首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensitive methods based on capillary gas chromatography (GC) with mass spectrometric (MS) detection in a selected-ion monitoring mode (SIM) for the determination of a cyclooxygenase II (COX-II) inhibitor (3-isopropoxy-4-(4-methanesulfonylphenyl)-5,5'-dimethyl-5H-furan-2-one, I) in human plasma, in two concentration ranges of 0.1-20 and 5-1000 ng/ml, are described. Following liquid-liquid extraction, the residue, after evaporation of the organic phase to dryness, was reconstituted in acetonitrile (20 l) and part of the extract (1 l) was analyzed by GC/MS/SIM. The drug (I) and internal standard (II) were separated on a 25 mx0.2 mm capillary column with HP Ultra 1 (100% dimethylpolysiloxane, 0.33 m) phase and analyzed by MS/SIM monitoring ions at m/z 237 and 282 for I and II, respectively. The standard curve was linear within the lower concentration range of 0.1-20 ng/ml and the lower limit of quantification (LLOQ) in plasma was 0.1 ng/ml. Intraday coefficients of variation (CV, n=5) were 8.9, 4.2, 5.7, 3.1, 1.9, 1.9, and 4.4% at 0.1, 0.2, 0.5, 1.0, 5.0, 10, and 20 ng/ml, respectively. The standard curve was also linear within the higher concentration range of 5-1000 ng/ml and the LLOQ in plasma was 5 ng/ml. Intraday coefficients of variation (CV, n=5) were all below 9% at all concentrations within the standard curve range. The accuracy for I in human plasma was 91-112% and the recovery of I and II was greater than 70% at all concentrations within both standard curve ranges. The details of the assay methodology are presented.  相似文献   

2.
A method was developed for the determination of gemifloxacin (I) in human plasma using high-performance liquid chromatography–tandem mass spectrometry. Prior to analysis, the protein in plasma samples was precipitated with acetonitrile containing [13C2H3] gemifloxacin (II) to act as an internal standard. The supernatant was injected onto a PLRP-S column without any further clean-up. The mass spectrometer was operated in positive ion mode, employing a heat assisted nebulisation, electrospray interface. Ions were detected in multiple reaction monitoring (MRM) mode. The assay requires 50 μl of plasma and is precise and accurate within the range 10–5000 ng/ml. The average within-run and between-run coefficients of variation were <11% at 10 ng/ml and greater concentrations. The average accuracy of validation standards was generally within ±7% of the nominal concentration. There was no evidence of instability of I in human plasma following three complete freeze–thaw cycles and samples can safely be stored for at least 6 months at −20°C. The method proved very robust and was successfully applied to the analysis of clinical samples from patients dosed with gemifloxacin.  相似文献   

3.
A method to determine sildenafil in human plasma involving liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed. Sildenafil and the internal standard (I.S.), diazepam, are extracted from human plasma with ether-dichloromethane (3:2, v/v) at basic pH and analyzed by reversed-phase high-performance liquid chromatography (HPLC) using methanol-10mM ammonium acetate pH 7.0 (85:15, v/v) as the mobile phase. Detection by electrospray positive ionization mass spectrometry in the multiple-reaction monitoring mode was linear over the concentration range 0.125-40.0 ng/ml. Intra- and inter-day precision of the assay at four concentrations within this range were 2.5-8.0%. The method was used to evaluate plasma concentration-time profiles in healthy volunteers given an oral dose of 20mg sildenafil as a combination tablet also containing apomorphine.  相似文献   

4.
In this work, we present the development and validation of a tandem mass spectrometry method for the quantitative determination of methoxyamine (CH3ONH2), a potential new chemotherapeutic agent, in human and mouse plasma. Methoxyamine together with the internal standard (I.S.) methoxyl-D3-amine was directly derivatized in plasma sample with a novel chemical agent 4-(N,N-diethylamino)benzaldehyde. The product solution was injected into an on-line Oasis HLB extraction column (2.1 mm x 20 mm) for analyte extraction. After the elution of extractives, the derivatized analytes were monitored by the positive-electrospray-ionization mass spectrometry (ESI-MS-MS). The structures of derivatized analytes were elucidated by fragmentation. Quantitation of plasma methoxyamine was carried out by the multiple reaction monitoring (MRM) mode. This method had a linear calibration range of 1.00-1000 ng/ml with a correlation coefficient of 0.9999 for methoxyamine in both human and mouse plasma. The limit of detection (LOD) and limit of quantification (LOQ) for methoxyamine in plasma were 0.150 and 0.500 ng/ml, respectively. It was demonstrated that the method had high recovery and accuracy (90.1-94.7 and 90.1-96.3%), as well as excellent intra- and inter-assay precision (2.2 and 3.7%), at three concentration levels (5.00, 50.0, 500 ng/ml). This method has been used to analyze the plasma levels of methoxyamine in samples obtained from male CD1 mice after bolus intraperitoneal injection of 2, 5 and 20mg methoxyamine hydrochloride (CH3ONH2.HCl) per kilogram mouse.  相似文献   

