首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly dendritic melanocytes have been observed in rapidly proliferating seborrheic keratosis, epidermis overlying melanomas, and in melanomas. On staining for the presence of POMC with monoclonal antibody against human ACTH, the melanocytes show cytoplasmic positivity. Short term organ cultures of whole skin from the marginal zone of vitiligo patients show that 22.7% of controls and 45.5% on dark incubation in adriamycin and 87.5% exposed to a pulse of UV on adriamycin treatment show melanocytes positive for ACTH. The surrounding keratinocytes in the epidermis and in the seborrheic keratosis are negative, whereas in melanomas, isolated groups of melanocytes are positive for ACTH. These findings indicate that ACTH is expressed by the melanocytes in the G2-phase, the activity being enhanced on UV exposure. Thus UV dependent pigmentation is associated with POMC production in human skin. From this work it is evident that the melanocyte network varies the MSH/ACTH levels in correlation with repigmentation and depigmentation in the marginal zone in vitiligo by expressing POMC locally and is related to the UV-sensitivity of the melanocytes.  相似文献   

2.
Iyengar B 《Acta anatomica》1998,163(4):173-178
Earlier studies indicate the involvement of indoleamines in the melanocyte photoresponse and cell cycle. In this study whole skin organ cultures were done to study the location of indoleamine expression during the photoresponse. Whole skin organ cultures from marginal zone vitiligo were incubated in MEM containing adriamycin and exposed to varying pulses of UV at 2 h of incubation. The G2 phase marginal melanocytes show increasing dendricity in response to increasing UV exposure at 3 h of incubation. On immunohistochemical staining for serotonin and melatonin, it is observed that both are positive in these melanocytes. The proportion of serotonin-positive melanocytes rises with increasing UV exposure while that of melatonin positivity rises with decreasing UV exposure, thus simulating the pineal response to light entrainment. This is due to photoinhibition of enzymes converting serotonin to melatonin. This study shows that the melanocytes in the skin can serve as the peripheral neural net for photoperiodic time measurements - the biological calendar.  相似文献   

3.
B Iyengar 《Acta anatomica》1992,144(4):332-335
The melanocytes are acutely sensitive to a single pulse of UV and express neural differentiation. The present work was undertaken to observe whether the melanocyte can sense variations in the duration of UV exposure. Whole skin organ cultures from marginal zone in vitiligo were exposed to a single pulse of UV, 30, 60, 90 and 120 s each. Catecholoxidase levels in the marginal melanocytes and the volume of melanocytes were used to calculate and quantitate the changes in enzyme production. The melanocytes' dendricity, volume and enzyme production increases with the duration of UV exposure. This sensitivity of the marginal melanocytes, to changes in the duration of UV exposure, simulates the coat color changes in weasels and the polar fox exposed to extreme variations in the day/night cycles. The UV response is associated with proliferation of melanocytes as it is G2-phase dependent. Thus the melanocytes form a UV-sensitive neural network responding to annual changes in the photoperiodicity.  相似文献   

4.
Vitiligo depigmentation is considered a consequence of either melanocyte disappearance or loss of functioning melanocytes in the involved areas. However, it has been reported that keratinocytes in involved vitiligo skin are damaged too. Based on this evidence, we evaluated the in vitro behaviour, in life span cultures, of involved and uninvolved vitiligo keratinocytes and their expression of proliferation, differentiation and senescence markers. An additional purpose was to investigate whether vitiligo keratinocytes from depigmented skin are able to sustain survival and growth of normal melanocytes (when added in co-culture experiments), as normal human keratinocytes manage to do. Our results demonstrate that almost all involved vitiligo keratinocytes have a shorter life span in vitro than the uninvolved cells and all of them do not maintain melanocytes in culture in a physiological ratio. Modification of proliferation and senescence marker expression also occurs. Indeed, we detected low initial expression levels of the senescence marker p16 in involved vitiligo keratinocytes, despite their shorter in vitro life span, and increased expression of proliferating cell nuclear antigen and p53. This preliminary analysis of a small number of in vitro cultured vitiligo keratinocytes suggests an impaired senescence process in lesional vitiligo keratinocytes and attempts to regulate it.  相似文献   

