首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspergillopepsin I, an acid protease, was purified using an aqueous two-phase system that comprised various combinations of polyethylene glycol (PEG), NaH2PO4 and NaCl. Partition of the enzyme depended upon the molecular mass of the PEG and the presence of NaCl. With PEG 1500, 4000 and 6000, the partition coefficients were increased by 1,500-, 1,800- and 560-fold compared to values without NaCl. The presence of NaCl (8.75%, w/w) increased purification by 3.8, 9.5 and 2.8 times into these respective PEGs. The optimal aqueous two-phase system for acid protease purification was developed using response surface methodology. This system contained 17.3% of PEG 4000 (w/w), 15% NaH2PO4 (w/w) and 8.75% NaCl (w/w) and provided the best partition coefficient (Ke > 1,100) and yield over 99% in the same phase. The optimal ATPS purification factor of acid protease was over 5.  相似文献   

2.
Abstract

The protease from Aspergillus tamarii Kita UCP1279 extraction by aqueous two-phase PEG-Citrate (ATPS) systems, using a factorial design 24, was investigated. Then, the variables studied were polyethylene glycol (PEG) molar mass (MPEG), concentrations of PEG (CPEG) and citrate (CCIT), and pH. The responses analyzed were the partition coefficient (K), activity yield (Y) and purification factor (PF). The thermodynamic parameters of the ATPS partition were estimated as a function of temperature. ATPS was able to pre-purify the protease (PF = 1.6) and obtained 84% activity yield. The thermodynamic parameters ΔG°m (?10.89?kJ mol?1), ΔHm (?5.0?kJ?mol?1) and partition ΔSm (19.74?J mol?1 K?1) showed that the preferential migration of almost all protein contaminants of the crude extract to the salt-rich phase, while the preferred protease was the PEG rich phase. The extracted enzyme presents optimum temperature and pH at range of 40–50?°C and 9.0–11.0, respectively. Moreover, the enzyme was identified as serine protease based on inhibition profile. ATPS showed the satisfactory performance as the first step for Aspergillus tamarii Kita UCP1279 protease pre-purification.  相似文献   

3.
Four different beta-galactosidase fusion proteins have been partitioned in poly(ethylene glycol) (PEG) 4000/potassium phosphate aqueous two-phase systems. The partition coefficients (K) of staphylococcal protein A-beta-galactosidase (SpA beta gal) (K = 3.5) and staphylococcal protein A-streptococcal protein G-beta-galactosidase (AG beta gal) (K = 2.8) were compared with the partition coefficients of their constituent molecules, beta-galactosidase, SpA, and protein AG. It was found that by fusing beta-galactosidase to the smaller proteins SpA and protein AG, their partition coefficients were increased four to five times. Experimental data were fitted into, and found to agree with, the Albertsson partition model of interacting molecules. The compatibility with PEG and potassium phosphate of beta-galactosidase, SpA, and two different versions of the SpA beta gal protein, displayed as precipitation curves, showed a relationship to the protein partition coefficients in PEG/potassium phosphate systems. High solubility in one phase component was accompanied by preferential partitioning to the phase rich in the same component in the PEG/potassium phosphate system. Also, a changed linker region in SpA beta gal resulted in a more soluble protein. This, together with the improved K values of the target proteins by fusion, shows that it is possible to use beta-galactosidase as an affinity handle.  相似文献   

4.
Recent technical advances in aqueous two-phase systems (ATPS) have made this a sound technique for the extraction of biomacromolecules. The extraction of alpha-amylase was investigated using aqueous two-phase systems formed by sodium sulphate-polyethylene glycol (PEG) in water in a 47-mm inner diameter spray column packed with three types of static mixers. The effects of dispersed-phase flow rate, phase composition, column height and diameter were studied. The extraction column was operated in a semi-batch manner. It was found that the hold-up and volumetric mass transfer coefficients increased with an increase in dispersed (PEG-rich) phase velocity and decreased with increasing phase composition. Empirical correlations were developed for fractional dispersed-phase hold-up and volumetric mass transfer coefficients.  相似文献   

5.
Affinity partitioning of lactate dehydrogenase (LDH) was studied in polyethylene glycol (PEG) /salt and PEG / hydroxypropyl starch (PES) aqueous two-phase systems, using free triazine dyes as their affinity ligands. The free dyes showed one-sided partition to the top PEG-rich phase and thus enhanced the affinity partitioning effect in the systems. A two-step affinity extraction process has been discussed for large scale purification of LDH from rabbit muscle.Hu Lin is one of the cooperator of the experiment.  相似文献   

