首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Kaye  D L Ellenberger 《Cell》1992,71(3):423-435
Thymocyte differentiation is dependent upon recognition of major histocompatibility complex (MHC) molecules on thymic stroma, a process called positive selection. Here we describe an immature CD4+8+ T cell line derived from a TCR transgenic mouse that differentiates into CD4+8- cells in response to antigen and nonthymic antigen-presenting cells. When injected intrathymically, these cells differentiate in the absence of antigen. The ability of immature T cells to recognize MHC molecules in the absence of foreign antigen in the thymus can thus be attributed to a unique property of thymic antigen-presenting cells. These studies also demonstrate the phenotypic and functional changes associated with TCR-mediated T cell maturation and establish an in vitro model system of positive selection.  相似文献   

2.
It is generally accepted that as the result of positive thymic selection, CD8-expressing T cells recognize peptide antigens presented in the context of MHC class I molecules and CD4-expressing T cells interact with peptide antigens presented by MHC class II molecules. Here we report the generation of TCRalpha/beta(+), CD3(+), CD4(+), CD8(-), MHC class I-restricted alloreactive T-cell clones which were induced using peripheral blood mononuclear cells from healthy individuals following in vitro stimulation with transporter associated with antigen processing (TAP)-deficient cell lines T2. The CD4(+) T-cell clones showed an HLA-A2.1-specific proliferative response against T2 cells which was inhibited by anti-CD3 and anti-CD4 monoclonal antibodies. These results suggest that interaction of the TCR with peptide-bound HLA class I molecules contributes to antigen-specific activation of these co-receptor-mismatched T-cell clones. Antigen recognition by alloreactive MHC class I-restricted CD4(+) T cells was inhibited by removing peptides bound to HLA molecules on T2 cells suggesting that the alloreactive CD4(+) T cells recognize peptides that bind in a TAP-independent manner to HLA-A2 molecules. The existence of such MHC class I-restricted CD4(+) T cells which can recognize HLA-A2 molecules in the absence of TAP function may provide a basis for the development of immunotherapy against TAP-deficient tumor variants which would be tolerant to immunosurveillance by conventional MHC class I-restricted cytotoxic lymphocytes.  相似文献   

3.
The immune system surveys the organism for the presence of foreign or abnormal structures. An important role in the immune response is assumed by T lymphocytes that recognize foreign antigen while tolerating self-proteins. T lymphocytes can recognize only peptide fragments that are presented to them by molecules of the major histocompatibility complex (MHC). Antigen processing for presentation to T cells involves distinct cellular compartments where peptides and MHC molecules interact. Whereas class I MHC molecules (recognized by CD8+ cytotoxic T cells) acquire peptides in an early biosynthetic compartment, class II molecules (recognized by CD4+ helper T cells) acquire peptides most efficiently in an endocytic compartment. It has emerged recently that the class II processing compartment can be fed not only from the outside with exogenous antigen but also from endogenous sources, including membrane-associated and cytosolic proteins. The potential sources of proteins that can trigger a helper T cell response during viral infections and that can induce self-tolerance are thus much wider than previously anticipated.  相似文献   

4.
The T‐cell antigen receptor is a heterodimeric αβ protein (TCR) expressed on the surface of T‐lymphocytes, with each chain of the TCR comprising three complementarity‐determining regions (CDRs) that collectively form the antigen‐binding site. Unlike antibodies, which are closely related proteins that recognize intact protein antigens, TCRs classically bind, via their CDR loops, to peptides (p) that are presented by molecules of the major histocompatibility complex (MHC). This TCR‐pMHC interaction is crucially important in cell‐mediated immunity, with the specificity in the cellular immune response being attributable to MHC polymorphism, an extensive TCR repertoire and a variable peptide cargo. The ensuing structural and biophysical studies within the TCR‐pMHC axis have been highly informative in understanding the fundamental events that underpin protective immunity and dysfunctional T‐cell responses that occur during autoimmunity. In addition, TCRs can recognize the CD1 family, a family of MHC‐related molecules that instead of presenting peptides are ideally suited to bind lipid‐based antigens. Structural studies within the CD1‐lipid antigen system are beginning to inform us how lipid antigens are specifically presented by CD1, and how such CD1‐lipid antigen complexes are recognized by the TCR. Moreover, it has recently been shown that certain TCRs can bind to vitamin B based metabolites that are bound to an MHC‐like molecule termed MR1. Thus, TCRs can recognize peptides, lipids, and small molecule metabolites, and here we review the basic principles underpinning this versatile and fascinating receptor recognition system that is vital to a host's survival.  相似文献   