5.
A liquid chromatography/mass spectrometry (LC-MS) method has been developed and validated for the determination of the anticancer agent gemcitabine (dFdC) and its metabolite 2',2'-difluoro-2'-deoxyuridine (dFdU) in human plasma. An Oasis((R)) HLB solid phase extraction cartridge was used for plasma sample preparation. Separation of the analytes was achieved with a YMC ODS-AQ (5 microm, 120A, [Formula: see text] mm) column. The initial composition of the mobile phase was 2% methanol/98% 5mM ammonium acetate at pH 6.8 (v/v), and the flow rate was 0.2 ml/min. An isocratic gradient was used for 3min, followed by a linear gradient over 4 min to 30% methanol/70% 5mM ammonium acetate at pH 6.8. The gradient returned to the initial conditions over 2 min and remained there for 6 min. The retention times of dFdC, dFdU, and the internal standard 5'-deoxy-5-fluorouridine (5'-DFUR) were 11.46, 12.63, and 13.58 min. The mass spectrometer was operated under negative electrospray ionization conditions. Single-ion-monitoring (SIM) mode was used for analyte quantitation at m/z 262 for [dFdC-H](-), m/z 263 for [dFdU-H](-), and m/z 245 for [5'-DFUR-H](-). The average recoveries for dFdC, dFdU, and 5'-DFUR were 88.4, 84.6, and 99.3%, respectively. The linear calibration ranges were 5-1000 ng/ml for dFdC, and 5-5000 ng/ml for dFdU. The intra- and inter-assay precisions (%CV) were 相似文献   

6.
A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method with positive electrospray ionization (ESI) was developed for the quantification of ranolazine in human plasma. After liquid-liquid extraction of ranolazine and internal standard (ISTD) phenoprolamine from a 100 microl specimen of plasma, HPLC separation was achieved on a Nova-Pak C(18) column, using acetonitrile-water-formic acid-10% n-butylamine (70:30:0.5:0.08, v/v/v/v) as the mobile phase. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using the transition m/z 428.5-->m/z 279.1 for ranolazine and m/z 344.3-->m/z 165.1 for the internal standard, respectively. Linear calibration curves were obtained in the concentration range of 5-4000 ng/ml, with a lower limit of quantitation (LLOQ) of 5 ng/ml. The intra- and inter-day precision values were below 3.7% and accuracy was within +/-3.2% at all three quality control (QC) levels. This method was found suitable for the analysis of plasma samples collected during the phase I pharmacokinetic studies of ranolazine performed in 28 healthy volunteers after single oral doses from 200 mg to 800 mg.  相似文献   

7.
The rapid, selective and sensitive liquid chromatographic-ion trap mass spectrometric (LC-MS(n)) method was developed and validated for determination of three major components (isovaleryspiramycins, ISV-SPMs) of a novel macrolide antibiotic bitespiramycin and their major active metabolites (spiramycins, SPMs) in rat plasma. The analytes ISV-SPMs, SPMs, internal standard roxithromycin and azithromycin were extracted from plasma samples by liquid-liquid extraction, and chromatographed on a C(18) column using two mobile phase systems. Detection was carried out on an ion trap mass spectrometer by selected reaction monitoring (SRM) mode via electrospray ionization (ESI). Three components (ISV-SPM I, II, III or SPM I, II, III) could be simultaneously determined within 6.5 min. Linear calibration curves were obtained in the concentration ranges of 4-200 ng/ml for ISV-SPM I and SPM I, 12-600 ng/ml for ISV-SPM II and SPM II, and 18-900 ng/ml for ISV-SPM III and SPM III. The intra- and inter-run precision (RSD), calculated from quality control (QC) samples were less than 8.8 and 10.4% for ISV-SPMs, and 9.3 and 11.2% for SPMs, respectively. The method was applied for the evaluation of the pharmacokinetics of bitespiramycin in rats following peroral/intravenous administration.  相似文献   

