首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene promoting nucleic-acid degradation (pnd) on IncIa plasmid R483 was cloned into pBR322. It is located on a 0.85 kilobase (kb) EcoRI-SalI fragment and is close to Tn7. The pnd gene has similar properties to the srnB gene on the F plasmid. A cleavage map of the 0.85 kb pnd fragment was constructed and compared with that of the 1.18 kb EcoRI-BamHI fragment containing the srnB gene. These two regions showed marked heterogeneity as evidenced by their distinctly different restriction maps. This result suggests separate paths of evolution of the two genes for stable RNA degradation.  相似文献   

2.
Summary We have cloned the tolC gene of E. coli K-12 into pSF2124 by using transposon Tn10 as the marker to first isolate the relevant DNA fragment. The gene is on a 10.5 kb EcoRI fragment, and Tn5 insertion mutagenesis locates the gene near one end of this EcoRI fragment. An EcoRI-PstI fragment has been subcloned into pBR322 to facilitate further analysis of the gene.Abbreviations Tris Tris (hydroxymethyl) aminomethane - EDTA Ethylenediamine tetra-acetic acid - DOC Sodium deoxycholate - DNA Deoxyribonucleic acid - SDS Sodium dodecyl sulphate - kb kilo base pairs  相似文献   

3.
Primary structure of the tms and prs genes of Bacillus subtilis   总被引:4,自引:0,他引:4  
Summary The nucleotide sequence was determined of a 3211 nucleotide pair EcoRI-PvuII DNA fragment containing the tms and prs genes as well as a part of the ctc gene of Bacillus subtilis. The prs gene encodes phosphoribosylpyrophosphate (PRPP) synthetase, whereas the functioning of the tms and ctc gene products remains to be established. The prs gene contains an open reading frame of 317 codons resulting in a subunit Mr of 34828. An open reading frame comprising the tms gene contained 456 codons resulting in a putative translation product with an Mr of 49554. Comparison of the deduced B. subtilis PRPP synthetase amino acid sequence with PRPP synthetases from Escherichia coli and rat liver showed extensive similarity. The deduced Tms amino acid sequence was found to be 43% similar to the deduced amino acid sequence of ecourfl, a gene of E. coli with unknown function.  相似文献   

4.
5.
Summary Working with restriction fragments obtained directly from the Escherichia coli K12 chromosome, the EcoRI-HindIII restriction map of the section of the chromosome containing the replication origin has been extended by 14 kilobase pairs (kb) to cover 56kb. Within this newly mapped portion, the liv and rrnC cistrons have been identified by (1) hybridization of individual restriction fragmenents to the ilv-transducing phage dilv5 and (2) a comparison of the restriction map of this region with the EcoRI map of dilv5 and the HindIII map of the plasmid pJC110, a ColE1-ilv hybrid. The replication origin is located approximately 30 kb from the ilvE gene and 20 kb from the rrnC 16S rRNA cistron. This places the origin near 82.7 min on the genetic map, close to uncA.  相似文献   

6.
The nucleotide sequence of a 2.13-kb EcoRI-HindIII, pAMβ1-derived fragment, isolated from the gram-positive cloning vector pHV1431, has been determined and shown to encode two ORFs. ORF H encodes for a protein of 23,930 Da which exhibits substantial homology to bacterial site-specific recombinases, particularly the resolvases of the gram-positive transposons Tn917 (30.3% identity) and Tn552 (31.6% identity) and the clostridial plasmid pIP404 (27.1% identity). The second ORF (I) is incomplete and encodes a polypeptide which has significant homology with Escherichia coli topoisomerase I (26.0% identity). Insertion of either the entire 2.13-kb EcoRI-HindIII fragment or a 0.73-kb EcoRI-DraI subfragment encoding only the resolvase into the pAMβ1-based cloning vector pMTL500E causes a significant enhancement of segregational stability (from 6.5 × 10−2 to 3.0–4.0 × 10−3 plasmid loss per cell per generation). Improved segregational stability is mirrored by a reduction in plasmid polymerization. The introduction of a stop codon into the resolvase coding region negates its ability to promote segregational stability. It is proposed that the identified determinant stabilizes pAMβ1-based vectors in Bacillus subtilis by maintaining the plasmid population in the monomeric state, thereby reducing the chances of producing plasmid-free segregants.  相似文献   