5.
Vitiligo is an acquired and progressive hypomelanotic disease that manifests as circumscribed depigmented patches on the skin. The aetiology of vitiligo remains unclear, but recent experimental data underline the interactions between melanocytes and other typical skin cells, particularly keratinocytes. Our previous results indicate that keratinocytes from perilesional skin show the features of damaged cells. Sirtuins (silent mating type information regulation 2 homolog) 1, well‐known modulators of lifespan in many species, have a role in gene repression, metabolic control, apoptosis and cell survival, DNA repair, development, inflammation, neuroprotection and healthy ageing. In the literature there is no evidence for SIRT1 signalling in vitiligo and its possible involvement in disease progression. Here, biopsies were taken from the perilesional skin of 16 patients suffering from non‐segmental vitiligo and SIRT1 signalling was investigated in these cells. For the first time, a new SIRT1/Akt, also known as Protein Kinase B (PKB)/mitogen‐activated protein kinase (MAPK) signalling has been revealed in vitiligo. SIRT1 regulates MAPK pathway via Akt‐apoptosis signal‐regulating kinase‐1 and down‐regulates pro‐apoptotic molecules, leading to decreased oxidative stress and apoptotic cell death in perilesional vitiligo keratinocytes. We therefore propose SIRT1 activation as a novel way of protecting perilesional vitiligo keratinocytes from damage.  相似文献   

6.
B Iyengar 《Acta anatomica》1989,136(2):139-141
Acetylcholine esterase (AChE) activity is lowered in vitiliginous skin. The AChE activity in 52 cases of vitiligo during repigmentation and depigmentation has been observed in this study. The cases with marginal dendritic melanocytes show that AChE is negative in these cells during depigmentation but positive on repigmentation. There is little variation in activity in the cases showing nondendritic marginal melanocytes. Acetylcholine (ACh) has an inhibitory effect on dopa oxidase activity in both types of marginal melanocytes in vitiligo. ACh modulates pigment production by the melanocytes, its role being inhibitory. From the present results, it is evident that a fall in AChE activity in the melanocytes leads to greater inhibition by ACh aggravating the process of depigmentation in vitiligo.  相似文献   

7.
Cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) comprise major UV-induced photolesions. If left unrepaired, these lesions can induce mutations and skin cancer, which is facilitated by UV-induced immunosuppression. Yet the contribution of lesion and cell type specificity to the harmful biological effects of UV exposure remains currently unclear. Using a series of photolyase-transgenic mice to ubiquitously remove either CPDs or 6-4PPs from all cells in the mouse skin or selectively from basal keratinocytes, we show that the majority of UV-induced acute effects to require the presence of CPDs in basal keratinocytes in the mouse skin. At the fundamental level of gene expression, CPDs induce the expression of genes associated with repair and recombinational processing of DNA damage, as well as apoptosis and a response to stress. At the organismal level, photolyase-mediated removal of CPDs, but not 6-4PPs, from the genome of only basal keratinocytes substantially diminishes the incidence of skin tumors; however, it does not affect the UVB-mediated immunosuppression. Taken together, these findings reveal a differential role of basal keratinocytes in these processes, providing novel insights into the skin's acute and chronic responses to UV in a lesion- and cell-type-specific manner.  相似文献   

