首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have investigated the mechanism by which fission yeast p80cdc25 induces mitosis. The in vivo active domain was localized to the C-terminal 23 kDa of p80cdc25. This domain produced as a bacterial fusion protein (GST-cdc25) caused tyrosyl dephosphorylation and activation of immunoprecipitated p34cdc2. Furthermore, GST-cdc25 dephosphorylated both para-nitrophenyl-phosphate (pNPP) and casein phosphorylated on serine in vitro. Reaction requirements and inhibitor sensitivities were the same as those of phosphotyrosine phosphatases (PTPases). Analysis of cdc25 C-terminal domains from a variety of species revealed a conserved motif having critical residues present at the active site of PTPases. Mutation of the cdc25 Cys480 codon, corresponding to an essential cysteine in the active site of PTPases, abolished the phosphatase activity of GST-cdc25. These data indicate that cdc25 proteins define a novel subclass of eukaryotic PTPases, and strongly argue that cdc25 proteins directly dephosphorylate and activate p34cdc2 kinase to induce M-phase.  相似文献   

3.
Pyp3 PTPase acts as a mitotic inducer in fission yeast.   总被引:7,自引:3,他引:7       下载免费PDF全文
J B Millar  G Lenaers    P Russell 《The EMBO journal》1992,11(13):4933-4941
The p34cdc2 M-phase kinase is regulated by inhibitory phosphorylation of Tyr15, largely through the actions of the p107wee1 tyrosine kinase and p80cdc25 protein tyrosine phosphatase (PTPase). In this study we demonstrate that a second PTPase, encoded by pyp3, also contributes to tyrosyl dephosphorylation of p34cdc2. Pyp3 was identified as a high copy suppressor of a cdc25- mutation. The pyp3 gene encodes a 33 kDa PTPase that is more closely related to human PTP1B and fission yeast pyp1 and pyp2 PTPases than to cdc25. Pyp3 does not share an essential overlapping function with pyp1 or pyp2. We demonstrate that disruption of pyp3 causes a mitotic delay that is greatly exacerbated in cells that are partially defective for cdc25 function and that pyp3 function is essential in cdc25-disruption wee1- strains. Pyp3 PTPase effectively dephosphorylates and activates the p34cdc2 kinase in vitro. We conclude that the pyp3 PTPase acts cooperatively with p80cdc25 to dephosphorylate Tyr15 of p34cdc2.  相似文献   

4.
Summary The fission yeastcdc2 gene is pleiotropic, functioning both in the cell division cycle and in meiosis. Here we show thatcdc2 is allelic totws1, a previously isolated meiotic gene. Dissociation of meiotic and mitotic roles of the gene is also demonstrated by finding mutant alleles specifically altered in only one of the two processes.  相似文献   

5.
Here, the tobacco (Nicotiana tabacum) day-neutral (DN) cv. Samsun transformed with the Schizosaccharomyces pombe mitotic activator gene Spcdc25 was used to study the onset of flowering. Wild type (WT) and cdc25 plants were grown from seeds in vitro until they were 20 cm high. Apical and basal nodes were then subcultured repeatedly and the regenerated plants were used to document time to flowering and the number of leaves formed before flowering. Three sucrose treatments (3, 5 or 7% (weight/volume)) were used and measurements of leaf endogenous soluble carbohydrates were performed. In the 3% treatment, cdc25 plants flowered but WT plants did not. The higher sucrose treatments enabled WT flowering; two-thirds of the plants flowered at 5%, while all plants flowered at 7% sucrose. However, in all treatments, cdc25 plants exhibited significantly earlier flowering and fewer leaves compared with wild type. Remarkably, a typical acropetal flowering gradient in WT plants did not occur in cdc25 plants. In cdc25 leaves, there were significantly higher amounts of endogenous sugars with a higher proportion of sucrose compared with WT. Our data demonstrate that Spcdc25 expression and sucrose act synergistically to induce precocious flowering.  相似文献   

