首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chitosan can be best utilized as safe antibacterial agent for textiles but there is always a limitation of its durability. The chitin containing shellfish waste is available in huge quantities, but very low quantities are utilized for extraction of high value products like chitosan. In the current work chitosan was extracted from shrimp shells and then used as antibacterial exhaust finishing agent for grafted bamboo rayon. Chitosan bound bamboo rayon was then evaluated for antibacterial activity against both gram positive and gram negative bacteria. The product showed antibacterial activity against both types of bacterias which was durable till 30 washes.  相似文献   

2.
Chitin and chitosan are naturally abundant biopolymers which are of interest to research concerning the sorption of metal ions since the amine and hydroxyl groups on their chemical structures act as chelation sites for metal ions. This study evaluates the removal of copper, chromium, and arsenic elements from chromated copper arsenate (CCA)-treated wood via biosorption by chitin and chitosan. Exposing CCA-treated sawdust to various amounts of chitin and chitosan for 1, 5, and 10 days enhanced removal of CCA components compared to remediation by deionized water only. Remediation with a solution containing 2.5 g chitin for 10 days removed 74% copper, 62% chromium, and 63% arsenic from treated sawdust. Remediation of treated sawdust samples using the same amount of chitosan as chitin resulted in 57% copper, 43% chromium, and 30% arsenic removal. The results suggest that chitin and chitosan have a potential to remove copper element from CCA-treated wood. Thus, these more abundant natural amino polysaccharides could be important in the remediation of waste wood treated with the newest formulations of organometallic copper compounds and other water-borne wood preservatives containing copper.  相似文献   

3.
Due to their unique chemical characteristics (including biodegradability to non-toxic products, physiological inertness and hydrophilicity), chitin, chitosan and their derivatives may be expansively utilized in the biotechnological, agricultural, food protection and nutraceutical, medicinal and pharmacological fields and in the areas of bioremediation and gene therapy. Biological actions associated with chitin and shell waste by-products include among others antibacterial, angiotensin-1-converting enzyme-inhibitory and immunomodulatory activities, while the chitinolytic microbes and enzymes associated with chitinolysis also play a role in the de novo generation of further bioactivites. In Part B of this review we relate in more detail some of the bioactivities and applications of chitin and shell waste by-products.  相似文献   

4.
Removal of phenols from wastewater by soluble and immobilized tyrosinase   总被引:2,自引:0,他引:2  
An enzymatic method for removal of phenols from industrial wastewater was investigated. Phenols in an aqueous solution were removed after treatment with mushroom tyrosinase. The reduction order of substituted phenols is catechol > p-cresol > p-chlorophenol > phenol > p-methoxyphenol. In the treatment of tyrosinase alone, no precipitate was formed but a color change from colorless to dark-brown was observed. The colored products were removed by chitin and chitosan which are available abundantly as shellfish waste. In addition, the reduction rate of phenols was observed to be accelerated in the presence of chitosan. Tyrosinase, immobilized by using amino groups in the enzyme on cation exchange resins, can be used repeatedly. By treatment with immobilized tyrosinase, 100% of phenol was removed after 2 h, and the activity was reduced very little even after 10 repeat treatments. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
Chitosan functional properties   总被引:7,自引:0,他引:7  
Chitosan is a partially deacetylated polymer of N-acetyl glucosamine. It is essentially a natural, water-soluble, derivative of cellulose with unique properties. Chitosan is usually prepared from chitin (2 acetamido-2-deoxy β-1,4-D-glucan) and chitin has been found in a wide range of natural sources (crustaceans, fungi, insects, annelids, molluscs, coelenterata etc.) However chitosan is only manufactured from crustaceans (crab and crayfish) primarily because a large amount of the crustacean exoskeleton is available as a by product of food processing. Squid pens (a waste byproduct of New Zealand squid processing) are a novel, renewable source of chitin and chitosan. Squid pens are currently regarded as waste and so the raw material is relatively cheap. This study was intended to assess the functional properties of squid pen chitosan. Chitosan was extracted from squid pens and assessed for composition, rheology, flocculation, film formation and antimicrobial properties. Crustacean chitosans were also assessed for comparison. Squid chitosan was colourless, had a low ash content and had significantly improved thickening and suspending properties. The flocculation capacity of squid chitosan was low in comparison with the crustacean sourced chitosans. However it should be possible to increase the flocculation capacity of squid pen chitosan by decreasing the degree of acetylation. Films made with squid chitosan were more elastic than crustacean chitosan with improved functional properties. This high quality chitosan could prove particularly suitable for medical/analytical applications. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans   总被引:3,自引:0,他引:3  
Chitin and chitosan, typical marine polysaccharides as well as abundant biomass resources, are attracting a great deal of attention because of their distinctive biological and physicochemical characteristics. To fully explore the high potential of these specialty biopolymers, basic and application researches are being made extensively. This review deals with the fundamental aspects of chitin and chitosan such as the preparation of chitin and chitosan, crystallography, extent of N-acetylation, and some properties. Recent progress of their chemistry is then discussed, focusing on elemental modification reactions including acylation, alkylation, Schiff base formation and reductive alkylation, carboxyalkylation, phthaloylation, silylation, tosylation, quaternary salt formation, and sulfation and thiolation.  相似文献   