5.
C D Myers 《FASEB journal》1991,5(11):2547-2553
In the 25 years since it was first indicated that lymphocyte subpopulations must interact during the generation of a humoral immune response, there has been an explosion of data on the molecular mechanism of this interaction. It has been demonstrated that T cells recognize a processed antigen fragment presented by a major histocompatibility complex molecule on the surface of an antigen-presenting cell. The minimal peptides required for T cell recognition of several proteins have been determined, the molecular genetics of many of the cell surface molecules involved have been defined, and the three-dimensional structure of the T cell receptor and the major histocompatibility antigens have been deduced. Several cell types have been found to act as antigen-presenting cells, although the roles of these populations in vivo remain unclear. However, it is clear that there must be a physical interaction between a B cell and a T cell before the B cell can respond to a T-dependent antigen. This interaction requires processing and presentation of the antigen by the B cell. Therefore this review focuses on antigen processing and presentation by resting B cells, one of the key steps in initiation of a humoral immune response.  相似文献   

6.
Vaginally applied antimicrobial compounds (microbicides) are being developed as an alternative method for preventing the spread of sexually transmitted diseases. In addition to identifying compounds effective against a spectrum of sexually transmitted pathogens, it will be important to ensure that these compounds are safe. Avoiding toxicity, inflammatory responses, or alteration of the function of resident immune cells are important considerations for the development of vaginally applied microbicides. Studies were performed with two classes of candidate microbicide compounds to determine if they would interfere with the recognition of antigen by CD4(+) and CD8(+) T lymphocytes. The presence of nontoxic concentrations of the anionic detergent cholic acid or the sulfated polymer lambda carrageenan did not inhibit recognition of immune peptide by antigen-specific T cells. However, antigen recognition by both CD4(+) and CD8(+) T lymphocytes was inhibited in the presence of the naphthalene sulfonate polymer PRO 2000. Brief (4-h) exposure of antigen-presenting cells or T cells to PRO 2000 did not result in inhibition of antigen uptake and processing by antigen-presenting cells or the ability of specific T cells to respond to antigen stimulation, suggesting that the inhibition was temporary. Binding of antibodies specific for CD18, CD8, and CD3 was impaired in the presence of PRO 2000, suggesting that the mechanism by which this microbicide inhibits T cell recognition of antigenic peptide may involve masking or internalization of surface proteins involved in T cell signaling or stabilizing T cell-antigen-presenting cell interactions. The assays described in this study represent a useful means to screen candidate topical microbicide compounds for inappropriate interactions with immune cells and may be useful for prioritization of candidate microbicide compounds.  相似文献   

7.
Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen.  相似文献   

8.
Basic concepts of immune response and defense development   总被引:5,自引:0,他引:5  
The induction of immune responses requires critical interaction between innate parts of the immune system, which respond rapidly and in a relatively nonspecific manner, and other specific parts, which recognize particular epitopes on an antigen. A critical element in this interaction is the role played by dendritic cells (DCs), which represent "professional antigen-presenting cells." DCs endocytose and process antigen to peptide presented on the cell surface in association with major histocompatibility complex (MHC) molecules. This presentation results in interaction with and stimulation of helper T (Th) lymphocytes, which recognize peptide in association with either MHC class II or cytotoxic T (Tc) lymphocytes, which recognize peptide in association with MHC class I. Stimulation of Th lymphocytes produces the growth and differentiation factors (cytokines) essential for the B lymphocytes that have responded to a more intact form of the antigen and that differentiate into antibody-producing cells. The precise interaction between the cells depends on cognate ligand-receptor recognition between the B and Th lymphocytes. DCs also play a direct role with the stimulation of the B lymphocytes. It appears that DC can deliver antigen to the B lymphocytes in a more intact form than the processed form essential for stimulating T lymphocytes, and can release cytokines that assist the differentiation of the B lymphocytes into antibody-producing cells. This close relationship among the three cell types and the cytokines that are produced ensures the precise control and regulation necessary for immune response development.  相似文献   