8.
A highly sensitive method for quantitation of tamsulosin in human plasma using 1-(2,6-dimethyl-3-hydroxylphenoxy)-2-(3,4-methoxyphenylethylamino)-propane hydrochloride as the internal standard (I.S.) was established using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). After alkalization with saturated sodium bicarbonate, plasma were extracted by ethyl acetate and separated by HPLC on a C18 reversed-phase column using a mobile phase of methanol-water-acetic acid-triethylamine (620:380:1.5:1.5, v/v). Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. LC-ESI-MS was performed in the selected ion monitoring (SIM) mode using target ions at m/z 228 for tamsulosin and m/z 222 for the I.S. Calibration curves, which were linear over the range 0.2-30 ng/ml, were analyzed contemporaneously with each batch of samples, along with low (0.5 ng/ml), medium (3 ng/ml) and high (30 ng/ml) quality control samples. The intra- and inter-assay variability ranged from 2.14 to 8.87% for the low, medium and high quality control samples. The extraction recovery of tamsulosin from plasma was in the range of 84.2-94.5%. The method has been used successfully to study tamsulosin pharmacokinetics in adult humans.  相似文献   

9.
A sensitive and selective HPLC-MS-MS method was developed for the determination of trimebutine maleate (TM) and its major metabolites N-monodemethyltrimebutine (TM-MPB), N-didemethyltrimebutine (APB) and 3,4,5-trimethoxybenzoic acid (TMBA) in human plasma. The analytes were extracted from plasma samples by liquid-liquid extraction and chromatographed on a YMC J'sphere C(18) column. The mobile phase consisted of 2 mM ammonium acetate buffer (pH 6.5)-methanol (20:80, v/v), and at a flow-rate of 0.2 ml/min. Detection was carried out on a triple quadrupole tandem mass spectrometer in multiple reactions monitoring (MRM) mode using positive-negative switching electrospray ionization (ESI). The method was validated over the concentration range of 1-100 ng/ml for trimebutine maleate and APB, 1-500 ng/ml for MPB, and 50-10,000 ng/ml for TMBA. Inter- and intra-day precision (RSD%) for trimebutine maleate and its three metabolites were all within +/-15% and the accuracy was within 85-115%. The limit of quantitation was 1 ng/ml for trimebutine maleate, TM-MPB and APB, and 50 ng/ml for TMBA. The extraction recovery was on average 58.2% for trimebutine maleate, 69.6% for MPB, 51.2% for APB and 62.5% for TMBA. The method was applied to the pharmacokinetic study of trimebutine maleate and its metabolites in healthy Chinese volunteers.  相似文献   

10.
A liquid chromatography–tandem mass spectrometry (LC–MS–MS) method for the simultaneous determination of a new potent motilin receptor agonist as erythromycin derivative, EM574 (erythromycin derivative), and its three metabolites, M-IV, M-V and M-VI, in human plasma was developed. The internal standards (I.S.s) used were deuterated EM574, M-IV and M-V. For the quantitation of M-VI, deuterated M-V was used. The analytes and I.S. were extracted from plasma samples with diethyl ether at neutral pH. A turbo ion spray interface was used as the ion source of LC–MS–MS, and the analysis was performed in the selected reaction monitoring mode. The lower quantitation limits for all the analytes were 0.05 ng/ml when 0.2 ml of plasma was used, and the standard curves were linear in the range 0.05 to 20 ng/ml. The method was precise; the intra- and inter-day precisions of the method were not more than 19.8% for all the analytes. The accuracy of the method was good with the deviations between added and calculated concentrations of each analyte being typically within ±11.2%.  相似文献   

11.
The validation of a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for the determination of the selective cyclooxygenase-2 inhibitor etoricoxib in human plasma with phenazone as internal standard is described. The plasma samples were extracted by solid-phase extraction using polymer-based cartridges. Chromatography was carried out on a short, narrow bore RP C(18) column (30x2 mm). Detection was achieved by a Sciex API 3000 triple quadrupole mass spectrometer equipped with a turbo ion spray source working in positive ion mode. The respective mass transitions used for quantification of etoricoxib and phenazone were m/z 359.2-->280.2 and m/z 189.0-->104.1. The analytical method was validated over the concentration range 0.2-200 ng/ml. The limit of quantification was 0.2 ng/ml. The method is applicable to pharmacokinetic studies in humans.  相似文献   

12.
A sensitive and selective liquid chromatographic method coupled with mass spectrometry (LC-MS) was developed for the quantification of phloroglucinol in human plasma. Resorcinol was used as internal standard, with plasma samples extracted using ethyl acetate. A centrifuged upper layer was then evaporated and reconstituted with mobile phase. The reconstituted samples were injected into a C(18) XTerra MS column (2.1 x 100 mm) with 3.5-microm particle size. The analytical column lasted for at least 500 injections. The mobile phase was 15% acetonitrile (pH 3.0), with flow-rate at 200 microl/min. The mass spectrometer was operated in negative ion mode with selective ion monitoring (SIM). Phloroglucinol was detected without severe interferences from plasma matrix when used negative ion mode. Phloroglucinol produced a parent molecule ([M-H](-)) at m/z 125 in negative ion mode. Detection of phloroglucinol in human plasma was accurate and precise, with quantification limit at 5 ng/ml. This method has been successfully applied to a study of phloroglucinol in human specimens.  相似文献   