8.
The aim of this study was to determine whether CD4(+) IL-17A(+) Th17 cells infiltrate vitiligo skin and to investigate whether the proinflammatory cytokines related to Th17 cell influence melanocyte enzymatic activity and cell fate. An immunohistochemical analysis showed Th17 cell infiltration in 21 of 23 vitiligo skin samples in addition to CD8(+) cells on the reticular dermis. An in vitro analysis showed that the expression of MITF and downstream genes was downregulated in melanocytes by treatment with interleukin (IL)-17A, IL-1β, IL-6, and tumor necrosis factor (TNF)-α. Treatment with these cytokines also induced morphological shrinking in melanocytes, resulting in decreased melanin production. In terms of local cytokine network in the skin, IL-17A dramatically induced IL-1β, IL-6, and TNF-α production in skin-resident cells such as keratinocytes and fibroblasts. Our results provide evidence of the influence of a complex Th17 cell-related cytokine environment in local depigmentation in addition to CD8(+) cell-mediated melanocyte destruction in autoimmune vitiligo.  相似文献   

9.
10.
Common generalized vitiligo is an acquired depigmenting disorder characterized by a chronic and progressive loss of melanocytes from the epidermis and hair follicles. We previously proposed a new theory that vitiligo involves the chronic detachment and transepidermal loss of melanocytes caused by autoimmune, neural and impaired redox mechanisms associated with mechanical trauma. In this study, we reconstructed epidermis on dead de-epidermized dermis with normal and/or non-segmental non-lesional vitiligo (NSV) cells and tested catecholamines or sera or hydrogen peroxide. Under unstressed conditions, the number of melanocytes located in the basal layer was significantly lower in reconstructs made with melanocytes from non-lesional NSV skin and normal keratinocytes compared with controls made with autologous normal melanocytes. The number of non-lesional NSV melanocytes was even lower in reconstructs made with keratinocytes from non-lesional NSV skin. Epinephrine and H(2)O(2) could trigger the transepidermal loss of normal and vitiligo melanocytes. Some sera induced melanocyte detachment but without any clear correlation with disease activity in the donors. In conclusion, our results are the first step to obtaining a reproducible melanocytorrhagic model in vitro with some of the stressors investigated. They support the hypothesis that NSV melanocytes have an intrinsic defect, which limits their adhesion in a reconstructed epidermis, with an enhancer effect of the vitiligo keratinocyte milieu.  相似文献   

11.
Vitiligo is a skin disease that is caused by selective destruction of melanocytes and is characterized by white spots. Melanocytes and keratinocytes seem to exhibit a functional close relationship, mediated at least in part by keratinocyte-derived cytokines, which seem important for survival and activity of melanocytic cells. We wanted to investigate the hypothesis that in vitiligo the expression of epidermal cytokines may be modified compared with normal skin. In 15 patients with active, non-segmental vitiligo, biopsies were obtained from lesional, perilesional and non-lesional skin; normal skin from five healthy donors was also tested. Tissue sections were tested using immunohistochemistry for the expression of keratinocyte-derived cytokines with stimulating activity, such as granulocyte-monocyte colony stimulating factor (GM-CSF), basic fibroblastic growth factor (bFGF), and stem cell factor (SCF) or with inhibiting activity, such as interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-alpha) on melanocytes. Cytokine receptors and specific melanocytic markers were also investigated. No melanocyte was identified in lesional skin by means of specific markers or c-kit receptor, whereas in perilesional, non-lesional and healthy skin, melanocytes were found in similar number. In vitiligo skin a significantly lower expression of GM-CSF, bFGF and SCF was found, and a significantly higher expression of IL-6 and TNF-alpha was detected, compared with perilesional, non-lesional and healthy skin. In conclusion, we provided evidence that a significant change of epidermal cytokines exists in vitiligo skin compared with perilesional, non-lesional and healthy skin, suggesting that the cytokine production of epidermal microenvironment may be involved in vitiligo.  相似文献   