7.
Summary Mutations at the cpxA locus of Escherichia coli K-12 affect cellular processes that are not otherwise related. We have now determined the physical and genetic structure of the E. coli chromosome in the region of cpxA (87.5 min). Our results indicate that cpxA is a single gene. Previous studies showed cpxA to be linked to tpiA. We therefore isolated two tpiA + recombinant plasmids, pRA200 and pRA300, from EcoRI and BamHI digests of F133, respectively. By genetic complementation or enzyme overproduction, the 9.5 kb EcoRI fragment in pRA200 was shown to include glpK, tpiA and cdh. The 13.6 kb BamHI fragment of pRA300 lacks glpK, but includes tpiA, pfkA and cpxA. Neither fragment complemented a deletion of the rha operon. These data indicate the chromosomal gene order: 87 min-rha-cpxA-pfkA-cdh-tpiA-glpK-88 min. The EcoRI and BamHI fragments overlap in an interval corresponding to about 8.2 kb of DNA. The total region of the E. coli K12 chromosome covered by the two fragments is about 15 kb. A terminal 2 kb EcoRI-BamHI fragment from pRA300 complemented the chromosomal cpxA2[Ts] allele with respect to isoleucine and valine synthesis, RNA bacteriophage sensitivity and surface exclusion in Hfr strains, and envelope protein composition. Complementation occurred when the fragment was subcloned in pBR325 but not when it was subcloned in pBR322, suggesting that the 2 kb fragment lacks expression sequences that are supplied by cat (chloramphenicol acetyltransferase gene) expression sequences of pBR325. The cpxA locus on the E. coli chromosome was established with respect to two chromosomal Tn10 insertions by a combination of genetic and physical analyses. The locus established by those analyses was consistent with the location of the 2 kb EcoRI-BamHI fragment in the physical map of the region. Physical analyses of (rha-pfkA) and (rha-tpiA) deletion strains showed that they lack cpxA and surrounding genes. Since these strains were viable, cpxA is not essential under all growth conditions.  相似文献   

8.
Aims: We report the analysis of genetic determinants conferring resistance to pristinamycin in Staphylococcus epidermidis strains and epidemiology typing of these strains by pulsed‐field gel electrophoresis. Methods and Results: Staphylococcus epidermidis (346 isolates) were searched for strains with pristinamycin resistance. Pristinamycin‐resistant strains (seven isolates) were isolated in five patients with haematological cancer in the Bone Marrow Transplant Centre of Tunisia in 2002. Resistance to pristinamycin was observed in 2% of isolates. The seven pristinamycin‐resistant strains shared resistance to oxacillin (MIC = 8–512 μg ml?1), gentamicin (MIC = 16–512 μg ml?1), erythromycin (MIC > 1024 μg ml?1), lincomycin (MIC > 1024 μg ml?1), pristinamycin (MIC = 4–16 μg ml?1) and rifampin (MIC = 128–256 μg ml?1). erm genes were amplified: ermA from six strains and ermC from one. vga gene encoding streptogramins A resistance (pristinamycin résistance) was amplified from all strains and typed as vgaA by analysis after electrophoresis of restriction profiles of vga amplicons (two fragments with Sau3A of 164 and 378 bp; one fragment with EcoRI). Pulsed‐field gel electrophoresis (PFGE) of SmaI chromosomal DNA digests of the seven S. epidermidis isolates divided them into two distinct pattern types: pulsed‐field type A (classified from A1 to A6 subtypes) and type B. The six strains harbouring ermA genes belonged to the PFGE type A while the strain harbouring ermC genes belonged to the PFGE type B. We characterized an epidemic strain carrying the vgaA and ermA genes responsible for the outbreak. Conclusions: Two clones of pristinamycin‐resistant S. epidermidis were isolated in our patients. One of them, isolated in all patients, had expanded over six months suggesting acquisition by cross‐contamination. Significance and Impact of the study: Increasing isolation of pristinamycin resistant S. epidermidis strains is an alarming indicator of nosocomial dissemination. The vector will be determined to establish a system of epidemiological surveillance.  相似文献   