9.
Cytotoxic CD8(+) T cells recognize the antigenic peptides presented by class I major histocompatibility complex (MHC) molecules. These T cells have key roles in infectious diseases, autoimmunity and tumor immunology, but there is currently no unbiased method for the reliable identification of their target antigens. This is because of the low affinities of antigen-specific T cell receptors (TCR) to their target MHC-peptide complexes, the polyspecificity of these TCRs and the requirement that these TCRs recognize protein antigens that have been processed by antigen-presenting cells (APCs). Here we describe a technology for the unbiased identification of the antigenic peptides presented by MHC class I molecules. The technology uses plasmid-encoded combinatorial peptide libraries and a single-cell detection system. We validated this approach using a well-characterized influenza-virus–specific TCR, MHC and peptide combination. Single APCs carrying antigenic peptides can be detected among several million APCs that carry irrelevant peptides. The identified peptide sequences showed a converging pattern of mimotopes that revealed the parent influenza antigen. This technique should be generally applicable to the identification of disease-relevant T cell antigens.  相似文献   

10.
The nature of T lymphocyte recognition of foreign antigens is not known, despite recent advances in elucidating the cellular structures that may be involved in the specific interactions. The central difficulty in this process is that T cells respond to foreign antigen only in the context of major histocompatibility complex (MHC) antigens expressed by another antigen-presenting cell. In addition, T cells that interact with class II MHC antigens do not bind foreign protein antigens in their native form, but seem to recognize only proteolytic peptide fragments as the relevant antigen. The simplest explanation for these observations is that the class II MHC antigens themselves bind antigenic peptides to form the appropriate determinant that interacts with the antigen-specific T cell receptor. However, to date no such antigenic complex has been found with MHC antigens despite rigorous attempts at their demonstration. One alternative explanation described here is that there is no preexisting foreign antigen-MHC antigen complex prior to interaction with T cells, and it is the T cells that cause the two moieties to become associated for recognition by a single antigen-specific T cell receptor. Central to this mechanism is that foreign antigenic peptides must be associated with specific antigen retention structures (SARS) expressed by antigen-presenting cells which retain and protect the peptide on the cell surface. These SARS, upon interaction with T cell membrane moieties, would subsequently associate with MHC antigens. A hypothesis to describe this mechanism is developed to account for published observations of antigen processing by antigen-presenting cells and T cell antigen recognition, and makes several predictions that are experimentally testable. This mechanism is also generally applicable to other cellular interactions in which soluble peptide mediators may become associated with surface components of one cell type, and this newly formed complex is in turn recognized by a receptor on a second cell type to deliver functional signals.  相似文献   

11.
T lymphocytes recognize peptides presented in the context of major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells. Recognition specificity is determined by the alphabeta T cell receptor (TCR). The T lymphocyte surface glycoproteins CD8 and CD4 enhance T cell antigen recognition by binding to MHC class I and class II molecules, respectively. Biophysical measurements have determined that equilibrium binding of the TCR with natural agonist peptide-MHC (pMHC) complexes occurs with KD values of 1-50 microm. The pMHCI/CD8 and pMHCII/CD4 interactions are significantly weaker than this (KD >100 microm), and the relative roles of TCR/pMHC and pMHC/coreceptor affinity in T cell activation remain controversial. Here, we engineer mutations in the MHCI heavy chain and beta2-microglobulin that further reduce or abolish the pMHCI/CD8 interaction to probe the significance of pMHC/coreceptor affinity in T cell activation. We demonstrate that the pMHCI/CD8 coreceptor interaction retains the vast majority of its biological activity at affinities that are reduced by over 15-fold (KD > 2 mm). In contrast to previous reports, we observe that the weak interaction between HLA A68 and CD8, which falls within this spectrum of reduced affinities, retains substantial functional activity. These findings are discussed in the context of current concepts of coreceptor dependence and the mechanism by which TCR coreceptors facilitate T cell activation.  相似文献   

