首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-adrenergic regulation of cardiac myosin   总被引:1,自引:0,他引:1  
Calcium-independent regulation of the contractile proteins of cardiac muscle has been studied using hyperpermeable cells from rat ventricles and sections of quickly frozen rat hearts. These preparations have been used to study maximum calcium-activated force, myosin ATPase activity, and the maximum velocity of unloaded shortening. Beta-adrenergic activity increases the amount of force and the ATPase activity in accordance with the concentration of the V1 isozyme of myosin. V3 activity is decreased at the same time. In tissues containing only V1, there is no change in maximum velocity in response to beta-adrenergic stimulation. These results indicate that beta-adrenergic stimulation recruits V1 force generators and probably regulates a transition between a calcium unresponsive and a calcium responsive force generator.  相似文献   

2.
Total protein kinase activity and the expression of the type I and type II cyclic adenosine 3′:5′-monophosphate-dependent protein kinases were studied in subcellular fractions of rat thymocytes and the effect of concanavalin A treatment on protein kinase activity was assessed. At a concentration of 100 μ/ml of concanavalin A a marked decline of total nuclear protein kinase activity occurred which lasted approximately 20 to 90 min. Concomitantly, a twofold increase of total protein kinase activity in the 900g supernatant fraction was observed which lasted from 5 to 30 min. Studies using the heat-stable protein kinase inhibitor revealed that the concanavalin A-mediated activity changes were primarily due to changes of cAMP-dependent protein kinase activity, whereas cAMP-independent protein kinase activity remained unchanged. Analysis of the type I and type II cAMP-dependent protein kinase isozyme pattern before and after concanavalin A treatment revealed a selective change of the relative expression of isozyme activities. Whereas type I protein kinase was the major nuclear isozyme before concanavalin A treatment, nuclear type II cAMP-dependent protein kinase increased markedly with a concomitant loss of type I isozyme expression. In the 900g supernatant fraction, containing primarily the type II isozyme in unstimulated cells, concanavalin A treatment caused an increase of the expression of the type I isozyme. The concanavalin A-mediated relative changes of cAMP-dependent protein kinase isozyme expression were confirmed by photoaffinity labeling of the regulatory subunits RI and RII before and after concanavalin A stimulation. The intracellular concanavalin A-mediated isozyme changes were time dependent, exhibiting maximal effects about 20 min after concanavalin A addition. These results indicate that selective regulation of intracellular cAMP-dependent protein kinase isozyme expression may be a mechanism related to isozyme-specific phosphorylation of specific intracellular substrates in concanavalin A-activated thymocytes.  相似文献   

3.
We demonstrate reduction and restoration of contractile ability in response to protein extraction and reconstitution in Triton X-100/glycerol-permeabilized smooth muscle fibers. Through significant reduction in the content of caldesmon (CaD), calponin (CaP), and the 20-kDa regulatory light chain (RLC) of myosin, but not other contractile proteins in "chemically skinned" fibers, we substantially reduced the contractile ability of these fibers, as measured by their ability to generate isometric force and to hydrolyze ATP by actomyosin Mg2+ ATPase. When the protein-depleted fibers were then reconstituted (either with a mixture of purified protein standards of CaD, CaP, and myosin RLC or with a protein extract from the demembranized muscle fibers containing CaD, CaP, and myosin RLC plus several low-molecular-mass proteins), all proteins used for reincorporation returned nearly to control levels, as did isometric force generation and rate of ATP hydrolysis. The fact that the low-molecular-mass proteins do not affect contractility in this model system indicates that our methods for reversible modulation of the content of CaP and CaD may provide a valuable tool for studying the thin-filament-based regulation of contractility.  相似文献   

4.
This study was undertaken to examine the influence of guanethidine monosulfate-induced sympathectomy on exercise-induced adaptations of cardiac contractile protein and on acute hemodynamic responses to exercise involving female neonatal rats. Four groups of rats were studied: 1) normal sedentary (NS), 2) normal trained (NT), 3) sympathectomized sedentary (SS), and 4) sympathectomized trained (ST). The 9-wk running program, which began at 20 days of age, induced increases in whole-body maximal O2 consumption and skeletal-muscle citrate synthase activity in both NT and ST groups compared with NS (P less than 0.05). Submaximal exercise tests demonstrated circulatory adaptations for NT, SS, and ST groups compared with NC; however, the ST group demonstrated the greatest degree of altered cardiac function (decreased heart rate, left ventricular pressure, and contractility index) during exercise. Also, significant reductions in both myosin- and Ca2+-regulated myofibril adenosinetriphosphatase (ATPase) activity and increases in the relative content of the low ATPase myosin isozyme, V3, occurred in the hearts of the two trained groups (P less than 0.05). These findings suggest that chronic exercise involving normal and sympathectomized neonatal rats improves cardiac function without compromising maximal exercise capacity. Also, the exercise-related adaptation involving myosin isozyme shifts are exaggerated when involvement of the sympathetic nervous system is reduced during training.  相似文献   