9.
Summary In plant cells a DNA sequence was found which is homologous to the Drosophila per locus. In rape and spinach the homologous sequence occurs in the nuclear but not in the chloroplast genome while in Acetabularia it is found in the chloroplast but not in the nuclear genome. A 1.175 kb EcoRI-SalI fragment of the chloroplast genome of Acetabularia containing the homologous sequence was subcloned into pUC12 and sequenced. The core of the 1.175 kb fragment is a repetitive tandemly arranged sequence of 43 units of the hexamer GGA ACT coding for glycine and threonine.Abbreviations MES N-morpholinoethanesulfonic acid - DTE dithioerythritol - DTT dithiothreitol - nDNA nuclear DNA - ctDNA chloroplast DNA - TEP Tris, EDTA, proteinase K buffer  相似文献   

10.
A new cloning vector, pMFY31, has been constructed based on the high-copy-number, broad-host-range plasmid RSF1010. The plasmid has a size of 13.2 kb and carries the Apr, Cmr, and Tcr genes. It contains unique PstI, EcoRI, HindIII, BamHI, and SalI sites, all of which are located within the antibiotic resistance genes, therefore all sites are applicable to insertional inactivation. We also constructed pMFY40, a 11.6 kb derivative of pMFY31, by the elimination of the Cmr gene. Plasmid pMFY31 has been efficiently introduced into a Pseudomonas putida strain not only by plasmid-DNA transformation but also by conjugal co-transfer with the helper plasmid, and was maintained stably in the strain.  相似文献   

11.
The ribosomal DNA repeat units of two closely related species of the genus Fraxinus, F. excelsior and F. oxyphylla, were characterized. The physical maps were constructed from DNA digested with BamHI, EcoRI, EcoRV and SacI, and hybridized with three heterologous probes. The presence or the absence of an EcoRV restriction site in the 18s RNA gene characterizes two ribosomal DNA unit types found in both species and which coexist in all individuals. A third unit type appeared unique to all individuals of F. oxyphylla. It carries an EcoRI site in the intergenic spacer. Each type of unit displayed length variations. The rDNA unit length of F. excelsior and F. oxyphylla was determined with EcoRV restriction. It varied between 11kb and 14.5kb in F. excelsior and between 11.8kb to 13.8kb in F. oxyphylla. Using SacI restriction, at least ten spacer length variants were observed in F. excelsior, for which a detailed analysis was conducted. Each individual carries 2–4 length variants which vary by a 0.3-kb step multiple. This length variation was assigned to the intergenic spacer. By using the entire rDNA unit of flax as probe in combination with EcoRI restriction, each species can be unambiguously discriminated. The species-specific banding pattern was used to compare trees from a zone of sympatry between the two species. In some cases, a conflicting classification was obtained from morphological analysis and the use of the species-specific rDNA polymorphism. Implications for the genetic management of both species are discussed.  相似文献   

12.
Human ribosomal RNA genes (rDNA) are arranged as tandem repeat clusters on the short arms of five pairs of acrocentric chromosomes. We have demonstrated that a majority of the rDNA clusters are detected as 3-Mb DNA fragments when released from human genomic DNA by EcoRV digestion. This indicated the absence of the EcoRV restriction site within the rDNA clusters. We then screened for rDNA-positive cosmid clones using a chromosome 22-specific cosmid library that was constructed from MboI partial digests of the flow-sorted chromosomes. Three hundred twenty rDNA-positive clones negative for the previously reported distal flanking sequence (pACR1) were chosen and subjected to EcoRV digestion. Seven clones susceptible to EcoRV were further characterized as candidate clones that might have been derived from the junctions of the 3-Mb rDNA cluster. We identified one clone containing part of the rDNA unit sequence and a novel flanking sequence. Detailed analysis of this unique clone revealed that the coding region of the last rRNA gene located at the proximal end of the cluster is interrupted with a novel sequence of 147 bp that is tandemly repeated and is connected with an intervening 68-bp unique sequence. This junction sequence was readily amplified from chromosomes 21 and 15 as well as 22 using the polymerase chain reaction. Fluorescence in situ hybridization further indicated that the 147-bp sequence repeat is commonly distributed among all the acrocentric short arms.  相似文献   

