首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Auxin-induced gene expression is described for a variety of different genes including the SAUR-, Aux/IAA- and GH3-families, members of which have been found in seed plants. The precise function of GH3-like proteins in plant development is not well characterised yet. Mutant analysis in Arabidopsis thaliana indicates a possible role for GH3-like proteins in connecting auxin and light signal transduction. Here, we report the isolation of three different GH3-like homologues from a lower land plant, the moss Physcomitrella patens. Two of the GH3-like homologues were chosen for further characterisation. Both genes are expressed in gametophytic tissues, with expression starting very early in moss development. Knockout plants were generated and analysed. In comparison to white-light growth, cultivation of the wild type and knockout plants under red-light conditions resulted in a delay in gametophytic tissue development. The leafy moss plants displayed an elongated phenotype. Growth delay and elongation were even stronger under far-red light conditions. No obvious differences between wild type and knockout plants could be detected under the examined conditions, indicating functional redundancy of the two genes.  相似文献   

2.
The mechanisms plants use to adapt to abiotic stress have been widely studied in a number of seed plants. Major research has been focused on the isolation of stress-responsive genes as a means to understand the molecular events underlying the adaptation process. To study stress-related gene regulation in the moss Physcomitrella patens we have isolated two cDNAs showing homology to highly conserved small hydrophobic proteins from different seed plants. The corresponding genes are up-regulated by dehydration, salt, sorbitol, cold and the hormone abscisic acid, indicating overlapping pathways are involved in the control of these genes. Based on the molecular characterization of the moss homologs we propose that signaling pathways in response to abiotic stress may have been altered during the evolution of land plants.Abbreviation ABA Abscisic acid - EST Expressed sequence tag  相似文献   

3.
Dhar MK  Kaul S  Kour J 《Plant cell reports》2011,30(5):799-806
Plant Biotechnology involves manipulation of genetic material to develop better crops. Keeping in view the challenges being faced by humanity in terms of shortage of food and other resources, we need to continuously upgrade the genomic technologies and fine tune the existing methods. For efficient genetic transformation, Agrobacterium-mediated as well as direct delivery methods have been used successfully. However, these methods suffer from many disadvantages especially in terms of transfer of large genes, gene complexes and gene silencing. To overcome these problems, recently, some efforts have been made to develop genetic transformation systems based on engineered plant chromosomes called minichromosomes or plant artificial chromosomes. Two approaches namely, “top-down” or “bottom-up” have been used for minichromosomes. The former involves engineering of the existing chromosomes within a cell and the latter de novo assembling of chromosomes from the basic constituents. While some success has been achieved using these chromosomes as vectors for genetic transformation in maize, however, more studies are needed to extend this technology to crop plants. The present review attempts to trace the genesis of minichromosomes and discusses their potential of development into plant artificial chromosome vectors. The use of these vectors in genetic transformation will greatly ameliorate the food problem and help to achieve the UN Millennium development goals.  相似文献   

4.
The plastid division proteins FtsZ are encoded by a small nuclear gene family in land plants. Although it has been shown for some of the gene products that they are imported into plastids and function in plastid division, the evolution and function of this gene family and their products remain to be unraveled. Here we present two new ftsZ genes from the moss Physcomitrella patens and compare the genomic structure of members of the two plant ftsZ gene families. Comparison of sequence features and phylogenetic analyses confirm the presence of two clusters of paralogues in land plants and demonstrate that these genes were duplicated before the divergence of mosses, ferns and seed plants.  相似文献   

5.
Summary One natural population (F0 generation) of Beta maritima situated on the French Atlantic coast has been analysed. It was composed of 62% female, 30% hermaphrodite and 8% intermediate plants. The analysis of half-sib progeny (F1 generation) obtained from in situ open pollination demonstrates the cytoplasmic determination of male sterility in Beta maritima and the restoration of fertility by nuclear genes. The mitochondrial DNA (mtDNA) and the chloroplast DNA (ctDNA) of sixteen F1 plants, extracted from offspring of the three sexual phenotypes, were analysed using the restriction enzymes Sal I and Bam HI, respectively. Two cytoplasmic lines with their own peculiar genetic characteristics were distinguished using the restriction enzyme patterns of mtDNA: (i) the S cytoplasmic line was found in segregating progeny of two F0 plants; all three phenotypes were produced (that is, progeny including hermaphrodite, female and intermediate plants); (ii) the N cytoplasmic line was found in the progeny of one F0 hermaphrodite plant; this produced only hermaphrodites. Thus, segregating and non-segregating hermaphrodite F0 plants can be distinguished. The nuclear genes maintaining sterility or restoring fertility are expressed in line S. At the same time the analysis of Beta vulgaris material has been carried out at the molecular level: N cytoplasmic lines of B. vulgaris and B. maritima differed only by 3 fragments of mtDNA; but the S cytoplasmic line of B. maritima was very different from Owen's cytoplasmic male sterile line of B. vulgaris. No variation in the ctDNA pattern was detected within and between the two taxa.  相似文献   