5.
Modification of muscular contractile patterns by denervation and chronic low frequency stimulation induces structural, physiological, and biochemical alterations in fast twitch skeletal muscles. Fructose 2,6-bisphosphate is a potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. The concentration of Fru-2,6-P(2) depends on the activity of the bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), which catalyzes the synthesis and degradation of this metabolite. This enzyme has several isoforms, the relative abundance of which depends on the tissue metabolic properties. Skeletal muscle expresses two of these isoforms; it mainly contains the muscle isozyme (M-type) and a small amount of the liver isozyme (L-type), whose expression is under hormonal control. Moreover, contractile activity regulates expression of muscular proteins related with glucose metabolism. Fast twitch rabbit skeletal muscle denervation or chronic low frequency stimulation can provide information about the regulation of this enzyme. Our results show an increase in Fru-2,6-P(2) concentration after 2 days of denervation or stimulation. In denervated muscle, this increase is mediated by a rise in liver PFK-2/FBPase-2 isozyme, while in stimulated muscle it is mediated by a rise in muscle PFK-2/FBPase-2 isozyme. In conclusion, our results show that contractile activity could alter the expression of PFK-2/FBPase-2.  相似文献   

6.
Catecholamines are known to influence the contractility of cardiac and skeletal muscles, presumably via cAMP-dependent phosphorylation of specific proteins. We have investigated the in vitro phosphorylation of myofibrillar proteins by the catalytic subunit of cAMP-dependent protein kinase of fast- and slow-twitch skeletal muscles and cardiac muscle with a view to gaining a better understanding of the biochemical basis of catecholamine effects on striated muscles. Incubation of canine red skeletal myofibrils with the isolated catalytic subunit of cAMP-dependent protein kinase and Mg-[gamma-32P]ATP led to the rapid incorporation of [32P]phosphate into five major protein substrates of subunit molecular weights (MWs) 143,000, 60,000, 42,000, 33,000, and 11,000. The 143,000 MW substrate was identified as C-protein; the 42,000 MW substrate is probably actin; the 33,000 MW substrate was shown not to be a subunit of tropomyosin and, like the 60,000 and 11,000 MW substrates, is an unidentified myofibrillar protein. Isolated canine red skeletal muscle C-protein as phosphorylated to the extent of approximately 0.5 mol Pi/mol C-protein. Rabbit white skeletal muscle and bovine cardiac muscle C-proteins were also phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, both in myofibrils and in the isolated state. Cardiac C-protein was phosphorylated to the extent of 5-6 mol Pi/mol C-protein, whereas rabbit white skeletal muscle C-protein was phosphorylated at the level of approximately 0.5 mol Pi/mol C-protein. As demonstrated earlier by others, C-protein of skeletal and cardiac muscles inhibited the actin-activated myosin Mg2+-ATPase activity at low ionic strength in a system reconstituted from the purified skeletal muscle contractile proteins (actin and myosin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The functional characteristics of cardiac muscle depend on the composition of protein isoforms in the cardiomyocyte contractile machinery. In the ventricular myocardium of mammals, several isoforms of contractile and regulatory proteins are expressed–two isoforms of myosin (V1 and V3) and three isoforms of tropomyosin chains (α, β, and κ). Expression of protein isoforms depends on the animal species, its age and hormonal status, and this can change with pathologies of the myocardium. Mutations in these proteins can lead to cardiomyopathies. The functional significance of the protein isoform composition has been studied mainly on intact hearts or on isolated preparations of myocardium, which could not provide a clear comprehension of the role of each particular isoform. Present-day experimental techniques such as an optical trap and in vitro motility assay make it possible to investigate the phenomena of interactions of contractile and regulatory proteins on the molecular level, thus avoiding effects associated with properties of a whole muscle or muscle tissue. These methods enable free combining of the isoforms to test the molecular mechanisms of their participation in the actin–myosin interaction. Using the optical trap and the in vitro motility assay, we have studied functional characteristics of the cardiac myosin isoforms, molecular mechanisms of the calcium-dependent regulation of actin–myosin interaction, and the role of myosin and tropomyosin isoforms in the cooperativity mechanisms in myocardium. The knowledge of molecular mechanisms underlying myocardial contractility and its regulation is necessary for comprehension of cardiac muscle functioning, its disorders in pathologies, and for development of approaches for their correction.  相似文献   

