首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Incipient ant colonies are often under fierce competition, making fast growth crucial for survival. To increase production, colonies can adopt multiple queens (pleometrosis), fuse with other colonies or rob brood from neighboring colonies. However, different adoption strategies might have different impacts such as future queen fecundity or future colony size. O. smaragdina queen production was measured in incipient colonies with 2, 3 or 4 founding queens, following the transplantation of 0, 30 or 60 pupae from a donor colony. Pupae developed into mature workers, resulting in increased worker/queen ratios in pupae transplanted treatments and leading to increases in the per capita queen production. Conversely, more queens did not induce increased per capita fecundity. Thus, brood robbing added individuals to the worker force and increased future production of resident queens, whereas queen adoption increased the colony’s future production, but not the production of individual queens.  相似文献   

3.
Nests of social insects are an attractive resource in terms of nutrition and shelter and therefore targeted by a variety of pathogens and parasites that harness the resources of a host colony in their own reproductive interests. Colonies of the ants Formica fusca and F. lemani serve as hosts for mound‐building Formica species, the queens of which use host colonies during colony founding. Here, we investigate whether workers of the host species can mitigate the costs imposed on them by invading parasite queens by recognizing and selectively removing eggs laid by these queens. We used behavioural assays, allowing host workers to choose between con‐colonial eggs and eggs laid by the parasite species F. truncorum. We show that workers of both host species discriminate between the two types of eggs in favour of con‐colonial eggs. Moreover, workers of F. fusca rejected more con‐colonial eggs than F. lemani. This higher rate of error in F. fusca may reflect a greater selectivity or a greater difficulty in discriminating between the two egg types. Nevertheless, both host species removed parasite eggs at a similar rate, when these were artificially introduced into the colonies, although some eggs remained after 10 d. In addition, upon receiving parasite eggs, host workers started to lay unfertilized male‐destined eggs within 6 d, thus employing an alternative pathway to gain direct fitness when the resident queen is no longer present and the colony is parasitized.  相似文献   

4.
The colonies of army ants and some other legionary ant species have single, permanently wingless queens with massive post petioles and large gasters. Such highly modified queens are called dichthadiigynes. This paper presents the unusually rich exocrine gland endowment of dichthadiigynes, which is not found in queens of other ant species. It has been suggested these kinds of glands produce secretions that attract and maintain worker retinues around queens, especially during migration. However, large worker retinues also occur in non-legionary species whose queens do not have such an exuberance of exocrine glands. We argue and present evidence in support of our previously proposed hypothesis that the enormous outfit of exocrine glands found in dichthadiigynes is due to sexual selection mediated by workers as the main selecting agents.  相似文献   

5.
We investigated worker regulation of queen activity during reproductive swarming by examining the rates at which workers performed vibration signals and piping on queens during the different stages of the swarming process. Worker–queen interactions were first examined inside observation hives during the 2–3 wk that preceded the issue of the swarm (pre‐swarming period) and then inside the swarm clusters during the period that preceded liftoff and relocation to a new nest site (post‐swarming period). Queen court size did not differ between the pre‐ and post‐swarming periods, but workers fed the queens less inside the swarm clusters. Workers performed vibration signals on the queens at increasing rates throughout the pre‐swarming period inside the natal nest, but rarely or never vibrated the queen inside the swarm. Piping was performed on the queens during both the pre‐ and post‐swarming periods and always reached a peak immediately before queen flight. During the final 2–4 h before swarm liftoff, queens were increasingly contacted by waggle dancers for nest sites, some of which piped the queen. The vibration signal may operate in a modulatory manner to gradually prepare the queen for flight from the natal nest, and the cumulative effects of the signal during the pre‐swarming period may make further vibrations on the queen unnecessary when inside the swarm cluster. In contrast, worker piping may function in a more immediate manner to trigger queen takeoff during both the pre‐ and post‐swarming periods. Workers that vibrate and pipe the queen tend to be older, foraging‐age bees. The regulation of queen activity during colony reproduction may therefore be controlled largely by workers that normally have little contact with queens, but help to formulate colony reproductive and movement decisions.  相似文献   