13.
Seventy-eight staphylococcal strains were isolated from surgical-site, blood-stream and other hospital-acquired infections. Eighteen isolates were determined as methicillin (MET)-resistant S. aureus (MRSA), while the remaining were MET-resistant coagulase-negative staphylococci (CoNS). Fifty percent of CoNS strains were multiresistant, while 10 % of isolates were resistant only to β-lactams. Clinical isolates of CoNS were generally more resistant to antimicrobial agents than S. aureus strains. Thirty-nine % of S. aureus strains were resistant only to β-lactams. None of the MRSA strains carried ileS-2 gene; this gene was found in two strains of S. epidermidis.  相似文献   

14.
Summary Southern blot analysis of human genomic DNA hybridized with a coding region aldolase A cDNA probe (600 bases) revealed four restriction fragments with EcoRI restriction enzyme: 7.8 kb, 13 kb, 17 kb and >30 kb. By human-hamster hybrid analysis (Southern technique) the principal fragments, 7.8 kb, 13 kb, >30 kb, were localized to chromosomes 10, 16 and 3 respectively. The 17-kb fragment was very weak in intensity; it co-segregated with the >30-kb fragment and is probably localized on chromosome 3 with the >30-kb fragment. Analysis of a second aldolase A labelled probe protected against S1 nuclease digestion by RNAs from different hybrid cells, indicated the presence of aldolase A mRNAs in hybrid cells containing only chromosome 16. Under the stringency conditions used, the EcoRI sequences detected by the coding region aldolase A cDNA probe did not correspond to aldolase B or C. The 7.8-kb and >30-kb EcoRI sequences, localized respectively on chromosomes 10 and 3, correspond to aldolase A pseudogenes, the 13-kb EcoRI sequence localized on chromosome 16 corresponds to the aldolase active gene. The fact that the aldolase A gene and pseudogenes are located on three different chromosomes supports the hypothesis that the pseudogenes originated from aldolase A mRNAs, copied into DNA and integrated in unrelated chromosomal loci.  相似文献   

15.
The EcoRV restriction endonuclease cleaves DNA at its recognition sequence at least a million times faster than at any other DNA sequence. The only cofactor it requires for activity is Mg2+: but in binding to DNA in the absence of Mg2+, the EcoRV enzyme shows no specificity for its recognition site. Instead, the reason why EcoRV cuts one DNA sequence faster than any other is that the rate of cleavage is controlled by the binding of Mg2+ to EcoRV-DNA complexes: the complex at the recognition site has a high affinity for Mg2+, while the complexes at other DNA sequences have low affinities for Mg2+. The structures of the EcoRV endonuclease, and of its complexes with either 8pecific or non-specific DNA, have been solved by X-ray crystallography. In the specific complex, the protein interacts with the bases in the recognition sequence and the DNA takes up a highly distorted structure. In the non-specific complex with an unrelated DNA sequence, there are virtually no interactions with the bases and the DNA retains a B-like structure. Since the free energy changes for the formation of specific and non-specific complexes are the same, the energy from the specific interactions balances that required for the distortion of the DNA. The distortion inserts the phosphate at the scissile bond into the active site of the enzyme, where it forms part of the binding site for Mg2+. Without this distortion, the EcoRV–DNA complex would be unable to bind Mg2+ and thus unable to cleave DNA. The specificity of the EcoRV restriction enzyme is therefore governed, not by DNA binding as such, but by its ability to organize the structure of the DNA to which it is bound.  相似文献   

16.
The gene encoding K88ab was localized on the 11.6 kbHindIII-HindIII fragment of 74 kb plasmid DNA ofE. coli 7301. The smallest recombinant DNA producing the K88ab antigen was obtained by excision of the 5.15 kbEcoRI-EcoRI fragment from recombinant DNA composed of the 11.6 kb K88ab fragment in the pBR322 vectro. The size of the smallest fragment was 6.5 kb. Expression of the K88ab antigen was controlled by the P1 promoter of the pBR322 vector. Substitution of promoter Ptac for promoter P1 made it possible to achieve expression of the K88ab antigen byE. coli MT. Substitution of promoter PL for promoter P1 failed to achieve expression of the K88 ab antigen in the recipient strains used.  相似文献   