8.
Cultured chick embryo skeletal muscle cells normally synthesize only the embryonic isoform of mysoin. We have found that aneural muscle cultures that become or are provoked into an extremely contractile state will begin to synthesize a pattern of myosin light chains typical of maturing muscle. Immunoblots with neonatal and adult specific monoclonal antibodies did not reveal a corresponding isozyme transition in myosin heavy chain. These results demonstrate a correlation between contractility and the regulation of myosin light chain maturation, and also suggest that the transitions of heavy and light chain synthesis during development do not appear to be under close coordinate regulation.  相似文献   

9.
Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase-anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase-anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus.  相似文献   

10.
Our group has documented that myocardial performance is impaired in the hearts of chronically diabetic rats and rabbits. Abnormalities in the contractile proteins and regulatory proteins may be responsible for the mechanical defects in the streptozotocin (STZ)-diabetic hearts. Previously, the major focus of our research on contractile proteins in abnormal states has concentrated on myosin ATPase and its isoenzymes. Our present study is based on the overall hypothesis that regulatory proteins, in addition to contractile protein, myosin contribute to altered cardiac contractile performance in the rat model of diabetic cardiomyopathy. The purpose of our research was to define the role of cardiac regulatory proteins (troponin-tropomyosin) in the regulation of actomyosin system in diabetic cardiomyopathy.For baseline data, myofibrillar ATPase studies were conducted in the myofibrils from control and diabetic rats. To focus on the regulatory proteins (troponin and tropomyosin), individual proteins of the cardiac system were reconstituted under controlled conditions. By this approach, myosin plus actin and troponin-tropomyosin from the normal and diabetic animals could be studied enzymatically. The proteins were isolated from the cardiac muscle of control and STZ-diabetic (4 weeks) rats. Sodium dodecyl sulfate gel electrophoretic patterns demonstrate differences in the cardiac TnT and TnI regions of diabetic animals suggesting the different amounts of TnT and/or TnI or possibly different cardiac isozymes in the regulatory protein complex. Myofibrils probed with a monoclonal antibody TnI-1 (specific for adult cardiac TnI) show a downregulation of cardiac TnI in diabetics when compared to its controls. Enzymatic data confirm a diminished calcium sensitivity in the regulation of the cardiac actomyosin system when regulatory protein(s) complex was recombined from diabetic hearts. Actomyosin ATPase activity in the hearts of diabetic animals was partially reversed when myosin from diabetic rats was regulated with the regulatory protein complex isolated from control hearts. To our knowledge, this is the first study which demonstrates that the regulatory proteins from normal hearts can upregulate cardiac myosin isolated from a pathologic rat model of diabetes. This diminished calcium sensitivity along with shifts in cardiac myosin heavy chain (V1V3) may be partially responsible for the impaired cardiac function in the hearts of chronic diabetic rats. (Mol Cell Biochem151: 165–172, 1995)  相似文献   

11.
The contractile actin cortex is important for diverse fundamental cell processes, but little is known about how the assembly of F-actin and myosin II motors is regulated. We report that depletion of actin depolymerizing factor (ADF)/cofilin proteins in human cells causes increased contractile cortical actomyosin assembly. Remarkably, our data reveal that the major cellular defects resulting from ADF/cofilin depletion, including cortical F-actin accumulation, were largely due to excessive myosin II activity. We identify that ADF/cofilins from unicellular organisms to humans share a conserved activity to inhibit myosin II binding to F-actin, indicating a mechanistic rationale for our cellular results. Our study establishes an essential requirement for ADF/cofilin proteins in the control of normal cortical contractility and in processes such as mitotic karyokinesis. We propose that ADF/cofilin proteins are necessary for controlling actomyosin assembly and intracellular contractile force generation, a function of equal physiological importance to their established roles in mediating F-actin turnover.  相似文献   