13.
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of cefdinir in human plasma. After a simple protein precipitation using trichloracetic acid, the post-treatment samples were applied to a prepacked RP18 Waters SymmetryShield column interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of methanol-water-formic acid (25:75:0.075, v/v/v). The analyte and I.S. cefaclor were both detected by the use of selected reaction monitoring mode. The method was linear in the concentration range of 5-2,000 ng/ml. The lower limit of quantification was 5 ng/ml. The intra- and inter-day relative standard deviation across three validation runs over the entire concentration range was less than 4.3%. The accuracy determined at three concentrations (36, 360 and 1,800 ng/ml for cefdinir) ranged from 99.6 to 106.7% in terms of recovery. The chromatographic run time for each plasma sample was less than 3 min. The method herein described was successfully applied for the evaluation of pharmacokinetic profiles of cefdinir capsule in 12 healthy volunteers.  相似文献   

14.
A rapid and sensitive method for the simultaneous determination of paracetamol and guaifenesin in human plasma was developed and validated, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. After extracted from plasma samples by diethyl ether-dichloromethane (3:2, v/v), the analytes and internal standard osalmide were chromatographed on a C18 column. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method was linear in the concentration range of 0.05-20.0 microg/ml for paracetamol and 5.0-2000.0 ng/ml for guaifenesin. The intra- and inter-day precision was within 14% for both paracetamol and guaifenesin. The assay accuracy was within +/-2.4% for the analytes. This is the first assay method described for the simultaneous determination of paracetamol and guaifenesin in plasma using one chromatographic run. The method was successfully employed in a pharmacokinetic study after an oral administration of a multicomponent formulation, containing 650 mg paracetamol, 200 mg guaifenesin, 60 mg pseudoephedrine and 20 mg dextrorphan.  相似文献   

15.
A simple, reliable and sensitive liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed and validated for quantification of N-acetylglucosamine in human plasma. Plasma samples were pretreated with acetonitrile for protein precipitation. The chromatographic separation was performed on Hypersil Silica column (150mmx2mm, 5microm). The deprotonated analyte ion was detected in negative ionization mode by multiple reaction monitoring mode. The mass transition pairs of m/z 220.3-->118.9 and m/z 226.4-->123.2 were used to detect N-acetylglucosamine and internal standard 13C6-N-acetylglucosamine, respectively. The assay exhibited a linear range from 20 to 1280ng/ml for N-acetylglucosamine in human plasma. Acceptable precision and accuracy were obtained for concentrations of the calibration standard and quality control. The validated method was successfully applied to analyze human plasma samples in a pharmacokinetic study.  相似文献   

16.
A rapid, sensitive and reliable method was developed to quantitate omeprazole in human plasma using liquid chromatography-tandem mass spectrometry. The assay is based on protein precipitation with acetonitrile and reversed-phase liquid chromatography performed on an octadecylsilica column (55 mm x 2mm, 3 microm particles), the mobile phase consisted of methanol-10 mM ammonium acetate (60:40, v/v). Omeprazole and flunitrazepam, the internal standard, elute at 0.80+/-0.10 min with a total run time 1.35 min. Quantification was through positive ion mode and selected reaction monitoring mode at m/z 346.1-->197.9 for omeprazole and m/z 314.0-->268.0 for flunitrazepam, respectively. The lower limit of quantitation was 1.2 ng/ml using 0.25 ml of plasma and linearity was observed from 1.2 to 1200 ng/ml. Within-day and between-day precision expressed by relative standard deviation was less than 5% and inaccuracy did not exceed 12%. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

