 for fascicle curvature. Measurements of muscle architecture obtained using conventional DTI tractography were highly sensitive to variations in the stopping criteria for DTI tractography. The application of anatomical constraints reduced this sensitivity significantly. This study demonstrates that anatomically constrained DTI tractography can provide reliable and robust three-dimensional measurements of whole-muscle architecture. The algorithms used to constrain tractography have been made publicly available.  相似文献   

10.
ABSTRACT: BACKGROUND: Muscle fascicle pennation angle (PA) is an important parameter related to musculoskeletal functions, and ultrasound imaging has been widely used for measuring PA, but manually and frame by frame in most cases. We have earlier reported an automatic method to estimate aponeurosis orientation based on Gabor transform and Revoting Hough Transform (RVHT). METHODS: In this paper, we proposed a method to estimate the overall orientation of muscle fascicles in a region of interest, in order to complete computing the orientation of the other side of the pennation angle, but the side found by RVHT. The measurements for orientations of both fascicles and aponeurosis were conducted in each frame of ultrasound images, and then the dynamic change of pennation angle during muscle contraction was obtained automatically. The method for fascicle orientation estimation was evaluated using synthetic images with different noise levels and later on 500 ultrasound images of human gastrocnemius muscles during isometric plantarflexion. RESULTS: The muscle fascicle orientations were also estimated manually by two operators. From the results it's found that the proposed automatic method demonstrated a comparable performance to the manual method. CONCLUSIONS: With the proposed methods, ultrasound measurement for muscle pennation angles can be more widely used for functional assessment of muscles.  相似文献   

11.
Inverse-dynamic models often use cost functions to solve the load-sharing problem. Although it is often assumed that energy is minimised, most cost functions are based on mechanically related measures like muscle force or stress. The aim of this study was to analyse the relationships of two cost functions with experimentally determined data on muscle energy consumption. Four subjects performed isometric contractions generating combinations of elbow flexion/extension and pro/supination moments. Muscle oxygen consumption (VO2) of the m. biceps breve, m. biceps longum, m. brachioradialis and m. triceps laterale was measured with near infrared spectroscopy. Both cost functions were implemented into an existing inverse-dynamic shoulder and elbow model and the individual cost values per muscle were calculated, normalised and subsequently compared to experimental VO2 values. The minimum stress cost function led to a good correspondence between VO2 and cost for the m. triceps laterale but for the flexor muscles cost was significantly lower. A newly proposed energy-related cost function showed, however, a far better correspondence. The inclusion of a linear term and muscle mass in the new criterion led model results to correspond better to experimental results. The energy-related cost function appeared to be a better measure for muscle energy consumption than the stress cost function and led to more realistic predictions of muscle activation.  相似文献   

12.
During terrestrial locomotion, limb muscles must generate mechanical work and stabilize joints against the ground reaction force. These demands can require high force production that imposes substantial loads on limb bones. To better understand how muscle contractile function influences patterns of bone loading in terrestrial locomotion, and refine force platform equilibrium models used to estimate limb bone safety factors, we correlated in vivo recordings of femoral strain with muscle activation and strain in a major propulsive hindlimb muscle, flexor tibialis internus (FTI), of a species with a published model of hindlimb force production (river cooter turtles, Pseudemys concinna). Electromyography (EMG) recordings indicate FTI activity prior to footfall that continues through approximately 50% of the stance phase. Large EMG bursts occur just after footfall when the muscle has reached its maximum length and is beginning to actively shorten, concurrent with increasing compressive strain on the anterior femur. The FTI muscle shortens through 35% of stance, with mean fascicle shortening strains reaching 14.0 ± 5.4% resting length (L0). At the time of peak compressive strains on the femur, the muscle fascicles remain active, but fascicles typically lengthen until mid‐stance as the knee extends. Influenced by the activity of the dorsal knee extensor femorotibialis, the FTI muscle continues to passively lengthen simultaneously with knee extension and a shift to tensile axial strain on the anterior femur at approximately 40% of stance. The near coincidence in timing of peak compressive bone strain and peak muscle shortening (5.4 ± 4.1% stance) indicates a close correlation between the action of the hip extensor/knee flexor, FTI, and femoral loading in the cooter hindlimb. In the context of equilibrium models of limb bone loading, these results may help explain differences in safety factor estimates observed between previous force platform and in vivo strain analyses in cooters. J. Morphol. 274:1060–1069, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Skeletal muscles are characterized by a large diversity in anatomical architecture and function. Muscle force and contraction are generated by contractile fiber cells grouped in fascicle bundles, which transmit the mechanical action between origin and insertion attachments of the muscle. Therefore, an adequate representation of fascicle arrangements in computational models of skeletal muscles is important, especially when investigating three-dimensional muscle deformations in finite element models. However, obtaining high resolution in vivo measurements of fascicle arrangements in skeletal muscles is currently still challenging. This motivated the development of methods in previous studies to generate numerical representations of fascicle trajectories using interpolation templates. Here, we present an alternative approach based on the hypothesis of a rotation and divergence free (Laplacian) vector field behavior which reflects observed physical characteristics of fascicle trajectories. To obtain this representation, the Laplace equation was solved in anatomical reconstructions of skeletal muscle shapes based on medical images using a uniform flux boundary condition on the attachment areas. Fascicle tracts were generated through a robust flux based tracing algorithm. The concept of this approach was demonstrated in two-dimensional synthetic examples of typical skeletal muscle architectures. A detailed evaluation was performed in an example of the anatomical human tibialis anterior muscle which showed an overall agreement with measurements from the literature. The utility and capability of the proposed method was further demonstrated in other anatomical examples of human skeletal muscles with a wide range of muscle shapes and attachment morphologies.  相似文献   