12.
This study was undertaken to determine biochemical and functional (in vivo) adaptations of the rodent neonatal heart in response to a training program of endurance running. Ten day-old rats were progressively trained on a treadmill (final intensity, 21 m/min, 30% grade, 1 h/day) until 75 days of age. The training program induced 14, 57, and 24% increases in relative heart mass, skeletal muscle citrate synthase activity, and whole-body maximal O2 uptake, respectively (P less than 0.05). Cardiac myosin (ATPase) and Ca2+-regulated myofibril ATPase were both reduced by approximately 15% in trained vs. sedentary animals (P less than 0.05). In the majority of trained hearts examined, the myosin isozyme profile reflected an estimated 14 +/- 3% shift toward the V3 or low ATPase isozyme. Left ventricular functional indices during submaximal exercise, derived from a fluid-filled indwelling cannula, indicated that the trained animals maintained similar left ventricular (LV) systolic pressure, LV + the time derivative of pressure, and systemic arterial mean blood pressure compared with their sedentary counterparts. These functional parameters were maintained even though the trained animals performed with lower submaximal exercise heart rate. These findings suggest that maximal exercise capacity can be enhanced in neonatal rats even though the biochemical potential for ATP degradation in the cardiac contractile system is lowered. We speculate that the trend to maintain the myosin isozyme pattern further in the direction of the V3 isozyme in the trained neonatal rat heart may reflect a means to economize cross-bridge cycling while maintaining normal levels of ventricle performance at a given submaximal work load.  相似文献   

13.
Cells actively produce contractile forces for a variety of processes including cytokinesis and motility. Contractility is known to rely on myosin II motors which convert chemical energy from ATP hydrolysis into forces on actin filaments. However, the basic physical principles of cell contractility remain poorly understood. We reconstitute contractility in a simplified model system of purified F-actin, muscle myosin II motors, and α-actinin cross-linkers. We show that contractility occurs above a threshold motor concentration and within a window of cross-linker concentrations. We also quantify the pore size of the bundled networks and find contractility to occur at a critical distance between the bundles. We propose a simple mechanism of contraction based on myosin filaments pulling neighboring bundles together into an aggregated structure. Observations of this reconstituted system in both bulk and low-dimensional geometries show that the contracting gels pull on and deform their surface with a contractile force of ∼1 μN, or ∼100 pN per F-actin bundle. Cytoplasmic extracts contracting in identical environments show a similar behavior and dependence on myosin as the reconstituted system. Our results suggest that cellular contractility can be sensitively regulated by tuning the (local) activity of molecular motors and the cross-linker density and binding affinity.  相似文献   

14.
The contractile system of rat cardiac muscle that has been made hyperpermeable by soaking the tissue in EGTA (McClellan and Winegrad. 1978. J. Gen. Physiol. 72:737-764) can be probed directly with Ca buffer from the bathing solution without significant interference from either sarcoplasmic reticulum or mitochondria on the Ca concentration. Changes in Ca-activated force are due therefore to changes in the properties of the contractile system itself and not to regulation of Ca concentration. The addition of cAMP, cGMP, and GTP, guanylyl imidodiphosphate (GMP-PNP), or epinephrine to the bath does not alter maximum Ca-activated force, but when these drugs are added with 1% nonionic detergent to the bath, contractility increases by as much as 180%. An inhibitor of phosphodiesterase must be present for the inotropic effect of cAMP but not cGMP, GTP, GMP-PNP, or epinephrine. The inotropic response to cAMP is independent of the Ca sensitivity of the contractile system, but guanine nucleotides enhance contractility only when Ca sensitivity is not high. The inotropic effect of epinephrine is inhibited to a large extent by cGMP but not by GMP-PNP. These data can be explained by a model in which contractility is enhanced by a cAMP-regulated phosphorylation that can be controlled through the beta-receptor adenylate cyclase complex in the sarcolemma. The regulation involves two reactions, one a phosphorylation and a second that occurs in the presence of detergent. Phosphorylation of neither the myosin light chain nor the inhibitory subunit of troponin appears to be involved in this mechanism for regulating contractility.  相似文献   

15.
Vascular smooth muscle contractility is tightly coupled to ATP production by intermediary metabolism. To elucidate mechanisms underlying coordination of metabolism and contractility we studied the time course of isometric force, and the activation of phosphorylase and cAMP-dependent protein kinases during stimulation of bovine coronary arterial strips with KCl. Isometric force reached a maximum after 10 min of exposure to 30 mM KCl (ED90) and was sustained throughout the subsequent 20-min period of contraction. In contrast, activation of phosphorylase was biphasic: enzymic activity reached a maximum (176 +/- 10% of control) after 3 min of contraction and then, though remaining above control, activity declined to a lower level (135 +/- 7% of control). However, no change occurred in the activity ratios for cAMP-dependent protein kinase assessed in either the presence (type II isozyme) or absence (type I isozyme) of 0.5 M NaCl. These data suggest that the activation of phosphorylase during K+-induced contraction is independent of the cAMP system. The biphasic activation of phosphorylase may reflect transient changes in the intracellular concentration of Ca2+ or the activation of a phosphatase(s) during the response.  相似文献   

