首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The association between visiting ants and the extrafloral nectaries (EFN)‐bearing shrub Hibiscus pernambucensis Arruda (Malvaceae) was investigated in two different coastal habitats – a permanently dry sandy forest and a regularly inundated mangrove forest. In both habitats the frequency of plants with ants and the mean number of ants per plant were much higher on H. pernambucensis than on non‐nectariferous neighbouring plants. In the sandy forest the proportion of live termite baits attacked by ants on H. pernambucensis was much higher than on plants lacking EFNs. In the mangrove, however, ants attacked equal numbers of termites on either plant class. Ant attendance to tuna/honey baits revealed that overall ant activity in the sandy forest is higher than in the mangrove area. The vertical distribution (ground vs. foliage) of ant activity also differed between habitats. While in the mangrove foraging ants were more frequent at baits placed on foliage, in the sandy forest ant attendance was higher at ground baits. Plants housing ant colonies were more common in the mangrove than in the sandy forest. Frequent flooding in the mangrove may have resulted in increased numbers of ant nests on vegetation and scattered ant activity across plant foliage, irrespective of possession of EFNs. Thus plants with EFNs in the mangrove may not experience increased ant aggression towards potential herbivores relative to plants lacking EFNs. The study suggests that the vertical distribution of ant activity, as related to different nest site distribution (ground vs. foliage) through a spatial scale, can mediate ant foraging patterns on plant foliage and probably affect the ants’ potential for herbivore deterrence on an EFN‐bearing plant species.  相似文献   

2.
Sanders D  Platner C 《Oecologia》2007,150(4):611-624
In most terrestrial ecosystems ants (Formicidae) as eusocial insects and spiders (Araneida) as solitary trappers and hunters are key predators. To study the role of predation by these generalist predators in a dry grassland, we manipulated densities of ants and spiders (natural and low density) in a two-factorial field experiment using fenced plots. The experiment revealed strong intraguild interactions between ants and spiders. Higher densities of ants negatively affected the abundance and biomass of web-building spiders. The density of Linyphiidae was threefold higher in plots without ant colonies. The abundance of Formica cunicularia workers was significantly higher in spider-removal plots. Also, population size of springtails (Collembola) was negatively affected by the presence of wandering spiders. Ants reduced the density of Lepidoptera larvae. In contrast, the abundance of coccids (Ortheziidae) was positively correlated with densities of ants. To gain a better understanding of the position of spiders, ants and other dominant invertebrate groups in the studied food web and important trophic links, we used a stable isotope analysis (15N and 13C). Adult wandering spiders were more enriched in 15N relative to 14N than juveniles, indicating a shift to predatory prey groups. Juvenile wandering and web-building spiders showed δ15N ratios just one trophic level above those of Collembola, and they had similar δ13C values, indicating that Collembola are an important prey group for ground living spiders. The effects of spiders demonstrated in the field experiment support this result. We conclude that the food resource of spiders in our study system is largely based on the detrital food web and that their effects on herbivores are weak. The effects of ants are not clear-cut and include predation as well as mutualism with herbivores. Within this diverse predator guild, intraguild interactions are important structuring forces.  相似文献   

3.
Ants are effective at moving seeds toward their nests, something that may benefit the seeds. We evaluated whether seed movements that may be useful for the rehabilitation of degraded pastures in Colombia can be enhanced by local ants. An artificial aril was prepared and then evaluated in six open cattle pasture farms. Twenty paper disks (each holding seeds with an artificial aril, honey, tuna oil, and control) were set up along linear transects at each farm, and monitored five times in 48 hours. A total of 340 out of 480 seeds were moved from the experimental units by ants. Seeds with tuna oil and an artificial aril were removed twice as frequently as the control and honey smeared seeds. Ectatomma ruidum, Solenopsis geminata, and Pheidole sp. removed the majority of seeds. Advantages of the artificial aril over tuna oil are discussed. This inexpensive technique can enhance seed movement by generalist ants in degraded pastures, likely contributing to regeneration and ecological rehabilitation.  相似文献   