14.
We used acid digestion and glycogen depletion to determine fascicle organization, fiber morphology, and physiological and anatomical features of individual motor units of an in-series muscle, the pectoralis (pars thoracicus) of the pigeon (Columba livia). Most fascicles are attached at one end to connective tissue. Average fiber length in the four regions examined range from 42% to 66% of average fascicle length. More than 65% of fibers are blunt at one end of a fascicle and taper intrafascicularly. Fibers with blunt–blunt endings range from 13% to 31% of the population in different regions; taper–taper fibers range from 2% to 17%. Pigeon pectoralis fibers are distinguished histochemically into fast-twitch glycolytic (FG) and fast-twitch oxidative-glycolytic (FOG) populations. Three units composed of FG fibers (FG units) contract more quickly than three units composed of FOG fibers (FOG units) (range 31–37 vs 47–62 msec), produce more tetanic force (0.11–0.32 vs 0.02–0.05 N) and are more fatigable (<18% initial force vs >50% after repeated stimulation). Most motor units are confined to one of the four muscle regions. Territory of two FOG units is <30% of parent fascicle length. Territories of other units spanned parent fascicles; most fibers in these units do not extend the full fascicle length. Compared to FG units, FOG units have lower maximum innervation ratios and density indices (ratio of depleted/total FOG fibers in territory 8–14% vs 58–76% for FG units). These differences support the hypothesis that FG units are organized to produce substantial force and power for takeoff, landing and other ballistic movements whereas FOG units are suited for sustained flight when power requirements are reduced. Implications of findings for understanding the control of in-series muscles and the use of connective tissue elastic elements during wing movements are discussed. J.Morphol. 236:179–208, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
In this study we investigated the time course of length and velocity of muscle fascicles and tendinous tissues (TT) during isometric twitch contraction, and examined how their interaction relates to the time course of external torque and muscle fascicle force generation. From seven males, supra-maximal twitch contractions (singlet) of the tibialis anterior muscle were induced at 30 degrees , 10 degrees and -10 degrees plantar flexed positions. The length and velocity of fascicles and TT were determined from a series of their transverse ultrasound images. The maximal external torque appeared when the shortening velocity of fascicles was zero. The fascicle and TT length, and external torque showed a 10-30 ms delay of each onset, with a significant difference in half relaxation times at -10 degrees . The time course of TT elongation, and fascicle and tendinous velocities did not differ between joint angles. Curvilinear length-force properties, whose slope of quasi-linear part was ranged from -15.0 to -5.9 N/mm for fascicles and 5.4 to 14.3N/mm for TT, and a loop-like pattern of velocity-force properties, in which the mean power was ranged from 0.14 to 0.80 W for fascicles, and 0.14 to 0.81 W for TT were also observed. These results were attributed to the muscle-tendon interaction, depending on the slack and non-linearity of length-force relationship of compliant TT. We conclude that the mechanical interaction between fascicles and TT, are significant determinants of twitch force and time characteristics.  相似文献   

16.
Fascicle curvature of human medial gastrocnemius muscle (MG) was determined in vivo by ultrasonography during isometric contractions at three (distal, central, and proximal) locations (n = 7) and at three ankle angles (n = 7). The curvature significantly (P < 0.05) increased from rest to maximum voluntary contraction (MVC) (0.4-5.2 m(-1)). In addition, the curvature at MVC became larger in the order dorsiflexed, neutral, plantar flexed (P < 0.05). Thus both contraction levels and muscle length affected the curvature. Intramuscular differences in neither the curvature nor the fascicle length were found. The direction of curving was consistent along the muscle: fascicles were concave in the proximal side. Fascicle length estimated from the pennation angle and muscle thickness, under the assumption that the fascicle was straight, was underestimated by ~6%. In addition, the curvature was significantly correlated to pennation angle and muscle thickness. These findings are particularly important for understanding the mechanical functions of human skeletal muscle in vivo.  相似文献   