12.
Park B  Lee S  Kim E  Cho K  Riddell SR  Cho S  Ahn K 《Cell》2006,127(2):369-382
Activated CD8(+) T cells discriminate infected and tumor cells from normal self by recognizing MHC class I-bound peptides on the surface of antigen-presenting cells. The mechanism by which MHC class I molecules select optimal peptides against a background of prevailing suboptimal peptides and in a considerably proteolytic ER environment remained unknown. Here, we identify protein disulfide isomerase (PDI), an enzyme critical to the formation of correct disulfide bonds in proteins, as a component of the peptide-loading complex. We show that PDI stabilizes a peptide-receptive site by regulating the oxidation state of the disulfide bond in the MHC peptide-binding groove, a function that is essential for selecting optimal peptides. Furthermore, we demonstrate that human cytomegalovirus US3 protein inhibits CD8(+) T cell recognition by mediating PDI degradation, verifying the functional relevance of PDI-catalyzed peptide editing in controlling intracellular pathogens. These results establish a link between thiol-based redox regulation and antigen processing.  相似文献   

13.
The immune system has evolved the ability for T cells to recognize nearly any biological polymer, including peptides, protein superantigens, and glycolipids through presentation by the major histocompatibility complex (MHC) proteins such as MHC class I (MHCI), MHC class II (MHCII), and CD1. A recent and unexpected addition to this list is the zwitterionic capsular polysaccharide (ZPS). These bacterial molecules utilize MHCII presentation to activate T cells via recognition by alphabeta T cell receptor (alphabetaTCR) proteins. In this review, we explore what is currently known about ZPS processing and presentation within antigen-presenting cells (APCs) and the immune response that follows.  相似文献   

14.
The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell activation through coculture with T cells activated by anti-T-cell receptor or anti-CD3 antibodies suggest that cellular interaction with T cells, independent of antigen presentation or lymphokine secretion, induces or triggers B cells to become responsive to T-derived lymphokines, and that this may be an integral component of the physiological, antigen- and MHC-restricted T-dependent B cell activation that leads to antibody production.  相似文献   

15.
CD1 proteins constitute a third class of antigen-presenting molecules. They are cell surface glycoproteins, expressed as approximately 50-kDa glycosylated heavy chains that are noncovalently associated with beta2-microglobulin. They bind lipids rather than peptides. Although their structure confirms the similarity of CD1 proteins to MHC class I and class II antigen presenting molecules, the mCD1d groove is relatively narrow, deep, and highly hydrophobic and it has two binding pockets instead of the several shallow pockets described for the classical MHC-encoded antigen-presenting molecules. Based upon their amino acid sequences, such a hydrobphobic groove provides an ideal environment for the binding of lipid antigens. The Natural Killer T (NKT) cells use their TCR to recognize glycolipids bound to or presented by CD1d. T cells reactive to lipids presented by CD1 have been involved in the protection against autoimmune and infectious diseases and in tumor rejection. Thus, the ability to identify, purify , and track the response of CD1-reactive NKT cell is of great importance . The generation of tetramers of alpha Galactosyl ceramide (a-Galcer) with CD1d has significant insight into the biology of NKT cells. Tetramers constructed from other CD1 molecules have also been generated and these new reagents have greatly expanded the knowledge of the functions of lipid-reactive T cells, with potential use in monitoring the response to lipid-based vaccines and in the diagnosis of autoimmune diseases and other treatments.  相似文献   

16.
Antigens are presented to T cells as short peptides bound to MHC molecules on the surface of body cells. The binding between MHC/peptides and T cell receptors (TCRs) has a low affinity and is highly degenerate. Nevertheless, TCR-MHC/peptide recognition results in T cell activation of high specificity. Moreover, the immune system is able to mount a cellular response when only a small fraction of the MHC molecules on an antigen-presenting cell is occupied by foreign peptides, while autoimmunity remains relatively rare. We consider how to reconcile these seemingly contradictory facts using a quantitative model of TCR signalling and T cell activation. Taking into account the statistics of TCR recognition and antigen presentation, we show that thymic selection can produce a working T cell repertoire which will produce safe and effective responses, that is, recognizes foreign antigen presented at physiological levels while tolerating self. We introduce "activation curves" as a useful tool to study the repertoire's statistical activation properties.  相似文献   