6.
7.
R Booher  D Beach 《The EMBO journal》1987,6(11):3441-3447
A cold-sensitive (cs) allele of cdc2, a gene that acts in both the G1 and G2 phases of the fission yeast cell cycle, has been isolated by classical mutagenesis. Further mutagenesis of a cdc2cs strain yielded an extragenic suppressor that rescued the cs cell cycle defect but simultaneously conferred a temperature-sensitive (ts) cdc phenotype. This suppressor mutation was shown to be an allele of cdc13, a previously identified gene. A variety of allele-specific interactions between cdc2 and cdc13 were discovered. These included suppression of cdc13ts alleles by introduction of the cdc2+ gene on a multi-copy plasmid vector. cdc13+ is required in G2 for mitotic initiation and was shown to play no role in the G1 phase of the cell cycle. cdc2+, however, is essential in G1 for DNA replication and in G2 for mitosis. The newly isolated cs allele of cdc2 that is rescued by a ts allele of cdc13 is defective only in its G2 function. cdc13+ cooperates with cdc2+ in the initiation of mitosis but not in the regulation of DNA replication. We propose that the cdc13+ gene product might be a G2-specific substrate of the cdc2+ protein kinase.  相似文献   

8.
The cdc25 M-phase inducer: an unconventional protein phosphatase.   总被引:26,自引:0,他引:26  
J B Millar  P Russell 《Cell》1992,68(3):407-410
  相似文献   

9.
In plants, the G2/M control of cell cycle remains an elusive issue as doubts persist about activatory dephosphorylation--in other eukaryotes provided by CDC25 phosphatase and serving as a final all-or-nothing mitosis regulator. We report on the effects of tobacco (Nicotiana tabacum L., cv. Samsun) transformation with fission yeast (Schizosaccharomyces pombe) cdc25 (Spcdc25) on cell characteristics. Transformed cell suspension cultures showed higher dry mass accumulation during the exponential phase and clustered more circular cell phenotypes compared to chains of elongated WT cells. Similar cell parameters, as in the transformants, can be induced in WT by cytokinins. Spcdc25 cells, after cytokinin treatment, showed giant cell clusters and growth inhibition. In addition, Spcdc25 expression led to altered carbohydrate status: increased starch and soluble sugars with higher sucrose:hexoses ratio, inducible in WT by cytokinin treatment. Taken together, the Spcdc25 transformation had a cytokinin-like effect on studied characteristics. However, endogenous cytokinin determination revealed markedly lower cytokinin levels in Spcdc25 transformants. This indicates that the cells sense Spcdc25 expression as an increased cytokinin availability, manifested by changed cell morphology, and in consequence decrease endogenous cytokinin levels. Clearly, the results on cell growth and morphology are consistent with the model of G2/M control including cytokinin-regulated activatory dephosphorylation. Nevertheless, no clear link is obvious between Spcdc25 transformation and carbohydrate status and thus the observed cytokinin-like effect on carbohydrate levels poses a problem. Hence, we propose that Spcdc25-induced higher CDK(s) activity at G2/M generates a signal-modifying carbohydrate metabolism to meet high energy and C demands of forthcoming cell division.  相似文献   

10.
11.
J Correa-Bordes  M P Gulli    P Nurse 《The EMBO journal》1997,16(15):4657-4664
The fission yeast Schizosaccharomyces pombe CDK inhibitor p25rum1 plays a major role in regulating cell cycle progression during G1. Here we show that p25rum1 associates with the CDK p34cdc2/p56cdc13 during G1 in normally cycling cells and is required for the rapid proteolysis of p56cdc13. In vitro binding data indicate that p25rum1 has specificity for the B-cyclin p56cdc13 component of the CDK and can bind the cyclin even in the absence of the cyclin destruction box. At the G1-S-phase transition, p25rum1 levels decrease and p56cd13 levels increase. We also show that on release from a G1 block, the rapid disappearance of p25rum1 requires the activity of the CDK p34cdc2/cig1p and that this same CDK phosphorylates p25rum1 in vitro. We propose that the binding of p25rum1 to p56cdc13 promotes cyclin proteolysis during G1, with p25rum1 possibly acting as an adaptor protein, promoting transfer of p56cdc13 to the proteolytic machinery. At the G1-S-phase transition, p25rum1 becomes targeted for proteolysis by a mechanism which may involve p34cdc2/cig1p phosphorylation. As a consequence, at this point in the cell cycle p56cdc13 proteolysis is inhibited, leading to a rise of p56cdc13 levels in preparation for mitosis.  相似文献   