4.
Meat ants (Iridomyrmex purpureus and allies) are perceived to be dominant members of Australian ant communities because of their great abundance, high rates of activity, and extreme aggressiveness. Here we describe the first experimental test of their influence on other ant species, and one of the first experimental studies of the influence of a dominant species on any diverse ant community. The study was conducted at a 0.4 ha savanna woodland site in the seasonal tropics of northern Australia, where the northern meat ant (I. sanguineus) represented 41% of pitfall catches and 73% of all ants at tuna baits, despite a total of 74 species being recorded. Meat ants were fenced out of experimental plots in order to test their influence on the foraging success of other species, as measured by access to tuna baits. The numbers of all other ants and ant species at baits in exclusion plots were approximately double those in controls (controlling for both the fences and for meat ant abundance), and returned rapidly to control levels when fences were removed after 7 weeks. Individual species differend markedly in their response to the fencing treatment, with species of Camponotus and Monomorium showing the strongest responses. Fencing had no effect on pitfall catches of species other than the meat ant, indicating that the effect of meat ants at baits was directly due to interference with foraging workers, and not regulation of general forager abundance. Such interference by meat ants has important implications for the sizes and densities of colonies of other ant species, and ultimately on overall ant community structure.  相似文献   

5.
Species that alternate periods of solitary and social living may provide clues to the conditions that favor sociality. Social spiders probably originated from subsocial‐like ancestors, species in which siblings remain together for part of their life cycle but disperse prior to mating. Exploring the factors that lead to dispersal in subsocial species, but allow the development of large multigenerational colonies in social species, may provide insight into this transition. We studied the natal dispersal patterns of a subsocial spider, Anelosimus cf. jucundus, in Southeastern Arizona. In this population, spiders disperse from their natal nests in their penultimate and antepenultimate instars over a 3‐mo period. We tracked the natal dispersal of marked spiders at sites with clustered vs. isolated nests. We found that most spiders initially dispersed less than 5 m from their natal nests. Males and females, and spiders in patches with different densities of nests, dispersed similar distances. The fact that both sexes in a group dispersed, the lack of a sex difference in dispersal distance, and the relatively short distances dispersed are consistent with the hypothesis that natal dispersal results from resource competition within the natal nest, rather than inbreeding avoidance in competition for mates. Additionally, an increase in the average distance dispersed with time and with the number of spiders leaving a nest suggests that competition for nest sites in the vicinity of the natal nest may affect dispersal distances. The similar distances dispersed in patches with isolated vs. clustered nests, in contrast, suggest that competition among dispersers from different nests may not affect dispersal distances.  相似文献   

6.
Exotic ant incursions are becoming more frequent around the globe, and management with toxic baits is a suitable strategy for most species. Crazy ants, (Latreille) (Hymenoptera: Formicidae), however, are notoriously difficult to attract to commercial baits, which are generally tailored to the preferences of fire ants. We tested P. longicornis preferences for various food types and commercial ant baits. Baits trialed were commercially available products Amdro, Maxforce, Xstinguish (nontoxic monitoring version), Presto, and tuna (in spring water), sugar water (25%), boric acid (1% in 25% sugar water), and deionized water. Tuna and Xstinguish, along with sugar water and sugar water + boric acid, were the most attractive baits to P. longicornis foragers. The granular baits (Maxforce, Amdro, and Presto) were not as attractive to P. longicornis foragers. A decrease in temperature from summer (30 degrees C) to autumn (23 degrees C) trials did not seem to affect the food preferences of P. longicornis. Although P. longicornis recruitment was substantially lower during trials where there was concurrent high native ant abundance and diversity, P. longicornis still recruited to preferred baits in numbers higher than any other species. Given that tuna is impractical for management programs, the effectiveness of boric acid, sweet liquid baits in eliminating P. longicornis colonies should be compared with that of the toxic version of Xstinguish. If both are effective at eliminating colonies, we recommend sweet liquid baits containing boric acid be used for small-scale incursions (one or two nests), but a more practicable solid bait, such as Xstinguish, be used for larger scale incursions (numerous nests).  相似文献   