17.
CD8(+) T lymphocytes recognize infected cells that display virus-derived antigenic peptides complexed with major histocompatibility complex class I molecules. Peptides are mainly byproducts of cellular protein turnover by cytosolic proteasomes. Cytosolic tripeptidyl-peptidase II (TPPII) also participates in protein degradation. Several peptidic epitopes unexpectedly do not require proteasomes, but it is unclear which proteases generate them. We studied antigen processing of influenza virus nucleoprotein epitope NP(147-155), an archetype epitope that is even destroyed by a proteasome-mediated mechanism. TPPII, with the assistance of endoplasmic reticulum trimming metallo-aminopeptidases, probably ERAAP (endoplasmic reticulum aminopeptidase associated with antigen processing), was crucial for nucleoprotein epitope generation both in the presence of functional proteasomes and when blocked by lactacystin, as shown with specific chemical inhibitors and gene silencing. Different protein contexts and subcellular targeting all allowed epitope processing by TPPII as well as trimming. The results show the plasticity of the cell's assortment of proteases for providing ligands for recognition by antiviral CD8(+) T cells. Our observations identify for the first time a set of proteases competent for antigen processing of an epitope that is susceptible to destruction by proteasomes.  相似文献   

18.
Expression of CD95 ligand on parenchymal, epithelial, or tumor cells has been suggested to downregulate the immune response and to control lymphocyte activation. Suppression might be mediated by induction of apoptosis or by inhibition of Ca(2+) channels upon CD95 triggering. We, therefore, aimed to employ this model to modify the immune response to an antigen presented to cytotoxic T cells by antigen-presenting MC57 cells. This model would be very useful to specifically downregulate the immune response to autoantigens in autoimmune situations. However, cytotoxic T cell lines tested in the present study were resistant to CD95 ligand expression on antigen-presenting MC57 cells. In addition, coincubation of the lymphocytes with antigen presenting cells failed to block cytotoxicity mediated by the T lymphocytes. We, therefore, conclude that single expression of CD95 ligand on antigen-presenting cells is insufficient to specifically downregulate an immune response by CD8(+-)triggered immune response.  相似文献   

19.
The major histocompatibility complex class I molecules are receptors for intracellular peptides, both of self and non-self origin. When non-self peptides (eg., pathogen derived) are bound to the class I molecules, they form ligands for T cell receptors resulting in antigen specific lysis of the infected cells by cytotoxic T lymphocytes. Therefore, an understanding of the process of antigen recognition requires the precise definition of the structural features of the bimolecular complex formed by a single well defined antigenic peptide bound to the class I molecule. A strategy using antibodies was developed to probe the structural features of the H-2Kb containing a defined peptide in the antigen cleft. We report that the binding surface area of a Kb specific monoclonal antibody (28-13-3s) includes residues in the alpha 1 (Gly56 and Glu58) and alpha 2 (Trp167) helices of Kb thus, binding across the antigen binding groove. When cells treated with the antigenic peptide of vesicular stomatitis virus, N52-59, and its alanine substituted analogs were tested for 28-13-3s binding, it was found that position 1 of the peptide also forms a part of the antibody binding site. This finding strongly supports the positioning of the N-terminus of N52-59 proximal to pocket A, thus, assuming an orientation parallel to the alpha 1 helix.  相似文献   

20.
CD8(+) cytotoxic T lymphocytes (CTL) can recognize and kill target cells expressing only a few cognate major histocompatibility complex (MHC) I-peptide complexes. This high sensitivity requires efficient scanning of a vast number of highly diverse MHC I-peptide complexes by the T cell receptor in the contact site of transient conjugates formed mainly by nonspecific interactions of ICAM-1 and LFA-1. Tracking of single H-2K(d) molecules loaded with fluorescent peptides on target cells and nascent conjugates with CTL showed dynamic transitions between states of free diffusion and immobility. The immobilizations were explained by association of MHC I-peptide complexes with ICAM-1 and strongly increased their local concentration in cell adhesion sites and hence their scanning by T cell receptor. In nascent immunological synapses cognate complexes became immobile, whereas noncognate ones diffused out again. Interfering with this mobility modulation-based concentration and sorting of MHC I-peptide complexes strongly impaired the sensitivity of antigen recognition by CTL, demonstrating that it constitutes a new basic aspect of antigen presentation by MHC I molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号