17.
We have utilized the principle of site-directed mutagenesis, previously applied to the RNA of bacteriophage Qβ, to generate nucleotide transitions in a predetermined region of DNA. Plasmid PβG, which contains an almost complete DNA copy of rabbit β globin messenger RNA, was nicked at the EcoRI site which is located within the globin gene, in a region corresponding to amino acids 121 and 122. Substrate-limited nick translation using DNA polymerase I and N4-hydroxydCTP, dCTP and dATP led to the replacement of TMP residues by the nucleotide analog in the immediate vicinity of the nicks. The substituted DNA was amplified in vivo, treated with EcoRI and retransfected. 1.9% of the amplified DNA was found to be EcoRI-resistant. Nucleotide sequence analysis of the critical region of six EcoRI-resistant isolates revealed that two plasmids had one, three had two and one had three A · T → G · C transitions, all located within the substituted region. No point mutations (< 3 × 10?3%) were found in control preparations; however, a small number of deletion mutants, lacking the EcoRI site, were isolated.  相似文献   

18.
Summary The structural gene, nirS, for the respiratory nitrite reductase (cytochrome cd 1) from Pseudomonas stutzeri was identified by (i) sequencing of the N-terminus of the purified protein and partial sequencing of the cloned gene, (ii) immunoscreening of clones from a lambda gt11 expression library, (iii) mapping of the transposon Tn5 insertion site in the nirS mutant strain MK202, and (iv) complementation of strain MK202 with a plasmid carrying the insert from an immunopositive lambda clone. A mutation causing overproduction of cytochrome c 552 mapped on the same 8.6 kb EcoRI fragment within 1.7 kb of the mutation affecting nirS. Two mutations affecting nirD, which cause the synthesis of an inactive cytochrome cd 1 lacking heme d 1, mapped 1.1 kb apart within a 10.5 kb EcoRI fragment contiguous with the fragment carrying nirS. Nir mutants of another type that had low level synthesis of cytochrome cd 1, had Tn5 insertions within an 11 kb EcoRI fragment unlinked to the nirS + and nirD + fragments. Cosmid mapping provided evidence that nirS and nirD, and the previously identified gene cluster for nitrous oxide respiration are closely linked. The nirS gene and the structural gene for nitrous oxide reductase, nosZ, are transcribed in the same direction and are separated by approximately 14 kb. Several genes for copper processing are located within the intervening region.  相似文献   

19.
Summary Sporulation gene spoIVC of Bacillus subtilis was cloned by the prophage transformation method in temperate phage 105. The specialized transducing phage, 105spoIVC-1, restored the sporulation of the asporogenous mutant of B. subtilis strain 1S47 (spoIVC133). Transformation experiments showed that the spoIVC gene resides on a 7.3 kb HindIII restriction fragment. Subsequent analysis of the 7.3 kb HindIII fragment with restriction endonuclease EcoRI showed that the spoIVC gene resides on a 3.6 kb EcoRI fragment within the 7.3 kb fragment. The 3.6 kb fragment was recloned into the unique EcoRI site of plasmid pUB110 and deletion derivatives having a deletion within the 3.6 kb insert were constructed. The plasmid carrying the entire spoIVC gene restored the sporulation of strain HU1214 (spoIVC133, recE4) at a frequency of 107 spores/ml, and reduced the sporulation of strain HU1018 (spo +, recE4) to 107 spores/ml.  相似文献   

20.
Investigation of integron carriage in a global collection of multi-drug resistant Salmonella enterica identified 3 unique class 1 integron gene cassette arrays not previously reported in this species. The present study used PCR and DNA sequence analysis to characterize the structure of these gene cassette arrays. A ~4.0 kb integron containing the gene cassette array arr2/cmlA5/bla OXA10 /aadA1 was found in isolates belonging to serovars Isangi and Typhimurium from South Africa. A ~6.0 kb integron containing the gene cassettes aac(6′)IIc/ereA2/IS1247/aac/arr/ereA2 was found in isolates belonging to serovar Heidelberg from the Philippines. In this gene cassette array, the insertion sequence, IS1247, and two putative resistance genes, disrupt the erythromycin resistance gene cassette. Finally, a ~6.0 kb integron containing the gene cassette qacH/dfrA32/ereA1/aadA2/cmlA/aadA1 was found in serovar Stanley isolates from Taiwan. This integron, which has not been previously reported in any bacterial species, contains a new dihydrofolate reductase gene cassette sequence designated dfrA32, with only 90% sequence similarity to previously reported dfrA cassettes. The S. enterica integrons described in the present study represent novel collections of resistance genes which confer multi-drug resistance and have the potential to be widely disseminated among S. enterica as well as other bacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号