7.
1. Patterns of aggression between ants from different nests influence colony and population structure. Several species of invasive ants lack colony boundaries over large expanses, forming ‘supercolonies’ with many nests among which workers can move without encountering aggression. 2. Bioassays of aggression were used to determine the colony structure of the invasive ant Myrmica rubra (L.) at eight sites in Massachusetts, the state where the species was first discovered in North America. To improve the ability to distinguish systematic patterns from background variability in aggressiveness, a repeated‐measures design was used and replicate assays for each pair of nests were conducted. 3. Aggressive responses showed that populations at all sites consisted of multiple distinct colonies. Patterns of aggression were repeatable and transitive, with few exceptions. Colonies were identified as clusters of nests whose workers showed little to no aggression towards one another but were aggressive towards conspecifics from more distant nests. 4. The degree of aggression varied considerably among different colony pairs but did not depend in any consistent way on the distance of separation or on whether colonies were neighbours. 5. Territories of neighbouring colonies abutted, indicating that they were restricted by intraspecific competition. Mapped territories ranged in size from 0.03 to 1.2 ha, but colonies at the study sites have not undergone the enormous expansions seen in introduced populations of some other species of invasive ants, and neighbouring colonies compete locally.  相似文献   

8.
Generalist predators have the capacity to restrict pest population growth, especially early in the season before densities increase. However, their polyphagous feeding habits sometimes translate into reduced pest consumption when they target alternative prey. An order-specific monoclonal antibody was developed to examine the strength of trophic connections between Diptera, a major category of non-pest prey, and linyphiid spiders in alfalfa. We report the development and characterization of a monoclonal antibody with order-level specificity to Diptera. This antibody elicited strong absorbance to 22 Diptera from 13 families, no false-positive reactivity to non-dipteran invertebrates, and antigen detection periods following prey consumption that were comparable between spiders. Over 900 field-collected females of the linyphiid spiders Erigone autumnalis and Bathyphantes pallidus were screened for Diptera antigen. Significantly more B. pallidus screened positive for Diptera (40%) compared to E. autumnalis (16%), indicating differential reliance on these prey. In parallel with the collection of spiders for gut-content analysis, prey availability was estimated at web sites. The two spiders exhibited different feeding responses to prey availability. Consumption of Diptera by B. pallidus was strongly correlated with Diptera abundance whilst the availability of other potential prey did not influence predation rates. Conversely, E. autumnalis did not prey upon Diptera in proportion to availability, but increased Collembola activity-density reduced dipteran consumption. Integration of molecular gut-content analysis with precise sampling of prey demonstrated how two closely related linyphiid spiders exhibit different feeding responses to the availability of prey under natural field conditions. Elucidating the feeding preferences of natural enemies is critical to effective incorporation of biological control by generalist predators in the management of agricultural pests.  相似文献   

9.
1. Ants may select their food in response to nutritional needs of the colony and forage in a way that optimises a complementary nutrition. Even though resource availability is known to affect ant colony and individual health, there is still no study that has investigated the plastic preferences of ants according to spatial resource availability in naturally heterogeneous conditions. 2. Beaches are great biomes to test spatial foraging preference because a complete absence of nectaries can be found. Dorymyrmex nigra Pergande 1896 was found inhabiting a beach in southeastern Brazil, in which nectar sources are heterogeneously distributed. This study tested whether the foraging preference to sugar baits depended on the availability of nectar sources surrounding the nests. 3. We found that more D. nigra workers foraged on sugar baits when the colonies lacked naturally occurring nectar in their vicinity compared with colonies with abundant nectar nearby. 4. These results show that the foraging preference of ants depends upon resource availability. This is the first study to use a natural mosaic of resource availability to show that resource preference of ants is plastic and varies spatially.  相似文献   

10.
The ecological success of social insects, including ants, is tightly connected with their ability to protect themselves and their food resources. In exchange for energy‐rich honeydew, ants protect myrmecophilous aphids from various natural enemies. Fungal infection can have disastrous consequences for both mutualist partners, wherein aphids can be disease vectors. Behavioural responses towards fungus‐infected aphids of ant species in nature have scarcely been studied. Here, we studied the behaviour of honeydew foragers of four ant species – Formica polyctena Foerster, Formica rufa L., Formica pratensis Retzius (Hymenoptera: Formicidae, Formicini), and Lasius niger (L.) (Formicidae, Lasiini) – towards Symydobius oblongus (von Heyden) aphids contaminated with the generalist fungal pathogen Beauveria bassiana (Balsamo‐Crivelli) Vuillemin in the field. Aphid milkers from Formica spp. quickly detected and removed infected aphids from the host plant (Betula pendula Roth., Betulaceae). Neither ant species, the degree of aphid‐milker specialization (medium or high), nor the number of honeydew foragers had significant effects on the behaviour of Formica milkers towards infected aphids. Unlike Formica ants, L. niger usually displayed non‐aggressive behaviour (tolerance, antennation, honeydew collection, grooming). By the immediate removal of infected insects, Formica ants seem to minimize the probability of infection of symbionts as well as themselves. Quarantining behaviour may play an important role in ant–aphid interactions as a preventive antifungal mechanism formed under parasite pressure and thus contributing to the ecological success of ants.  相似文献   