17.
Ultrasound imaging has recently been used to distinguish the length changes of muscle fascicles from those of the whole muscle tendon complex during real life movements. The complicated three-dimensional architecture of pennate muscles can however cause heterogeneity in the length changes along the length of a muscle. Here we use ultrasonography to examine muscle fascicle length and pennation angle changes at proximal, distal and midbelly sites of the human gastrocnemius medialis (GM) muscle during walking (4.5 km/h) and running (7.5 km/h) on a treadmill. The results of this study have shown that muscle fascicles perform the same actions along the length of the human GM muscle during locomotion. However the distal fascicles tend to shorten more and act at greater pennation angles than the more proximal fascicles. Muscle fascicles acted relatively isometrically during the stance phase during walking, however during running the fascicles shortened throughout the stance phase, which corresponded to an increase in the strain of the series elastic elements (SEEs) (consisting of the Achilles tendon and aponeurosis). Measurement of the fascicle length changes at the midbelly level provided a good approximation of the average fascicle length changes across the length of the muscle. The compliance of the SEE allows the muscle fascicles to shorten at a much slower speed, more concomitant with their optimal speed for maximal power output and efficiency, with high velocity shortening during take off in both walking and running achieved by recoil of the SEE.  相似文献   

18.
The purpose of this study was to assess the reproducibility of fascicle length (FL) and pennation angle (PA) of gastrocnemius medialis (GM) muscle during running in vivo. Twelve male recreational long distance runners (mean ± SD; age: 24 ± 3 years, mass: 76 ± 7 kg) ran on a treadmill at a speed of 3.0 m/s, wearing their own running shoes, for two different 10 min sessions that were at least 2 days apart. For each test day 10 acceptable trials were recorded. Ankle and knee joint angle data were recorded by a Vicon 624 system with three cameras operating at 120 Hz. B-mode ultrasonography was used to examine fascicle length and pennation angle of gastrocnemius medialis muscle. The ultrasound probe was firmly secured on the muscle belly using a lightweight foam fixation. The results indicated that fascicle length and pennation angle demonstrated high reproducibility values during treadmill running both for within and between test days. The root mean square scores between the repeated waveforms of pennation angle and fascicle length were small (∼2° and ∼3.5 mm, respectively). However, ∼14 trials for pennation angle and ∼9 trials for fascicle length may be required in order to record accurate data from muscle architecture parameters. In conclusion, ultrasound measurements may be highly reproducible during dynamic movements such as treadmill running, provided that a proper fixation is used in order to assure the constant location and orientation of the ultrasound probe throughout the movement.  相似文献   

19.
The plantarflexors of the lower limb are often assumed to act as independent actuators, but the validity of this assumption is the subject of considerable debate. This study aims to determine the degree to which passive changes in gastrocnemius muscle length, induced by knee motion, affect the tension in the adjacent soleus muscle. A second aim is to quantify the magnitude of myofascial passive force transmission between gastrocnemius and adjacent soleus. Fifteen healthy volunteers participated. Simultaneous ultrasound images of the gastrocnemius and soleus muscles were obtained during passive knee flexion (0-90°), while keeping the ankle angle fixed at either 70° or 115°. Image correlation analysis was used to quantify muscle fascicle lengths in both muscles. The data show that the soleus muscle fascicles elongate significantly during gastrocnemius shortening. The approximate change in passive soleus force as a result of the observed change in fascicle length was estimated and appears to be <5 N, but this estimate is sensitive to the assumed slack length of soleus.  相似文献   

20.
This study tested the common assumption that skeletal muscle shortens uniformly in the direction of its fascicles during low-load contraction. Cine phase contrast magnetic resonance imaging was used to characterize shortening of the biceps brachii muscle in 12 subjects during repeated elbow flexion against 5 and 15% maximum voluntary contraction (MVC) loads. Mean shortening was relatively constant along the anterior boundary of the muscle and averaged 21% for both loading conditions. In contrast, mean shortening was nonuniform along the centerline of the muscle during active elbow flexion. Centerline shortening in the distal region of the biceps brachii (7.3% for 5% MVC and 3.7% for 15% MVC) was significantly less (P < 0.001) than shortening in the muscle midportion (26.3% for 5% MVC and 28.2% for 15% MVC). Nonuniform shortening along the centerline was likely due to the presence of an internal aponeurosis that spanned the distal third of the longitudinal axis of the biceps brachii. However, muscle shortening was also nonuniform proximal to the centerline aponeurosis. Because muscle fascicles follow the anterior contour and centerline of the biceps brachii, our results suggest that shortening is uniform along anterior muscle fascicles and nonuniform along centerline fascicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号