6.
Summary Partitioning of yeast total RNA in a salt/PEG two-phase system, i.e., a potassium phosphate/PEG system and a ammonium sulfate/PEG system, was characterized with regard to the dependence on the molecular weights of PEG and RNA. The shift in RNA partitioning was investigated for a PEG molecular weight range from 300 to 20000. RNA was partitioned mainly to the top phase in the system with PEG of a molecular weight up to 1000, mainly at the interface or almost equally to both phases in the system with PEG of a molecular weight 1000–2000, and mainly to the bottom phase in the system with PEG of more than 2000 in a molecular weight . The effect of PEG molecular weight on partitioning of low molecular weight RNA, less than 5.8S molecule, was qualitatively similar to that of high molecular weight RNA, more than 17S molecule. However, partitioning of high molecular weight RNA was more one-sided than that of low molecular weight RNA. In the system with PEG1000–2000, remarkable adsorption of high molecular weight RNA at the interface was investigated; more than 90% of the high molecular weight RNA added was concentrated. Adsorption of RNA at the interface was quantitatively demonstrated as a novel example of adsorption of a soluble macromolecule in an aqueous two-phase system.  相似文献   

7.
Summary PEG has been activated using epoxy-oxirane, epichlorohydrin and periodate based reactions. The coupling to activated PEG of several protein ligands of different sizes was investigated. Glutathione, trypsin inhibitor, Protein A and anti-BSA have been bound to PEG and used to increase the selectivity of protein separation in aqueous two-phase systems.  相似文献   

8.
Summary The electrochemical effect of a charged dextran derivative and the hydrophobic effect of hydrophobic chain PEG derivative on partitioning of six types of proteins in PEG/dextran aqueous two-phase systems were investigated- When 1. 6%(w/w)DEAE-dextran was present in the system,the partition coefficient decreased quickly with increasing pH value;when 0. 4% (w/w)PEG pentadecanoic acid ester was present in the system, the partition coefficient of protein with strong hydrophobicity was greatly increased. The experimental results show that the influence of hydrocarbon chain PEG derivative on partition coefficient is closely related to the hydrophobicity of proteins.  相似文献   

9.
《Process Biochemistry》2014,49(6):1020-1031
This work presents results of experimental and model investigation of continuous multi-stage enzyme extraction using aqueous two-phase systems for the first time. The aqueous two-phase system comprised polyethylene glycol 3000 and phosphate with additional sodium chloride buffered to pH 7. Two different laccases served as model enzymes. One of the laccases was directly taken from fungal culture supernatant, while the other laccase was solubilized lyophilisate. The modeling is based on an equilibrium stage approach. Equilibrium data were taken from single-stage experiments and approximated by different correlation equations. The model describes densities, phase equilibrium, enzyme activity partitioning between the phases. Moreover it allows to consider activity changes due to the aqueous two-phase system. Eight multi-stage mixer-settler experiments under varying operation conditions were performed to validate the proposed model; whereas the total throughput of all multi-stage extraction experiments was about 350 g h−1. The average relative deviation of modeled activities from experimentally measured activities was 23%. Therefore, the model is able to calculate the behavior of the phases as well as the partitioning of the two enzymes between the two phases for a multi-stage process based on single-stage data.  相似文献   

10.
The concentrations of oat spelt xylan, casein hydrolysate and NH4Cl in the culture medium for production of xylanase from Bacillus sp. I-1018 were optimized by means of response surface methods. The path of steepest ascent was used to approach the optimal region of the medium composition. The optimum composition of the nutrient medium was then easily determined by using a central composite design and was found to be 3.16g/l of xylan, 1.94g/l casein hydrolysate, 0.8g/l of NH4Cl. The xylanase production was increased by 135% when the strain was grown in the optimized medium compared to initial medium.  相似文献   

11.
The concentrations of oat spelt xylan, casein hydrolysate and NH4Cl in the culture medium for production of xylanase from Bacillus sp. I-1018 were optimized by means of response surface methods. The path of steepest ascent was used to approach the optimal region of the medium composition. The optimum composition of the nutrient medium was then easily determined by using a central composite design and was found to be 3.16g/l of xylan, 1.94g/l casein hydrolysate, 0.8g/l of NH4Cl. The xylanase production was increased by 135% when the strain was grown in the optimized medium compared to initial medium.  相似文献   