6.
The mushroom body (MB) is an area of the insect brain involved in learning, memory, and sensory integration. Here, we used the sweat bee Megalopta genalis (Halictidae) to test for differences between queens and workers in the volume of the MB calyces. We used confocal microscopy to measure the volume of the whole brain, MB calyces, optic lobes, and antennal lobes of queens and workers. Queens had larger brains, larger MB calyces, and a larger MB calyces:whole brain ratio than workers, suggesting an effect of social dominance in brain development. This could result from social interactions leading to smaller worker MBs, or larger queen MBs. It could also result from other factors, such as differences in age or sensory experience. To test these explanations, we next compared queens and workers to other groups. We compared newly emerged bees, bees reared in isolation for 10 days, bees initiating new observation nests, and bees initiating new natural nests collected from the field to queens and workers. Queens did not differ from these other groups. We suggest that the effects of queen dominance over workers, rather than differences in age, experience, or reproductive status, are responsible for the queen–worker differences we observed. Worker MB development may be affected by queen aggression directly and/or manipulation of larval nutrition, which is provisioned by the queen. We found no consistent differences in the size of antennal lobes or optic lobes associated with differences in age, experience, reproductive status, or social caste.  相似文献   

7.
Social organisms rank among the most abundant and ecologically dominant species on Earth, in part due to exclusive recognition systems that allow cooperators to be distinguished from exploiters. Exploiters, such as social parasites, manipulate their hosts’ recognition systems, whereas cooperators are expected to minimize interference with their partner’s recognition abilities. Despite our wealth of knowledge about recognition in single-species social nests, less is known of the recognition systems in multi-species nests, particularly involving cooperators. One uncommon type of nesting symbiosis, called parabiosis, involves two species of ants sharing a nest and foraging trails in ostensible cooperation. Here, we investigated recognition cues (cuticular hydrocarbons) and recognition behaviors in the parabiotic mixed-species ant nests of Camponotus femoratus and Crematogaster levior in North-Eastern Amazonia. We found two sympatric, cryptic Cr. levior chemotypes in the population, with one type in each parabiotic colony. Although they share a nest, very few hydrocarbons were shared between Ca. femoratus and either Cr. levior chemotype. The Ca. femoratus hydrocarbons were also unusually long–chained branched alkenes and dienes, compounds not commonly found amongst ants. Despite minimal overlap in hydrocarbon profile, there was evidence of potential interspecific nestmate recognition –Cr. levior ants were more aggressive toward Ca. femoratus non-nestmates than Ca. femoratus nestmates. In contrast to the prediction that sharing a nest could weaken conspecific recognition, each parabiotic species also maintains its own aggressive recognition behaviors to exclude conspecific non-nestmates. This suggests that, despite cohabitation, parabiotic ants maintain their own species-specific colony odors and recognition mechanisms. It is possible that such social symbioses are enabled by the two species each using their own separate recognition cues, and that interspecific nestmate recognition may enable this multi-species cooperative nesting.  相似文献   

8.
The South American seed-harvester ant Pogonomyrmex laticeps has dimorphic queens: ergatoid (permanently wingless) and brachypterous (short, non-functional wings). Surveys in western Argentina indicated that colonies near Chilecito, La Rioja Province, produced only ergatoid queens, while those near Punta Balasto, Catamarca Province (263 km away), produced only brachypterous queens. Brachypterous queens were significantly larger than ergatoid queens for 10 of 11 external characters, but both phenotypes had comparable reproductive potential, i.e., a spermatheca and a similar number of ovarioles. Using normal winged queens of the closely related P. uruguayensis for comparison, we determined that both queen phenotypes in P. laticeps had a full set of dorsal thoracic sclerites, albeit each sclerite was much reduced, whereas workers had a thorax without distinct dorsal sclerites. Sclerites were fused and immobile in ergatoid queens, while they were separable and fully articulated in brachypterous queens. Both phenotypes lacked the big indirect flight muscles, but brachypterous queens retained the tiny direct flight muscles. Overall, this dimorphism across populations indicates that there are alternative solutions to selective pressures against flying queens. We lack field data about colony founding strategy (independent or dependent) for either queen phenotype, but colonies at both sites produced numerous gynes, and we infer that all foundresses initiate colonies independently and are obligate foragers.  相似文献   