11.
In social organisms, the breeding system corresponds to the number of breeders in a group, their genetic relationships, and the distribution of reproduction among them. Recent, genetically based studies suggest an amazing array of breeding system and reproductive strategies in desert ants of the genus Cataglyphis. Using highly polymorphic DNA microsatellites, we performed a detailed analysis of the breeding system and population genetic structure of two Cataglyphis species belonging to the same phylogenetic group: C. niger and C. savignyi. Our results show that both species present very different breeding systems. C. savignyi colonies are headed by a single queen and populations are multicolonial. Remarkably, queens show one of the highest mating frequency reported in ants (Mp = 9.25). Workers can reproduce by both arrhenotokous and thelytokous parthenogenesis. By contrast, colonies of C. niger are headed by several, multiply mated queens (Mp = 5.17), and they are organized in supercolonial populations made of numerous interconnected nests. Workers lay arrhenotokous eggs only. These results illustrate the high variability in the socio‐genetic organization that evolved in desert ants of the genus Cataglyphis. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 866–876.  相似文献   

12.
In Kinabalu National Park, Borneo we observed four colonies of the Malaysian giant ant Camponotus gigas in a primary forest. These predominantly nocturnal ants have underground nests, but forage in huge three-dimensional territories in the rain forest canopies. The colony on which our study was mainly focused had 17 nests with about 7000 foragers and occupied a territory of 0.8 ha. To improve observation and manipulation possibilities, these nests were linked at ground level by 430 m of artificial bamboo trail. A group of specialist transport worker ants carried food from `source' nests at the periphery to the central `sink' nest of the queen. Transport of food between nests started immediately after the evening exodus of the foragers. Transporter ants formed a physical subcaste among the minors and behaved according to predictions of the central-place foraging theory. Their load size was about five times that of the average forager and grew proportionally with head width. Longer distances were run by ants with greater head width and larger gross weight. Transporter ants that ran more often took heavier loads. Experiments with extra-large baits revealed that C. gigas used long-range recruitment to bring foragers from different nests to “bonanzas” at far distant places. The foraging strategy of C. gigas is based on a polydomous colony structure in combination with efficient communication, ergonomic optimization, polyethism and an effective recruitment system. Received: 16 March 1998 / Accepted: 24 August 1998  相似文献   

13.
Abstract Behaviourally and ecologically dominant ants are thought to structure ant communities through their monopolization of resources. Effects of a dominant ant, Iridomyrmex purpureus, on resource use by ant communities were tested using an exclusion experiment on sandstone outcrops near Sydney, in south‐eastern Australia. The success of functionally different ants at honey and mealworm baits placed in rock and vegetation microhabitats was measured in a series of surveys before and after exclusion. I. purpureus was successfully excluded from the outcrops and patterns of resource use following I. purpureus exclusion were consistent with those of sites without I. purpureus and procedural control sites. At sites with I. purpureus, resources were discovered more rapidly, however, other ants were less successful, particularly on rock substrates. Iridomyrmex spp. were more successful on rock than in vegetation, however, in the presence of I. purpureus, the success of other Iridomyrmex on rock substrates and at honey baits was reduced. Camponotine and myrmicine ants had low success at baits and tended to be less successful in the presence of I. purpureus. In contrast, the opportunist Rhytidoponera metallica was not affected by the presence of I. purpureus and was more successful in the vegetation habitat. These findings indicate that the dominant ant affects the success of other ants at baits, particularly the ecologically similar Iridomyrmex. However, effects of I. purpureus on other taxa differ between habitats differing in complexity and resources differing in composition and defensibility.  相似文献   