7.
Abstract

Chitin and chitosan with unique properties and numerous applications can be produced from fungus. The production of chitin and chitosan from the mycelia of an Iranian Ganoderma lucidum was studied to improve cell growth and chitin productivity. Inoculum size and initial pH as two effective variables on the growth of G. lucidum and chitin production were optimized using response surface method (RSM) by central composite design (CCD). The results verified the significant effect of these two variables on the cell growth and chitin production. In optimum conditions, including pH?=?5.7 and inoculum size of 7.4%, the cell dry weight was 5.91?g/L and the amount of chitin production was 1.08?g/L with the productivity of 0.083?g/(L day). The produced chitin and chitosan were characterized using XRD and FTIR. Moreover, the antibacterial activity of the produced chitosan was investigated and compared with the commercial chitosan. The results showed that the produced chitin and chitosan had suitable quality and the Iranian G. lucidum would be a great source for safe and high-quality chitin and chitosan production.  相似文献   

8.
The conversion of the enzymatic hydrolysate of shellfish chitin waste to single-cell protein was investigated as part of a comprehensive waste treatment program. Forty-two yeasts were screened for ability to assimilate the monomer of chitin, N-acetylglucosamine, which has been shown to be the sole product of enzymatic hydrolysis of chitin. The Yeast Pichia Kudriavzevii was selected for study, based on ability to grow at high temperature (37°C and above), low pH (4.0 ± 0.5), and in a nutritionally simple medium. Growth rates of P. kudriavzevii were similar on N-acetylglucosamine and on the chitin hydrolysate. Dependencies of specific growth rate on temperature, pH, medium composition, and oxygen tension were studied. The variations of yield, protein content, and total nucleic acid content with the specific growth rate were evaluated. The amino acid distribution of the protein of P. kudriavzevii was obtained.  相似文献   

9.
The natural biopolymer chitin and its deacetylated product chitosan are widely used in innumerable applications ranging from biomedicine, pharmaceuticals, food, agriculture and personal care products to environmental sector. The abundant and renewable marine processing wastes are commercially exploited for the extraction of chitin. However, the traditional chitin extraction processes employ harsh chemicals at elevated temperatures for a prolonged time which can harm its physico-chemical properties and are also held responsible for the deterioration of environmental health. In view of this, green extraction methods are increasingly gaining popularity due to their environmentally friendly nature. The bioextraction of chitin from crustacean shell wastes has been increasingly researched at the laboratory scale. However, the bioextraction of chitin is not currently exploited to its maximum potential on the commercial level. Bioextraction of chitin is emerging as a green, cleaner, eco-friendly and economical process. Specifically in the chitin extraction, microorganisms-mediated fermentation processes are highly desirable due to easy handling, simplicity, rapidity, controllability through optimization of process parameters, ambient temperature and negligible solvent consumption, thus reducing environmental impact and costs. Although, chitin production from crustacean shell waste through biological means is still at its early stage of development, it is undergoing rapid progress in recent years and showing a promising prospect. Driven by reduced energy, wastewater or solvent, advances in biological extraction of chitin along with valuable by-products will have high economic and environmental impact.  相似文献   