12.
Reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)) are produced in the skin under the influence of UV radiation. These compounds are highly reactive and can induce DNA lesions in epidermal cells. Melanin is considered to protect human skin against DNA damage by absorbing UV radiation. We have investigated whether melanin can, in addition, offer protection against the effects of H(2)O(2) in human melanocytes and HaCaT keratinocytes. In the present study, it was shown that 40 and 100 microM H(2)O(2) increased the number of DNA strand breaks as measured using the comet assay, in melanocytes of Caucasian origin. In melanocytes of the same origin in which melanin levels were increased by culturing in presence of 10 mM NH(4)Cl and elevated l-tyrosine, H(2)O(2)-induced DNA damage was reduced compared to that in control melanocytes. Similarly, HaCaT cells that were loaded with melanin were better protected against H(2)O(2)-induced DNA strand breaks than control HaCaT cells. These protective effects of melanin were mimicked by the intracellular Ca(2+)-chelator BAPTA. Thus, BAPTA reduced the level of H(2)O(2)-induced DNA strand breaks in melanocytes. Like BAPTA, melanin is known to be a potent chelator of Ca(2+) and this was confirmed in the present study. It was shown that melanin levels in melanocytic cells correlated directly with intracellular Ca(2+) binding capacity and, in addition, correlated inversely with H(2)O(2)-induced increases in intracellular Ca(2+). Our results show that melanin may have an important role in regulating intracellular Ca(2+) homeostasis and it is suggested that melanin protects against H(2)O(2)-induced DNA strand breaks in both melanocytes and keratinocytes and through its ability to bind Ca(2+).  相似文献   

13.
B Iyengar 《Acta anatomica》1992,143(3):236-240
The present work is to study neural differentiation in melanocytes in relation to the cell cycle and UV exposure. Whole skin organ cultures of vitiliginous skin were exposed to a pulse of UV with and without prior Adriamycin treatment. It was observed that the highly dendritic marginal melanocytes are destroyed on UV exposure during the depigmentation phase but not during repigmentation. The melanocytes are resistant to UV destruction during the G2 phase as seen on Adriamycin treatment. They show a prominent increase in dendricity as well as biphasic activity to produce increased melanin and noradrenaline. Thus, the melanocytes form a UV-sensitive neural network in the skin. These responses are reminiscent of the repigmentation and depigmentation of coat color in animals exposed to extreme variations in the day/night cycles as seen at the poles.  相似文献   

14.
Repeated exposure of ultraviolet radiation B (UVB) on the dorsal skin of hairless mice induces the development of pigmented spots long after its cessation. The proliferation and differentiation of epidermal melanocytes in UVB‐induced pigmented spots are greatly increased, and those effects are regulated by keratinocytes rather than by melanocytes. However, it remains to be resolved what factor(s) derived from keratinocytes are involved in regulating the proliferation and differentiation of epidermal melanocytes. In this study, primary melanoblasts (c. 80%) and melanocytes (c. 20%) derived from epidermal cell suspensions of mouse skin were cultured in a basic fibroblast growth factor‐free medium supplemented with granulocyte‐macrophage colony‐stimulating factor (GM‐CSF). GM‐CSF induced the proliferation and differentiation of melanocytes in those keratinocyte‐depleted cultures. Moreover, an antibody to GM‐CSF inhibited the proliferation of melanoblasts and melanocytes from epidermal cell suspensions derived from the pigmented spots of UV‐irradiated mice, but not from control mice. Further, the GM‐CSF antibody inhibited the proliferation and differentiation of melanocytes co‐cultured with keratinocytes derived from UV‐irradiated mice, but not from control mice. The quantity of GM‐CSF secreted from keratinocytes derived from the pigmented spots of UV‐irradiated mice was much greater than that secreted from keratinocytes derived from control mice. Moreover, immunohistochemistry revealed the expression of GM‐CSF in keratinocytes derived from the pigmented spots of skin in UV‐irradiated mice, but not from normal skin in control mice. These results suggest that GM‐CSF is one of the keratinocyte‐derived factors involved in regulating the proliferation and differentiation of mouse epidermal melanocytes from UVB‐induced pigmented spots.  相似文献   