6.
The moss bioreactor   总被引:4,自引:0,他引:4  
The production of recombinant proteins in moss bioreactors provides all of the benefits of molecular farming in plants but avoids many plant-specific disadvantages, such as the genetic instability of de-differentiated cells in suspension culture or the lack of containment during field production. Protein yields are in the same range as those of other cell-culture-based production systems. On top of this, the moss Physcomitrella patens is the only known plant that can be genetically modified by homologous recombination, allowing efficient targeted gene disruption. Thus, the major drawback of producing human proteins in plants, allergic reactions caused by plant-specific glycosylation, can be diminished by targeted knockout of the responsible genes in moss. Unlike all other plants, moss allows straightforward 'humanisation' of plant-derived pharmaceuticals.  相似文献   

7.
8.
9.
10.
Heterochromatin has been traditionally regarded as a genomic wasteland, but in the last three decades extensive genetic and molecular studies have shown that this ubiquitous component of eukaryotic chromosomes may perform important biological functions. In D. melanogaster, about 30 genes that are essential for viability and/or fertility have been mapped to the heterochromatin of the major autosomes. Thus far, the known essential genes exhibit a peculiar molecular organization. They consist of single-copy exons, while their introns are comprised mainly of degenerate transposons. Moreover, about one hundred predicted genes that escaped previous genetic analyses have been associated with the proximal regions of chromosome arms but it remains to be determined how many of these genes are actually located within the heterochromatin. In this overview, we present available data on the mapping, molecular organization and function of known vital genes embedded in the heterochromatin of chromosomes 2 and 3. Repetitive loci, such as Responder and the ABO elements, which are also located in the heterochromatin of chromosome 2, are not discussed here because they have been reviewed in detail elsewhere.  相似文献   

11.
Shoot organogenesis is one of the in vitro plant regeneration pathways. It has been widely employed in plant biotechnology for in vitro micropropagation and genetic transformation, as well as in study of plant development. Morphological and physiological aspects of in vitro shoot organogenesis have already been extensively studied in plant tissue culture for more than 50 years. Within the last ten years, given the research progress in plant genetics and molecular biology, our understanding of in vivo plant shoot meristem development, plant cell cycle, and cytokinin signal transduction has advanced significantly. These research advances have provided useful molecular tools and resources for the recent studies on the genetic and molecular aspects of in vitro shoot organogenesis. A few key molecular markers, genes, and probable pathways have been identified from these studies that are shown to be critically involved in in vitro shoot organogenesis. Furthermore, these studies have also indicated that in vitro shoot organogenesis, just as in in vivo shoot development, is a complex, well-coordinated developmental process, and induction of a single molecular event may not be sufficient to induce the occurrence of the entire process. Further study is needed to identify the early molecular event(s) that triggers dedifferentiation of somatic cells and serves as the developmental switch for de novo shoot development.  相似文献   

12.
13.
Summary A stable intergeneric transfer of nuclear genes from Physalis minima into the genome of Datura innoxia has been achieved through asymmetric protoplast fusion. No hybrid plants could be obtained from these species either by traditional methods of sexual breeding or by somatic hybridization via fusion of protoplasts containing complete nuclear genomes. The incompatibility barriers were bypassed by the fusion of highly X-irradiated (LD100) wild-type Physalis with nuclear albino mutant Datura protoplasts. In this intergeneric reconstruction, 1.15% of the total heterokaryons restored the chlorophyll synthesis in their regenerants. Two representative transformed lines, TRL-A and TRL-D, were further characterized, showing 0.43–0.78 pg. additional nuclear DNA (4.45–8.07% nuclear DNA of P. minima). Since chromosomes of the species of Datura and Physalis were distinguishable, the mitotic complement of the transformed regenerants showed only 3 and 1 chromosomes of the donor in tetraploid (2n=48) and octoploid (2n=96) genomes of the recipient, respectively. The introduction and expression of limited genes of Physalis in Datura have also been confirmed by the allelic expression of various isoenzymes. Such stable gene transfer via asymmetric fusion of protoplasts has been discussed in relation to its application in the genetic manipulation of plants.  相似文献   

14.
Retrotransposons are mobile genetic elements that accomplish transposition via an RNA intermediate that is reverse transcribed before integration into a new location within the host genome. They are ubiquitous in eukaryotic organisms and constitute a major portion of the nuclear genome (often more than half of the total DNA) in plants. Furthermore, they are dispersed as interspersed repetitive sequences throughout most of the length of all host chromosomes. These unique properties of retrotransposons have been exploited as genetic tools for plant genome analysis. Major applications are in determining phylogeny and genetic diversity and in the functional analyses of genes in plants. Here, recent advances in molecular markers, gene tagging and functional genomics technologies using plant retrotransposons are described.  相似文献   