10.
Chitin production was biologically achieved by lactic acid fermentation (LAF) of shrimp waste (Litopenaeus vannameii) in a packed bed column reactor with maximal percentages of demineralization (D(MIN)) and deproteinization (D(PROT)) after 96 h of 92 and 94%, respectively. This procedure also afforded high free astaxanthin recovery with up to 2400 μg per gram of silage. Chitin product was also obtained from the shrimp waste by a chemical method using acid and alkali for comparison. The biologically obtained chitin (BIO-C) showed higher M(w) (1200 kDa) and crystallinity index (I(CR)) (86%) than the chemically extracted chitin (CH-C). A multistep freeze-pump-thaw (FPT) methodology was applied to obtain medium M(w) chitosan (400 kDa) with degree of acetylation (DA) ca. 10% from BIO-C, which was higher than that from CH-C. Additionally, I(CR) values showed the preservation of crystalline chitin structure in BIO-C derivatives at low DA (40-25%). Moreover, the FPT deacetylation of the attained BIO-C produced chitosans with bloc copolymer structure inherited from a coarse chitin crystalline morphology. Therefore, our LAF method combined with FPT proved to be an affective biological method to avoid excessive depolymerization and loss of crystallinity during chitosan production, which offers new perspective applications for this material.  相似文献   

11.
The adsorption of uranium by chitin phosphate and chitosan phosphate was investigated to obtain information on uranium recovery from aqueous systems, especially sea water and uranium mine waste water. The adsorption of uranium by chitin phosphate and chitosan phosphate was much greater than copper, cadmium, manganese, zinc, cobalt, nickel, magnesium and calcium. The adsorption of uranium was very rapid during the first 10 min and was affected by pH of the solution, temperature, granule radius and the co-existence of carbonate ion. The amounts of uranium adsorbed on the adsorbents increased linearly as the external uranium concentration increased. Uranium adsorbed on chitin phosphate easily desorbed with diluted sodium carbonate solution. On the other hand, uranyl and cobalt ions were separated from each other by using chitin phosphate.  相似文献   

12.
Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. The fungal cell wall is an excellent target for antifungal therapies as it is an essential organelle that provides cell structure and integrity, it is needed for the localization or attachment of known virulence factors, including the polysaccharide capsule, melanin, and phospholipase, and it is critical for host-pathogen interactions. In C. neoformans, chitosan produced by the enzymatic removal of acetyl groups from nascent chitin polymers has been implicated as an important component of the vegetative cell wall. In this study, we identify four putative chitin/polysaccharide deacetylases in C. neoformans. We have demonstrated that three of these deacetylases, Cda1, Cda2, and Cda3, can account for all of the chitosan produced during vegetative growth in culture, but the function for one, Fpd1, remains undetermined. The data suggest a model for chitosan production in vegetatively growing C. neoformans where the three chitin deacetylases convert chitin generated by the chitin synthase Chs3 into chitosan. Utilizing a collection of chitin/polysaccharide deacetylase deletion strains, we determined that during vegetative growth, chitosan helps to maintain cell integrity and aids in bud separation. Additionally, chitosan is necessary for maintaining normal capsule width and the lack of chitosan results in a "leaky melanin" phenotype. Our analysis indicates that chitin deacetylases and the chitosan made by them may prove to be excellent antifungal targets.  相似文献   