12.
Summary Ferric ion (Fe3+) complexed to iminodiacetic acid (IDA)-polyethylene glycol enhances the partitioning of phosphoproteins in PEG/dextran aqueous two-phase systems. The ratio of partition coefficients in the presence and absence of Fe(III)IDA-PEG, K/K0, is highly sensitive to pH, increasing in the pH range of 3.0 to 5.0 and decreasing rapidly with a further increase in pH. The steep decline in partition coefficients above pH 5 can be explained by inhibitory binding of hydroxyl ions to ferric ion. In metal-affinity partitioning of phosvitin, the most highly phosphorylated protein known, K/K01,000 was obtained. This is one of the highest values reported for affinity partitioning.  相似文献   

13.
《Process Biochemistry》2010,45(10):1664-1671
Purification of plant-esterase from flour in an aqueous two-phase system (ATPS) was investigated. The effects of various process parameters such as the type of aqueous two-phase systems, the phase-forming salt, the molecular weight and concentration of PEG, the system pH, and the types and concentrations of neutral salts on partitioning of plant-esterase were evaluated. Optimized conditions for the purification of plant-esterase were found in polymer–salt systems, with especially promising results in the PEG1000/NaH2PO4 system. Using 27.0% PEG1000/13.0% NaH2PO4 (w/w, pH 5.0), and 27.0% PEG1000/13.0% NaH2PO4/6.0% (NH4)2SO4 (w/w, pH 5.0), plant-esterase was purified by a two-step extraction. Compared to the results obtained with the conventional salting-out method, this method had a comparable yield (83.16% versus the original yield of 80%), but produced plant-esterase that was 4.8 times as pure (18.46-fold). Integrating dialysis into the aqueous two-phase extraction removed (NH4)2SO4 from the purified plant-esterase. Finally, plant-esterase was freeze-dried to convert the product to powder. This work offers a simple and more efficient process to purify and concentrate plant-esterase. Plant-esterase is used in applications such as organophosphorus compounds (OPs) detection and since our method makes this enzyme easier to isolate, it will enhance researchers’ ability to explore these applications.  相似文献   

14.
《Process Biochemistry》2014,49(12):2305-2312
The partitioning of proteases expressed by Penicillium restrictum from Brazilian Savanna in an inexpensive aqueous two-phase system composed of poly (ethylene glycol) (PEG) and sodium polyacrylate (NaPA) was studied. The effects of PEG molecular weight and concentration, as well as NaPA concentration and the concentration of fermented broth on protease partitioning were studied. Partitioning into the top PEG-rich phase was increased in systems with smaller PEG-molecular weight, higher NaPA concentration and lower PEG concentration. For most systems studied, purification has been achieved by directing the biomolecule partition to the opposite phase of the other proteins, providing the enzyme purification. The highest partition coefficient was obtained using 20 wt% NaPA, 4 wt% PEG 2000 g mol−1 and 45 wt% fermented broth, leading to a purification factor of 1.98 and partition coefficient of 37.73. The system showed high mass balances and yield, indicating enzyme stability and applicability for industrial processes. The partitioning results using the PEG/NaPA/NaCl system show that this method could be used to purify or concentrate protease from fermented broth.  相似文献   

15.
Aqueous two-phase partition systems (ATPS) have been widely used for the separation of a large variety of biomolecules. In the present report, the application of a polyethylene glycol/phosphate (PEG/phosphate) ATPS for the separation of anti-HIV monoclonal antibodies 2G12 (mAb 2G12) and 4E10 (mAb 4E10) from unclarified transgenic tobacco crude extract was investigated. Optimal conditions that favor opposite phase partitioning of plant debris/mAb as well as high recovery and purification were found to be 13.1% w/w (PEG 1500), 12.5% w/w (phosphate) at pH 5 with a phase ratio of 1.3 and 8.25% w/w unclarified tobacco extract load. Under these conditions, mAb 2G12 and mAb 4E10 were partitioned at the bottom phosphate phase with 85 and 84% yield and 2.4- and 2.1-fold purification, respectively. The proposed ATPS was successfully integrated in an affinity-based purification protocol, using Protein A, yielding antibodies of high purity and yield. In this study, ATPS was shown to be suitable for initial protein recovery and partial purification of mAb from unclarified transgenic tobacco crude extract.  相似文献   