15.
16.
Summary Transfer of genes from heterologous species provides the means of selectively introducing new traits into crop plants and expanding the gene pool beyond what has been available to traditional breeding systems. With the recent advances in genetic engineering of plants, it is now feasible to introduce into crop plants, genes that have previously been inaccessible to the conventional plant breeder, or which did not exist in the crop of interest. This holds a tremendous potential for the genetic enhancement of important food crops. However, the availability of efficient transformation methods to introduce foreign DNA can be a substantial barrier to the application of recombinant DNA methods in some crop plants. Despite significant advances over the past decades, development of efficient transformation methods can take many years of painstaking research. The major components for the development of transgenic plants include the development of reliable tissue culture regeneration systems, preparation of gene constructs and efficient transformation techniques for the introduction of genes into the crop plants, recovery and multiplication of transgenic plants, molecular and genetic characterization of transgenic plants for stable and efficient gene expression, transfer of genes to elite cultivars by conventional breeding methods if required, and the evaluation of transgenic plants for their effectiveness in alleviating the biotic and abiotic stresses without being an environmental biohazard. Amongst these, protocols for the introduction of genes, including the efficient regeneration of shoots in tissue cultures, and transformation methods can be major bottlenecks to the application of genetic transformation technology. Some of the key constraints in transformation procedures and possible solutions for safe development and deployment of transgenic plants for crop improvement are discussed.  相似文献   

17.
The moss Physcomitrella patens (Hedw.) B.S.G. is the first land plant in which gene disruption by homologous recombination Is directly accessible. In order to obtain cloned sequences which may be used in such an approach, complementary DNAs (cDNAs) have been isolated by subtractlve hybridisation of representative cDNA libraries from cytoklnin-treated tissue. Sequencing of these clones from both ends yielded over 35 kb of non-redundant sequence Information, of which 20 kb results from clones which appear to be novel to plants. Database comparisons have revealed that 39 of the expressed sequence tags (ESTs) generated show significant homology to identified sequences. Analysis of these ESTs shows a high degree of conservation between Physcomitrella and seed plant sequences, and codon usage is found to be very similar to that In dicotyledonous species. Furthermore, 43 sequences showing no significant homology to sequences in the databases represent previously unidentified expressed genes.  相似文献   

18.
A wild-type (WT) strain of the moss Physcomitrella patens (Hedw.) B.S.G., two mutants derived from it (PC22 and P24), and a somatic hybrid, PC22(+)P24, were analysed. Staining of metaphases revealed 54±2 chromosomes in the somatic hybrid and 27 chromosomes in the wild type and the two mutants. Using flow cytometry (FCM), DNA contents were calculated to be 0.6 pg (WT, PC22), 1.2 pg (P24), and 1.6 pg (PC22(+)P24) per nucleus, respectively. Southern hybridization provided evidence for at least one family of highly repetitive DNA and, furthermore, revealed different amounts of repetitive DNA in the four genotypes. However, these sequences cannot account for the 100% increase in the nuclear DNA amount in mutant P24, relative to wild type. In FCM analyses every moss geno-type generated just one single peak of fluorescence, indicating an arrest in the cell cycle during the daytime. Thermal denaturation of wild-type DNA revealed a G+C content of 34.6% for total DNA and 38.6% for plastid DNA. A cDNA library of 1.2 × 106 independent clones was established, from which sequences homologous to cab and rbcS, respectively, were isolated. These genes show significant homologies to those of higher plants, and, likewise, comprise multigene families. No restriction fragment length polymorphisms could be detected between the four moss genotypes using these cDNA probes.This article is based in part on doctoral studies of M.F. and MW at the University of Hamburg, Faculty of Biology  相似文献   

19.
Summary Chili pepper is an important horticultural crop that can surely benefit from plant biotechnology. However, although it is a Solanaceous member, developments in plant cell, tissue, and organ culture, as well as on plant genetic transformation, have lagged far behind those achieved for other members of the same family, such as tobacco (Nicotiana tabacum), tomato (Lycopersicon esculentum), and potato (Solanum tuberosum), species frequently used as model systems because of their facility to regenerate organs and eventually whole plants in vitro, and also for their ability to be genetically engineered by the currently available transformation methods. Capsicum members have been shown to be recalcitrant to differentiation and plant regeneration under in vitro conditions, which in turn makes it very difficult or inefficient to apply recombinant DNA technologies via genetic transformation aimed at genetic improvement against pests and diseases. Some approaches, however, have made possible the regeneration of chili pepper plants from in vitro-cultured cells, tissues, and organs through organogenesis or embryogenesis. Anther culture has been successfully applied to obtain haploid and doubledhaploid plants. Organogenic systems have been used for in vitro micropropagation as well as for genetic transformation. Application of both tissue culture and genetic transformation techniques have led to the development of chili pepper plants more resistant to at least one type of virus. Cell and tissue cultures have been applied successfully to the selection of variant cells exhibiting increased resistance to abiotic stresses, but no plants exhibiting the selected traits have been regenerated. Production of capsaicinoids, the hot principle of chili pepper fruits, by cells and callus tissues has been another area of intense research. The advances, limitations, and applications of chili pepper biotechnology are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号