14.
15.
Holway DA  Suarez AV 《Oecologia》2004,138(2):216-222
The success of some invasive species may depend on phenotypic changes that occur following introduction. In Argentine ants ( Linepithema humile) introduced populations typically lack intraspecific aggression, but native populations display such behavior commonly. We employ three approaches to examine how this behavioral shift might influence interspecific competitive ability. In a laboratory experiment, we reared colonies of Forelius mccooki with pairs of Argentine ant colonies that either did or did not exhibit intraspecific aggression. F. mccooki reared with intraspecifically non-aggressive pairs of Argentine ants produced fewer eggs, foraged less actively, and supported fewer living workers than those reared with intraspecifically aggressive pairs. At natural contact zones between competing colonies of L. humile and F. mccooki, the introduction of experimental Argentine ant colonies that fought with conspecific field colonies caused L. humile to abandon baits in the presence of F. mccooki, whereas the introduction of colonies that did not fight with field colonies of Argentine ants resulted in L. humile retaining possession of baits. Additional evidence for the potential importance of colony- structure variation comes from the Argentine ants native range. At a site along the Rio de la Plata in Argentina, we found an inverse relationship between ant richness and density of L. humile (apparently a function of local differences in colony structure) in two different years of sampling.  相似文献   

16.
Inter- and intraspecific competition was investigated in ants of the myrmicine genus leptothorax in a deciduous woodland near Würzburg, Germany. The most common species, A. (Myrafant) nylanderi, lives in rotting pine, oak, and elder sticks and may locally reach densities of 10 nests per m2. In the studied sites, only a small fraction of colonies were polydomous, i.e. single colonies typically did not inhabit several nest sites. The home ranges of nylanderi colonies overlap the ranges of other conspecific colonies and colonies of other species, especially L. (s.str.) gredleri. Foragers from different colonies encountering one another in the field back off without exhibiting strong aggression, suggesting that colonies do not defend absolute foraging territories. In laboratory experiments, the frequency and severity of agonistic interactions among workers from different colonies, all living in pine sticks, increased significantly with the distance between their nests. Workers from colonies nesting in different types of wood exhibited significantly more aggression. Experiments in which we transferred colonies from pine sticks into artificial pine or oak nests corroborate the hypothesis that nesting material strongly influences colony odour in L. nylanderi. The evolutionary significance of this apparent dear-enemy phenomenon is discussed.  相似文献   

17.
Female parasitoids use a hierarchy of cues to locate suitable hosts. We conducted a series of field observations and experiments to examine host location behavior in Pseudacteon tricuspis Borgmeier, a phorid parasitoid of Solenopsis invicta Buren worker ants. The parasitoids were frequently attracted to host workers at disturbed colonies, but were almost never attracted to host workers foraging at baits. When conspecific nonnestmate workers were introduced to baits, resulting in aggressive interactions, parasitoids appeared at the majority of baits. Moreover, larger numbers of parasitoids appeared at baits to which greater numbers of nonnestmate workers had been added. Addition of nonnestmate workers to disturbed colonies resulted in increased numbers of parasitoids attracted. Pseudacteon tricuspis did not display a pattern of uniform distribution at disturbed colonies but often was very abundant at some colony locations while absent or rare at nearby colony locations. Solenopsis invicta workers release alarm pheromones in aggressive interactions with nonnestmates, and this substance is likely an important chemical cue that attracts P. tricuspis flies to host workers from a distance.  相似文献   

18.
Specific features of ant behavior during the extremely hot summer of 2010 were studied, as well as the aftereffects of this season on simple and complex family units of ants in 2011–2012. Simultaneous studies were carried out in southern taiga (Moscow Province, Verkhnaya Klyazma myrmecological protected area) and northern taiga (Arkhangelsk Province, Pinezhskii Nature Reserve). Ants of the genus Formica responded to the extreme heat by (1) changing their foraging patterns; (2) redesigning their nests; (3) rearranging the spatial and functional structure of the colonies. They switched to a bimodal activity pattern with maxima in the morning and in the evening and a prolonged daytime intermission. Along ant roads, there were underground pavilions with dense roofs built of conifer needles and soil. Covers of the same kind appeared over root aphid colonies. The most radical improvement was the construction of a battery of brood chambers underneath the mound. The soil excavated was used for strengthening the mound and restricting the convective heat exchange between the brood chambers and the external environment. The anthill surface was covered with a smooth crusted layer of soil and fine plant debris particles, which protected the nest from the inflow of hot air from without. A portion of the inhabitants of large nests moved to newly built extensions and auxiliary nests. It was only active, non-damaged colonies that could afford these measures and thus survive the heat with minimal loss. Depressed colonies lost the major part of their brood during this time. Furthermore, small secondary colonies that emerged as the result of destructive activity of animals also failed to reassemble due to the summer heat of 2010. The months of heat were followed by a long rainy and cool period, and the colonies that had already been depressed faced critical conditions for preparing for winter. The ants were unable to accumulate lipid reserves sufficient for spring nest heating and rearing of sexuals and workers, which turned out to be an important aftereffect of the 2010 season the following year. Two first generations of workers were absent in almost all the nests. Mass oviposition in F. aquilonia commenced only late in May 2011, whereas the flight of alates did not occur at all because alates of this species are only reared in spring. Consequently, the F. aquilonia colonies had not recovered even by the end of 2012. In F. lugubris and F. polyctena, species that rear sexuals twice a year, there was only late-season alate flight, and yet it allowed their colonies to replenish the pool of ovipositing females and restore the initial colony size by the end of 2012. Other ants, represented by Lasius niger and Myrmica rubra, also modified their nests and foraging patterns during the period of heat. M. rubra suffered the most, so that its abundance and activity remained very low in 2011 as well. Only L. niger, which remained practically unscathed by the heat, successfully completed its annual cycle in 2010. Therefore, one of the 2010 year’s results was a drastic shift in the ratio of nests built by the abovementioned species in favor of L. niger.  相似文献   