16.
The parameters important for an optimisation of cloud point extraction in technical scale were investigated using a genetically engineered fusion protein derived from endoglucanase I expressed in Trichoderma reesei and the nonionic polyoxyethylene Agrimul NRE 1205. The key parameters are temperature, detergent concentration, and additional salts. These parameters are interdependent, thus there is an optimum in the partition coefficient with respect to detergent concentration and a maximum for the partition coefficient and the yield with respect to temperature. These results were confirmed for the detergent C12E5 to demonstrate that these optima are due to the nature of polyoxyethylenes. Cloud point extraction was found to be only slightly affected by pH. In the case studied extraction of whole broth is favourable for a high yield and partition coefficient, since fusion protein adhering to the cells can be solubilized. However some loss of detergent which remains in the fungal biomass was observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Summary A simple method for the determination of phase composition in polyethylene glycol / phosphate aqueous biphasic systems was developed. A single HPLC analysis allows the simultaneous quantification of polymer and salt in the top phase. Phosphate concentration in the bottom phase was also accurately determined but the method was not sensitive enough for PEG quantification in this phase.  相似文献   

18.
Gündüz U 《Bioseparation》2000,9(5):277-281
Partitioning of proteins in aqueous two-phase systems has been shown to provide a powerful method for separating and purifying mixtures of biomolecules by extraction. These systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. There are many factors which influence the partition coefficient K, the ratio of biomolecule concentration in the top phase to that in the bottom phase, in aqueous two-phase systems. The value of the partition coefficient relies on the physico-chemical properties of the target biomolecule and other molecules and their interactions with those of the chosen system. In this work, the partition behavior of pure bovine serum albumin in aqueous two-phase systems was investigated in order to see the effects of changes in phase properties on the partition coefficient K. The concentration of NaCl and pH were considered to be the factors having influence on K. Optimal conditions of these factors were obtained using the Box-Wilson experimental design. The optimum value of K was found as 0.0126 when NaCl concentration and pH were 0.14 M and 9.8, respectively, for a phase system composed of 8% (w/w) polyethylene glycol 3,350 - 9 (% w/w) dextran 37,500 - 0.05 M phosphate at 20 °C.  相似文献   

19.
Abstract

Aqueous two-phase extraction of wedelolactone from Eclipta alba was studied using the polymer-salt system. The system consisted of polyethylene glycol (PEG) as a top phase (polymer) and sodium citrate as a bottom phase (salt). Process parameters such as PEG concentration, PEG molecular weight, salt concentration, and pH have been optimized using response surface methodology (RSM) with the help of central composite design (CCD). The optimized conditions for aqueous two-phase system (ATPS), in the case of one factor at a time approach, were found as PEG 6000, PEG concentration 18% (w/v), salt concentration 16% (w/v), and pH 7; with maximum extraction yield of 6.52?mg/g. While, RSM studies showed maximum extraction yield of 6.73?mg/g with the optimized parameters as PEG 6000, PEG concentration 18% (w/v), salt concentration 17.96% (w/v), and pH 7. ATPS was found to give a 1.3 fold increase in the extraction yield of wedelolactone as compared to other conventional extraction methods.  相似文献   

20.
In prokaryotes, transglutaminase (TGase) has been found only in actinomycetes from the genus Streptoverticillium. The role of this TGase, as well as the mechanism regulating the enzyme expression, are still unknown. In order to improve TGase production by Streptoverticillium cinnamoneum CBS 683.68 and simultaneously elucidate the relationship between growth and TGase activity, we decided to study these two responses using different designs of statistical analysis. Among the five factors tested, casein, glycerol, peptones, yeast extract and oligoelements, only oligoelements were found to have no effect either on growth or on TGase production in a complete factorial design. The two factors casein and glycerol were found to have a highly significant effect on both dry weights and TGase activity in a Box-Behnken design used to improve the model. Finally, the TGase activity was increased three times to reach 0.331±0.038 U/ml with optimum concentrations of casein (38.4 g/l) and glycerol (31.2 g/l) calculated with the help of a composite design. In the course of these experiments, the two responses varied in the same way, demonstrating that growth and TGase production were tightly correlated under the conditions described. However, TGase was produced during the stationary phase of growth in optimized medium, indicating that the enzyme production could be induced. Received: 23 July 1997 / Accepted: 25 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号