13.
Soluble chemical derivatives of chitin and chitosan including ethylene glycol chitin, nitrous acid-modified chitosan, glycol chitosan, and chitosan oligomers, produced from chitosan by limited hydrolysis with HCl, were found to possess proteinase inhibitor inducing activities when supplied to young excised tomato (Lycopersicon esculentum var Bonnie Best) plants. Nitrous acid-modified chitosans and ethylene glycol chitin exhibited about 2 to 3 times the activity of acid hydrolyzed chitosan and 15 times more activity than glycol chitosan. The parent chitin and chitosans are insoluble in water or neutral buffers and cannot be assayed. Glucosamine and its oligomers from degree of polymerization = 2 through degree of polymerization = 6 were purified from acid-fragmented chitosan and assayed. The monomer was inactive and dimer and trimer exhibited weak activities. Tetramer possessed higher activity and the larger pentamer and hexamer oligomers were nearly as active as the total hydrolyzed mixture. None of the fragments exhibited more than 2% acetylation (the limits of detection). The contents of the acid-fragmented mixture of oligomers was chemically N-acetylated to levels of 13% and 20% and assayed. The N-acetylation neither inhibited nor enhanced the proteinase inhibitor inducing activity of the mixture. These results, along with recent findings by others that chitinases and chitosanases are present in plants, provide further evidence for a possible role of soluble chitosan fragments as signals to activate plant defense responses.  相似文献   

14.
The possible contribution of extracellular constitutively produced chitin deacetylase by Metarhizium anisopliae in the process of insect pathogenesis has been evaluated. Chitin deacetylase converts chitin, a beta-1,4-linked N-acetylglucosamine polymer, into its deacetylated form chitosan, a glucosamine polymer. When grown in a yeast extract-peptone medium, M. anisopliae constitutively produced the enzymes protease, lipase, and two chitin-metabolizing enzymes, viz. chitin deacetylase (CDA) and chitosanase. Chitinase activity was induced in chitin-containing medium. Staining of 7.5% native polyacrylamide gels at pH 8.9 revealed CDA activity in three bands. SDS-PAGE showed that the apparent molecular masses of the three isoforms were 70, 37, and 26 kDa, respectively. Solubilized melanin (10microg) inhibited chitinase activity, whereas CDA was unaffected. Following germination of M. anisopliae conidia on isolated Helicoverpa armigera, cuticle revealed the presence of chitosan by staining with 3-methyl-2-benzothiazoline hydrazone. Blue patches of chitosan were observed on cuticle, indicating conversion of chitin to chitosan. Hydrolysis of chitin with constitutively produced enzymes of M. anisopliae suggested that CDA along with chitosanase contributed significantly to chitin hydrolysis. Thus, chitin deacetylase was important in initiating pathogenesis of M. anisopliae softening the insect cuticle to aid mycelial penetration. Evaluation of CDA and chitinase activities in other isolates of Metarhizium showed that those strains had low chitinase activity but high CDA activity. Chemical assays of M. anisopliae cell wall composition revealed the presence of chitosan. CDA may have a dual role in modifying the insect cuticular chitin for easy penetration as well as for altering its own cell walls for defense from insect chitinase.  相似文献   

15.
Chitosan, the deacetylated derivative of chitin, was until recently produced by hydrolysis in 50% (w/v) NaOH. Application of thermo-mechano-chemical technology to chitin deacetylation was evaluated as an alternative method of chitosan production. This process consists of a cascade reactor unit operating under reduced alkaline conditions of 10% (w/v) NaOH. Prior mercerization of chitin at 4 degrees C for 24 h was required for high deacetylation yields. Sudden decompression of the aqueous alkaline suspension of mercerized chitin resulted in near complete deacetylation of chitin. Reactor residence time was 90 s at 230 degrees C prior to decompression. The chitosan produced was characterized by elemental analysis, (13)C-NMR and enzymatic depolymerization. Enzymatic determination of the degree of acetylation of chitin/chitosan mixtures was also investigated. Relative chitinase and/or chitosanase digestibilities were shown to be strongly dependent on chitin deacetylation. Based on enzymatic digestibilities, the alkaline aqueous high shear process does not appear to produce significant secondary products. Correlation of chitosanase digestibility with percentage of deacetylation provides a simple biological assay to study chitosan composition.  相似文献   