17.
A quantitative method was developed and validated for rapid and sensitive analysis of pravastatin and R-416, the main metabolite of pravastatin, in human plasma. The analytes were extracted from plasma samples by a solid phase extraction method using a Bond Elut C(8). The method involved the use of liquid chromatography coupled with atmospheric pressure chemical ionization (APCI) and selected reaction monitoring (SRM) mass spectrometry. A pravastatin analog, R-122798, was used as the internal standard (I.S.). Separation of pravastatin, R-416 and the I.S. was accomplished using a reverse-phase column (C(18)). The components eluted were ionized by the APCI source (negative ion) and subsequently detected by a highly selective triple quadrupole mass spectrometer in the SRM mode. Linear standard curves were obtained from 0.1 ng/mL (lower limit of quantification, LLOQ) to 100 ng/mL. The intra-assay precisions (coefficient of variation) for the samples at the LLOQ were 1.8% for pravastatin and 1.6% for R-416. The intra-assay accuracy values were 95.8-107.6% for pravastatin, and 92.6-109.0% for R-416, respectively. Precision and accuracy of quality control (QC) samples were determined at concentrations of 0.5, 10 and 80 ng/mL for all analytes. The intra- and inter-assay precision calculated from QC samples were within 10% for pravastatin and within 11% for R-416. The overall recoveries for pravastatin and R-416 were 75.7-82.1% and 68.6-74.3%, respectively. Pravastatin and R-416 were stable in human plasma for 3 weeks at -20 degrees C in a freezer, up to 6h at room temperature, and up to 48 h at 6 degrees C. This assay method was successfully used to evaluate the pravastatin and R-416 levels in healthy volunteers following oral administration of Mevalotin.  相似文献   

18.
A simple, rapid, novel and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of tacrolimus (I) in human plasma, a narrow therapeutic index, potent macrolide immunosuppressive drug. The analyte and internal standard (tamsulosin (II)) were extracted by liquid-liquid extraction with t-butylmethylether using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on reverse phase Xterra ODS column with a mobile phase of 99% methanol and 1% 10mM ammonium acetate buffer. The deprotonate of analyte was quantitated in negative ionization by multiple reaction monitoring (MRM) with a mass spectrometer. The mass transitions m/z 802.5-->560.3 and m/z 407.2-->151.9 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.05-25ng/ml for tacrolimus in human plasma. The lower limit of quantitation was 50pg/ml with a relative standard deviation of less than 20%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. Run time of 2min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in comparative bioavailability studies. The tacrolimus plasma concentration profile could be obtained for pharmacokinetic study. The observed maximum plasma concentration (C(max)) of tacrolimus (5mg oral dose) is 440pg/ml, time to observed maximum plasma concentration (T(max)) is 2.5h and elimination half-life (T(1/2)) is 21h.  相似文献   

19.
A rapid, selective and sensitive HPLC–tandem mass spectrometry method was developed and validated for simultaneous determination of flupirtine and its active metabolite D-13223 in human plasma. The analytes and internal standard diphenhydramine were extracted from plasma samples by liquid–liquid extraction, and chromatographed on a C18 column. The mobile phase consisted of acetonitrile–water–formic acid (60:40:1, v/v/v), at a flow rate of 0.5 ml/min. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method has a limit of quantitation of 10 ng/ml for flupirtine and 2 ng/ml for D-13223, using 0.5-ml plasma sample. The linear calibration curves were obtained in the concentration range of 10.0–1500.0 ng/ml for flupirtine and 2.0–300.0 ng/ml for D-13223. The intra- and inter-run precision (RSD), calculated from quality control (QC) samples was less than 7.2% for flupirtine and D-13223. The accuracy as determined from QC samples was less than 5% for the analytes. The overall extraction recoveries of flupirtine and D-13223 were determined to be about 66% and 78% on average, respectively. The method was applied for the evaluation of the pharmacokinetics of flupirtine and active metabolite D-13223 in volunteers following peroral administration.  相似文献   

20.
A selective and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) method for simultaneous determination of metformin and rosiglitazone in human plasma using phenformin as internal standard (IS) has been first developed and validated. Plasma samples were precipitated by acetonitrile and the analytes were separated on a prepacked Phenomenex Luna 5u CN 100A (150 mm x 2.0 mm I.D.) column using a mobile phase comprised of methanol:30 mM ammonium acetate pH 5.0 (80:20, v/v) delivered at 0.2 ml/min. Detection was performed on a Finnigan TSQ triple-quadrupole tandem mass spectrometer in positive ion selected reaction monitoring (SRM) mode using electrospray ionization. The ion transitions monitored were m/z 130.27-->71.11 for metformin, m/z 358.14-->135.07 for rosiglitazone and m/z 206.20-->105.19 for the IS. The standard curves were linear (r(2)>0.99) over the concentration range of 5-3000 ng/ml for metformin and 1.5-500 ng/ml for rosiglitazone with acceptable accuracy and precision, respectively. The within- and between-batch precisions were less than 15% of the relative standard deviation. The limit of detection (LOD) of both metformin and rosiglitazone was 1 ng/ml. The method described is precise and sensitive and has been successfully applied to the study of pharmacokinetics of compound metformin and rosiglitazone capsules in 12 healthy Chinese volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号