16.
Regulation of Cardiac Muscle Contractility   总被引:2,自引:0,他引:2  
The heart's physiological performance, unlike that of skeletal muscle, is regulated primarily by variations in the contractile force developed by the individual myocardial fibers. In an attempt to identify the basis for the characteristic properties of myocardial contraction, the individual cardiac contractile proteins and their behavior in contractile models in vitro have been examined. The low shortening velocity of heart muscle appears to reflect the weak ATPase activity of cardiac myosin, but this enzymatic activity probably does not determine active state intensity. Quantification of the effects of Ca++ upon cardiac actomyosin supports the view that myocardial contractility can be modified by changes in the amount of calcium released during excitation-contraction coupling. Exchange of intracellular K+ with Na+ derived from the extracellular space also could enhance myocardial contractility directly, as highly purified cardiac actomyosin is stimulated when K+ is replaced by an equimolar amount of Na+. On the other hand, cardiac glycosides and catecholamines, agents which greatly increase the contractility of the intact heart, were found to be without significant actions upon highly purified reconstituted cardiac actomyosin.  相似文献   

17.
A simple negative staining procedure has been developed for the demonstration of actin filaments and myosin aggregates in single giant amoeba (Chaos carolinensis) that is applicable to other single cells. Cytoplasm is first isolated in physiological solutions in which contractility and state of association of contractile proteins can be controlled. Cytoplasm isolated in low calcium, low ATP concentration solutions contains actin associated with myosin aggregates sometimes forming light-microscopically visible fibrils. When exogenous ATP is added to these preparations, actin filaments and myosin aggregates are seen separately.  相似文献   

18.
The dependences of thin filament sliding velocity on the calcium concentration in solution (pCa 5 to 8) for rabbit cardiac myosin isoforms V1 and V3 were determined in a set of experiments using an in vitro motility assay with a reconstructed thin filament. The constructed pCa-versus-velocity curves had a sigmoid shape. It was demonstrated that the sliding velocity of regulated thin filament at the saturating calcium concentration (pCa 5) did not differ from the actin sliding velocity for each isoform. The determined values of Hill’s cooperativity coefficient for isomyosins V1 and V3 were 1.04 and 0.75, respectively. It was demonstrated that isomyosin V3 was more sensitive to calcium as compared with isomyosin V1. Using the same assay, the dependence of thin filament sliding velocity on the concentration of the actin-binding protein α-actinin (analog of a force-velocity dependence) was determined at the saturating calcium concentration for each myosin isoform (V1 and V3). The results suggest that the calcium regulation of V1 and V3 contractile activity follows different mechanisms.  相似文献   

19.
The execution phase of apoptosis is characterized by marked changes in cell morphology that include contraction and membrane blebbing. The actin-myosin system has been proposed to be the source of contractile force that drives bleb formation, although the biochemical pathway that promotes actin-myosin contractility during apoptosis has not been identified. Here we show that the Rho effector protein ROCK I, which contributes to phosphorylation of myosin light-chains, myosin ATPase activity and coupling of actin-myosin filaments to the plasma membrane, is cleaved during apoptosis to generate a truncated active form. The activity of ROCK proteins is both necessary and sufficient for formation of membrane blebs and for re-localization of fragmented DNA into blebs and apoptotic bodies.  相似文献   

20.
Smooth muscles are important constituents of vertebrate organisms that provide for contractile activity of internal organs and blood vessels. Basic molecular mechanism of both smooth and striated muscle contractility is the force-producing ATP-dependent interaction of the major contractile proteins, actin and myosin II molecular motor, activated upon elevation of the free intracellular Ca2+ concentration ([Ca2+]i). However, whereas striated muscles display a proportionality of generated force to the [Ca2+]i level, smooth muscles feature molecular mechanisms that modulate sensitivity of contractile machinery to [Ca2+]i. Phosphorylation of proteins that regulate functional activity of actomyosin plays an essential role in these modulatory mechanisms. This provides an ability for smooth muscle to contract and maintain tension within a broad range of [Ca2+]i and with a low energy cost, unavailable to a striated muscle. Detailed exploration of these mechanisms is required to understand the molecular organization and functioning of vertebrate contractile systems and for development of novel advances for treating cardiovascular and many other disorders. This review summarizes the currently known and hypothetical mechanisms involved in regulation of smooth muscle Ca2+-sensitivity with a special reference to phosphorylation of regulatory proteins of the contractile machinery as a means to modulate their activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号