16.
Biomaterials such as chitin, chitosan and their derivatives have a significant and rapid development in recent years. Chitin and chitosan have become cynosure of all party because of an unusual combination of biological activities plus mechanical and physical properties. However, the applications of chitin and chitosan are limited due to its insolubility in most of the solvents. The chemical modification of chitin and chitosan are keen interest because of these modifications would not change the fundamental skeleton of chitin and chitosan but would keep the original physicochemical and biochemical properties. They would also bring new or improved properties. The chemical modification of chitin and chitosan by phosphorylation is expected to be biocompatible and is able to promote tissue regeneration. In view of rapidly growing interest in chitin and chitosan and their chemical modified derivatives, we are here focusing the recent developments on preparation of phosphorylated chitin and chitosan in different methods.  相似文献   

17.
Chitin is an essential component of the cell wall of many fungi. Chitin also can be enzymatically deacetylated to chitosan, a more flexible and soluble polymer. Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. In this work, we show that both chitin and chitosan are present in the cell wall of vegetatively growing C. neoformans yeast cells and that the levels of both rise dramatically as cells grow to higher density in liquid culture. C. neoformans has eight putative chitin synthases, and strains with any one chitin synthase deleted are viable at 30 degrees C. In addition, C. neoformans genes encode three putative regulator proteins, which are homologs of Saccharomyces cerevisiae Skt5p. None of these three is essential for viability. However, one of the chitin synthases (Chs3) and one of the regulators (Csr2) are important for growth. Cells with deletions in either CHS3 or CSR2 have several shared phenotypes, including sensitivity to growth at 37 degrees C. The similarity of their phenotypes also suggests that Csr2 specifically regulates chitin synthesis by Chs3. Lastly, both chs3Delta and the csr2Delta mutants are defective in chitosan production, predicting that Chs3-Csr2 complex with chitin deacetylases for conversion of chitin to chitosan. These data suggest that chitin synthesis could be an excellent antifungal target.  相似文献   

18.
Chitin deacetylases: new, versatile tools in biotechnology   总被引:11,自引:0,他引:11  
Chitin deacetylases have been identified in several fungi and insects. They catalyse the hydrolysis of N-acetamido bonds of chitin, converting it to chitosan. Chitosans, which are produced by a harsh thermochemical procedure, have several applications in areas such as biomedicine, food ingredients, cosmetics and pharmaceuticals. The use of chitin deacetylases for the conversion of chitin to chitosan, in contrast to the presently used chemical procedure, offers the possibility of a controlled, non-degradable process, resulting in the production of novel, well-defined chitosan oligomers and polymers.  相似文献   

19.
Chitin in the α and the β forms has been extracted from different marine crustacean from the Arabian Gulf. The contents of the various exoskeletons have been analyzed and the percent of the inorganic salt (including the various elements present), protein and the chitin was determined. Deacetylation of the different chitin produced was conducted by the conventional thermal heating and by microwave heating methods. Microwave heating has reduced enormously the time of heating from 6–10 h to 10–15 min, to yield the same degree of deacetylation and higher molecular weight chitosan. This technique can save massive amount of energy when implemented on a semi-industrial or industrial scale. The chitin and the obtained chitosan were characterized by elemental analysis, XRD, NMR, FTIR and thermogravimetric measurements. XRD analysis showed that chitosan has lower crystallinity than its corresponding chitin; meanwhile its thermal stability is also lower than chitin.  相似文献   

20.
Biomaterials based on chitin and chitosan in wound dressing applications   总被引:1,自引:0,他引:1  
Wound dressing is one of the most promising medical applications for chitin and chitosan. The adhesive nature of chitin and chitosan, together with their antifungal and bactericidal character, and their permeability to oxygen, is a very important property associated with the treatment of wounds and burns. Different derivatives of chitin and chitosan have been prepared for this purpose in the form of hydrogels, fibers, membranes, scaffolds and sponges. The purpose of this review is to take a closer look on the wound dressing applications of biomaterials based on chitin, chitosan and their derivatives in various forms in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号