12.
p34cdc2 acts as a lamin kinase in fission yeast   总被引:7,自引:3,他引:7  
The nuclear lamina is an intermediate filament network that underlies the nuclear membrane in higher eukaryotic cells. During mitosis in higher eukaryotes, nuclear lamins are phosphorylated by a mitosis-specific kinase and this induces disassembly of the lamina structure. Recently, p34cdc2 protein kinase purified from starfish has been shown to induce phosphorylation of lamin proteins and disassembly of the nuclear lamina when incubated with isolated chick nuclei suggesting that p34cdc2 is likely to be the mitotic lamin kinase (Peter, M., J. Nakagawa, M. Dorée, J.C. Labbe, and E.A. Nigg. 1990b. Cell. 45:145-153). To confirm and extend these studies using genetic techniques, we have investigated the role of p34cdc2 in lamin phosphorylation in the fission yeast. As fission yeast lamins have not been identified, we have introduced a cDNA encoding the chicken lamin B2 protein into fission yeast. We report here that the chicken lamin B2 protein expressed in fission yeast is assembled into a structure that associates with the nucleus during interphase and becomes dispersed throughout the cytoplasm when cells enter mitosis. Mitotic reorganization correlates with phosphorylation of the chicken lamin B2 protein by a mitosis-specific yeast lamin kinase with similarities to the mitotic lamin kinase of higher eukaryotes. We show that a lamin kinase activity can be detected in cell-free yeast extracts and in p34cdc2 immunoprecipitates prepared from yeast cells arrested in mitosis. The fission yeast lamin kinase activity is temperature sensitive in extracts and immunoprecipitates prepared from strains bearing temperature-sensitive mutations in the cdc2 gene. These results in conjunction with the previously reported biochemical studies strongly suggest that disassembly of the nuclear lamina at mitosis in higher eukaryotic cells is a consequence of direct phosphorylation of nuclear lamins by p34cdc2.  相似文献   

13.
Summary The p34cdc2 protein kinase plays a central role in the regulation of the eukaryotic cell cycle, being required both in late G1 for the commitment to S-phase and in late G2 for the initiation of mitosis. p34cdc2 also determines the precise timing of entry into mitosis in fission yeast, where a number of gene produts that regulate p34cdc2 activity have been identified and characterised. To investigate further the mitotic role of p34cdc2 in this organism we have isolated new cold-sensitive p34cdc2 mutants. These are defective only in their G2 function and are extragenic suppressors of the lethal premature entry into mitosis brought about by mutating the mitotic inhibitor p107wee1 and overproducing the mitotic activator p80cdc25. One of the mutant proteins p34cdc2-E8 is only functional in the absence of p107wee1, and all the mutant strains have reduced histone H1 kinase activity in vitro. Each mutant allele has been cloned and sequenced, and the lesions responsible for the cold-sensitive phenotypes identified. All the mutations were found to map to regions that are conserved between the fission yeast p34cdc2 and functional homologues from higher eukaryotes.  相似文献   

14.
R Booher  D Beach 《Cell》1989,57(6):1009-1016
Fission yeast cdc25+ and wee1+ interact genetically with cdc2+ in the regulation of cell division, respectively as a mitotic activator and inhibitor. cdc25+ is normally essential for mitosis, but this requirement is alleviated in a loss-of-function wee1 mutant background. A plasmid-borne sequence, other than wee1+, that causes a cdc25ts wee1- double mutant to revert to a temperature-sensitive cdc phenotype has been isolated. The gene carried by this plasmid is called bws1+ (for bypass of wee suppression). bws1+ also bypasses the ability of alleles of cdc2 that confer a wee phenotype (cdc2w) to suppress loss-of-function cdc25 mutants. The nucleotide sequence of bws1+ shows that the predicted protein shares 81% amino acid identity with the catalytic subunit of mammalian type 1 protein phosphatase. Thus a genetic screen that might have yielded a protein kinase (wee1+) uncovered a phosphatase that also appears to be involved in the pathway of mitotic control.  相似文献   

15.
16.
The gene cdc25+ is a mitotic inducer controlling transition from the G2 to the M phase of the cell cycle in the fission yeast, Schizosaccharomyces pombe. Using phenotypic complementation of a mutant of S. pombe, we have cloned a human homolog (CDC25Hu2) of the cdc25+ gene that differs markedly in structure from CDC25 (referred to here as CDC25Hu1), the first such homolog to be isolated. The carboxyl-terminal region of p63CDC25Hu2 shares significant sequence similarity with cdc25 protein homologs from other eukaryotes and possesses full complementation activity. CDC25Hu2 is expressed in human cell lines 10 to 100 times more than CDC25Hu1, and its expression is particularly high in some cancers, including SV40-transformed fibroblasts. Whereas CDC25Hu1 is predominantly expressed in G2, CDC25Hu2 is expressed throughout the cell cycle with a moderate increase in G2. Thus, at least two homologs of the cdc25 gene exist and are both expressed in human cells. The implications of CDC25Hu2 overexpression in some cancer cells are discussed.  相似文献   