19.
1. Changes in vegetation community composition, such as a transition from grassland to shrubland (woody encroachment), are associated with reductions in plant cover and increases in bare ground. Encroachment‐driven changes in surface cover at small spatial scales can alter ant community assemblages by changing their foraging behaviour and their ability to locate and monopolise resources. 2. Artificial arenas with three levels of complexity were used to examine changes in ant foraging efficiency, body size and ability to monopolise food. The three levels of complexity included a control (no substrate), low‐complexity treatment (woody debris) and high‐complexity treatment (leaf litter). 3. No difference was found in ant species composition within the complexity arenas between grassland and shrubland, but ant functional groups ‘generalised Myrmicinae’ and ‘subordinate Camponotini’ were more abundant in grassland arenas, whereas ‘opportunists’ were more abundant in shrubland arenas. Ants took twice as long to find baits in high‐complexity treatments, and 1.5 times as long in low‐complexity treatments, than in control treatments, which were bare arenas with no substrate. Ant body size declined with increasing surface complexity, suggesting that larger ants are discouraged from foraging in complex habitats. 4. There was also significantly greater monopolisation of the protein bait (tuna) in low‐ and high‐complexity treatments, but there were no differences between tuna and carbohydrate (honey) in the control treatment. Consistently, no differences were found in ant behaviour between grasslands and shrublands. 5. The present study shows that ants are more responsive to small‐scale alterations in soil surface complexity than to changes in vegetation community composition. Changes in soil surface complexity select for ants based on body size, which in turn influences their foraging success. Changes in vegetation complexity at small spatial scales are therefore likely to influence ant behaviour and abundance of some functional groups, potentially having an effect on the many ecosystem functions carried out by ants.  相似文献   

20.
The Argentine ant Linepithema humile (Dolichoderinae) is one of the most widespread invasive ant species in the world. Throughout its introduced range, it is associated with the loss or reduced abundance of native ant species. The mechanisms by which these native species are displaced have received limited attention, particularly in Australia. The role of interference competition in the displacement of native ant species by L. humile was examined in coastal vegetation in central Victoria (southeastern Australia). Foragers from laboratory colonies placed in the field consistently and rapidly displaced the tyrant ant Iridomyrmex bicknelli, the big-headed ant Pheidole sp. 2, and the pony ant Rhytidoponera victoriae from baits. Numerical and behavioural dominance enabled Argentine ants to displace these ants in just 20 min; the abundance of native species at baits declined 3.5–24 fold in direct relation to the rapid increase in L. humile. Most precipitous was the decline of I. bicknelli, even though species in this typically dominant genus have been hypothesized to limit invasion of L. humile in Australia. Interspecific aggression contributed strongly to the competitive success of Argentine ants at baits. Fighting occurred in 50–75% of all observed interactions between Argentine and native ants. This study indicates that Argentine ants recruit rapidly, numerically dominate, and aggressively displace from baits a range of Australian native ant species from different subfamilies and functional groups. Such direct displacement is likely to reduce native biodiversity and indirectly alter food web structure and ecosystem processes within invaded areas. Biotic resistance to Argentine ant invasion from native ants in this coastal community in southeastern Australia is not supported in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号