9.
Colony social organization in the fire ant Solenopsis invicta appears to be under strong genetic control. In the invasive USA range, polygyny (multiple queens per colony) is marked by the presence of the Gp-9 b allele in most of a colony’s workers, whereas monogyny (single queen per colony) is associated with the exclusive occurrence of the Gp-9 B allele. Ross and Keller, Behav Ecol Sociobiol 51:287–295 (2002) experimentally manipulated social organization by cross-fostering queens into colonies of the alternate form, thereby changing adult worker Gp-9 genotype frequencies over time. Although these authors showed that social behavior switched predictably when the frequency of b-bearing adult workers crossed a threshold of 5–10%, the possibility that queen effects caused the conversions could not be excluded entirely. We addressed this problem by fostering polygyne brood into queenright monogyne colonies. All such treatment colonies switched social organization to become polygyne, coincident with their proportions of b-bearing workers exceeding 12%. Our results support the conclusion that polygyny in S. invicta is induced by a minimum frequency of colony workers carrying the b allele, and further confirm that its expression is independent of queen genotype or history, worker genotypes at genes not linked to Gp-9, and colony genetic diversity.  相似文献   

10.
An experimental model of mixed societies of ants was used to test the effect of early conditioning to a mixed colony odor on interspecific recognition after various periods of separation, with Manica rubida (Myrmicinae) and Formica selysi (Formicinae). Recognition was evaluated by recording the behaviour of individuals interacting after they had been grouped in mixed societies. The observed frequency and nature of these interactions depended on the way the societies were made up (whether with the same or different species, and with or without previous exposure to that species). The recognition displayed by the workers was much more altered in interspecific than in intraspecific groupings, which is evidence of the existence of some species recognition. In addition, the adult is capable of recognizing the olfactory characteristics of its group, the group odor would be a mixture of individual odors.  相似文献   

11.
Fielde's progressive odor hypothesis postulates that certain hereditary nestmate recognition odors in adult ants change progressively with age such that workers will often not accept older siblings that differ from them in age by as little as 40–60 days unless they eclosed among siblings of that age class and learned their recognition cues. Fielde's hypothesis was based on extensive but unsystematic experimental studies which fail to provide unequivocal evidence for this phenomenon. The present study tested this hypothesis for three closely-related ant species, Leptothorax ambiguus, L. curvispinosus, and L. longispinosus, by introducing workers between groups with known age structures and a minimum age difference of eight months. The results invalidate Fielde's hypothesis for these ants. However, progressive odors may yet be found in other species and may be associated with age polyethism.  相似文献   

12.
Ants limit bird foraging success via interference or exploitative competition. We compared bird foraging (number and duration of visits, bird species visiting) on ant (Azteca instabilis)‐infested and ant‐free tropical trees (Inga micheliana and Alchornea latifolia). Ants did not affect the number of bird visits or the number of species visiting. Ant presence shortened visit duration (overall and for insectivores) only on A. latifolia where ant activity was higher. Ants may thus hinder bird foraging on some tropical trees potentially shaping how predators affect arthropod communities; yet ant effects depend on bird foraging guild and ant activity.  相似文献   