17.
V Simanis  P Nurse 《Cell》1986,45(2):261-268
The cdc2+ gene function has an important role in controlling the commitment of the fission yeast cell to the mitotic cycle and the timing of mitosis. We have raised antibodies against the cdc2+ protein using synthetic peptides and have demonstrated that it is a 34 kd phosphoprotein with protein kinase activity. The protein level and phosphorylation state remain unchanged during the mitotic cycle of rapidly growing cells. When cells cease to proliferate and arrest in G1 the protein becomes dephosphorylated and loses protein kinase activity. Exit from the mitotic cycle and entry into stationary phase may be controlled in part by modulation of the cdc2 protein kinase activity by changes in its phosphorylation state.  相似文献   

18.
The fission yeast mutant dis3-54 is defective in mitosis and fails in chromosome disjunction. Its phenotype is similar to that of dis2-11, a mutant with a mutation in the type 1 protein phosphatase gene. We cloned the dis3+ gene by transformation. Nucleotide sequencing predicts a coding region of 970 amino acids interrupted by a 164-bp intron at the 65th codon. The predicted dis3+ protein shares a weak but significant similarity with the budding yeast SSD1 or SRK1 gene product, the gene for which is a suppressor for the absence of a protein phosphatase SIT4 gene or the BCY1 regulatory subunit of cyclic AMP-dependent protein kinase. Anti-dis3 antibodies recognized the 110-kDa dis3+ gene product, which is part of a 250- to 350-kDa oligomer and is enriched in the nucleus. The cellular localization of the dis3+ protein is reminiscent of that of the dis2+ protein, but these two proteins do not form a complex. A type 1 protein phosphatase activity in the dis3-54 mutant extracts is apparently not affected. The dis3+ gene is essential for growth; gene disruptant cells do not germinate and fail in cell division. Increased dis3+ gene dosage reverses the Ts+ phenotype of a cdc25 wee1 strain, as does increased type 1 protein phosphatase gene dosage. Double mutant dis3 dis2 is lethal even at the permissive temperature, suggesting that the dis2+ and dis3+ genes may be functionally overlapped. The role of the dis3+ gene product in mitosis is unknown, but this gene product may be directly or indirectly involved in the regulation of mitosis.  相似文献   

19.
cdc25C is a phosphatase which regulates the activity of the mitosis promoting factor cyclin B/cdk1 by dephosphorylation, thus triggering G(2)/M transition. The activity of cdc25C is regulated by phosphorylation which by itself is implicated in regulating the subcellular localization. It is well accepted that cdc25C has to enter the nucleus to activate the cyclin B/cdk1 complex at G(2)/M transition. Here, we will show that cdc25C is located in the cytoplasm at defined dense structures which by immunofluorescence analysis as well as by biochemical subfractionation turned out to be the Golgi apparatus. It will be further shown that cdc25C at the Golgi fraction is an active phosphatase suggesting an additional and new role of cdc25C at the Golgi apparatus.  相似文献   

20.
During the last decade, the cell cycle and its control by cyclin-dependent kinases (CDKs) has been extensively studied in eukaryotes. The regulation of CDK activity includes, among others, its activation by Cdc25 phosphatase at G2/M. However, within the plant kingdom studies of this regulation have lagged behind and a plant cdc25 homologue has not been identified yet. Here, we report on the effects of transformation of tobacco (Nicotiana tabacum L., cv. Samsun) with fission yeast (Schizosaccharomyces pombe) cdc25 (Spcdc25) on de novo plant organ formation, a process dependent on rate and orientation of cell division. On shoot-inducing medium (low 1-naphthylacetic acid (NAA), high 6-benzylaminopurine (BAP)) the number of shoots formed on internode segments cultured from transgenic plants was substantially higher than in the non-transformed controls. Anatomical observations indicated that the shoot formation process was accelerated but with no changes in the quality and sequence of shoot development. Surprisingly, and in contrast to the controls, when on root-inducing medium (high NAA, low BAP) cultured segments from transgenic plants failed to initiate hardly any roots. Instead, they continued to form shoots at low frequencies. Moreover, in marked contrast to the controls, stem segments from transgenic plants were able to form shoots even without the addition of exogenous growth regulators to the medium. The results indicate that Spcdc25 expression in culture tobacco stem segments mimicked the developmental effects caused by an exogenous hormone balance shifted towards cytokinins. The observed cytokinin-like effects of Spcdc25 transformation are consistent with the concept of an interaction between cell cycle regulators and phytohormones during plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号