13.
To study the possible role of juvenile hormone in caste determination in Bombus terrestris, we measured development and rates of juvenile hormone biosynthesis in vitro in larvae destined to develop into either workers or queens. Larvae of both castes developed through four instars and had the same growth rates. However, the duration of the instars was longer for queen larvae, and their head width at the third and fourth instars was significantly larger. After validating the well-known radiochemical assay of JH for bumble bee larvae, we show that worker larvae corpora allata exhibited a constant and low rate of JH biosynthesis, never more than 5 pmol JH/h/pair. Queen larvae, in contrast, had two peaks of JH biosynthesis: a small one during the first instar, which has previously been correlated with caste determination; and a large peak, previously undetected, above 40 pmol JH/h/pair, during the second and third instars. We suggest that caste determination in this species is mediated by JH and that the duration of larval instars is a key factor. The possibility that the queen influences caste determination via an effect on instar duration is also discussed. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

14.
15.
Groups of newly-eclosed workers of two carpenter ant species (Camponotus floridanus and C. tortuganus) were reared in the presence of conspecific cocoons, cocoons of the other species, or were kept without cocoons. Groups of older workers (> 20 days), previously exposed to conspecific brood in their natal nest, were familiarized with either conspecific or heterospecific cocoons. After 14 days of exposure, groups were subjected to short-term (5 min) and long-term (10 day) preference tests. Young and older workers retrieved and retained many cocoons of both species, familiar and unfamiliar. However, a pattern of non-exclusive discrimination emerged: (1) Young workers exposed to conspecific cocoons picked up and retrieved conspecifics before unfamiliar heterospecifics, and retained conspecifics longer. (2) Young workers generally required experience with conspecifics to develop this preference, as those exposed to only heterospecifics and those deprived of cocoons were impartial in short-term tests. However, in long-term tests (5–10 days), naive young workers significantly preferred unfamiliar conspecifics. (3) Older workers preferred conspecific cocoons, whether familiar or unfamiliar, in short-term tests, but their tolerance for heterospecifics in the longer term (5 days) could be increased by recent familiarization. In no case did young or older ants significantly prefer familiar heterospecifics to conspecifics. These results confirm a role for early learning in brood recognition by carpenter ants, but suggest that it is less important than in Formica species studied by previous authors.  相似文献   

16.
The Chaco leaf-cutting ant Atta vollenweideri (Forel) inhabits large and deep subterranean nests composed of a large number of fungus and refuse chambers. The ants dispose of the excavated soil by forming small pellets that are carried to the surface. For ants in general, the organisation of underground soil transport during nest building remains completely unknown. In the laboratory, we investigated how soil pellets are formed and transported, and whether their occurrence influences the spatial organisation of collective digging. Similar to leaf transport, we discovered size matching between soil pellet mass and carrier mass. Workers observed while digging excavated pellets at a rate of 26 per hour. Each excavator deposited its pellets in an individual cluster, independently of the preferred deposition sites of other excavators. Soil pellets were transported sequentially over 2 m, and the transport involved up to 12 workers belonging to three functionally distinct groups: excavators, several short-distance carriers that dropped the collected pellets after a few centimetres, and long-distance, last carriers that reached the final deposition site. When initiating a new excavation, the proportion of long-distance carriers increased from 18% to 45% within the first five hours, and remained unchanged over more than 20 hours. Accumulated, freshly-excavated pellets significantly influenced the workers'' decision where to start digging in a choice experiment. Thus, pellets temporarily accumulated as a result of their sequential transport provide cues that spatially organise collective nest excavation.  相似文献   

17.
It was examined whether Formica polyctena and F. sanguinea ants from a mixed colony elicit higher levels of aggression of conspecific ants in comparison to ants from homospecific colonies. Individuals were confronted in an experimental arena and their behavior was recorded. It was found that F. polyctena workers behaved more aggressively toward ants from a mixed colony. This pattern, however, was not confirmed in F. sanguinea. Moreover, both species clearly discriminated between conspecific and allospecific ants from a mixed colony. It seems that as a result of social interactions both species exchanged cuticular hydrocarbons, which caused their recognition labels to adjust to some extent. Results of the present study support the idea that that F. sanguinea is able to form mixed colonies in which species-specific recognition cues are probably still retained.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号