15.
When human skin is exposed to ultraviolet (UV) light, a highly complex cascade of events ensues that culminates, among other things, in increased skin melanin content. From analyses at the tissue and cellular level, it has been shown that following exposure to UV light there is an increase in the number of active melanocytes in the basal layer of the epidermis, and individual melanocytes are stimulated to produce more melanin. In addition, the rate of transfer of melanosomes from melanocytes to keratinocytes is apparently increased, although the role of UV light in this process remains to be demonstrated. Recent biochemical evidence is reviewed on factors that regulate these processes. A plausible explanation for the effects of UV on pigmentation is that there are mechanisms in the skin for the orderly, regulated reception of UV signals that are then transduced to initiate the cascade. The signals involve both melanocytes and keratinocytes, and avail-able evidence supports a model in which melanotropins and their receptors play a central role in the process.  相似文献   

16.
To further investigate the use of DNA repair-enhancing agents for skin cancer prevention, we treated Cdk4R24C/R24C/NrasQ61K mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal-cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine-treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR-initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.  相似文献   

17.
Excessive exposure to solar ultraviolet radiation is an essential etiological factor for skin cancer. UV radiation, directly or indirectly through the generation of reactive oxygen species (ROS), causes damage to DNA, proteins and lipids, and induces inflammation and immunosuppression. Cutaneous pigmentation afforded by melanocytes is the main photoprotective mechanism in human skin. In response to UV, melanocytes produce melanin pigments and transfer them to adjacent keratinocytes. This review describes: (i) the photoprotective action of melanin; (ii) the regulation of UV-induced melanogenesis and the role of p53 in this process; (iii) the relation between melanogenic and antioxidant activities in melanocytes. The possible involvement of UV-induced ROS in the stimulation of melanin synthesis is also discussed.  相似文献   

18.
Epidermal melanocytes are skin cells specialized in melanin production. Activation of the melanocortin 1 receptor (MC1R) on melanocytes by α-melanocyte-stimulating hormone (α-MSH) induces synthesis of the brown/black pigment eumelanin that confers photoprotection from solar UV radiation (UVR). Contrary to keratinocytes, melanocytes are slow proliferating cells that persist in the skin for decades, in an environment with high levels of UVR-induced reactive oxygen species (ROS). We previously reported that in addition to its role in pigmentation, α-MSH also reduces oxidative stress and enhances the repair of DNA photoproducts in melanocytes, independent of melanin synthesis. Given the significance of ROS in carcinogenesis, here we investigated the mechanisms by which α-MSH exerts antioxidant effects in melanocytes. We show that activation of the MC1R by α-MSH contributes to phosphorylation of p53 on serine 15, a known requirement for stabilization and activation of p53, a major sensor of DNA damage. This effect is mediated by the cAMP/PKA pathway and by the activation of phosphoinositide 3-kinase (PI3K) ATR and DNA protein kinase (DNA-PK). α-MSH increases the levels of 8-oxoguanine DNA glycosylase (OGG1) and apurinic apyrimidinic endonuclease 1 (APE-1/Ref-1), enzymes essential for base excision repair. Nutlin-3, an HDM2 inhibitor, mimicked the effects of α-MSH resulting in reduced phosphorylation of H2AX (γ-H2AX), a marker of DNA damage. Conversely, the p53 inhibitor pifithrin-α or silencing of p53 abolished the effects of α-MSH and augmented oxidative stress. These results show that p53 is an important target of the downstream MC1R signaling that reduces oxidative stress and possibly malignant transformation of melanocytes.  相似文献   

19.
20.
Melanocytes present in skin and other organs synthesize and store melanin pigment within membrane-delimited organelles called melanosomes. Exposure of human skin to ultraviolet radiation (UV) stimulates melanin production in melanosomes, followed by transfer of melanosomes from melanocytes to neighboring keratinocytes. Melanosomal function is critical for protecting skin against UV radiation, but the mechanisms underlying melanosomal movement and transfer are not well understood. Here we report a novel fluorescent melanosomal marker, which we used to measure real-time melanosomal dynamics in live human epidermal melanocytes (HEMs) and transfer in melanocyte-keratinocyte co-cultures. A fluorescent fusion protein of Ocular Albinism 1 (OA1) localized to melanosomes in both B16-F1 cells and HEMs, and its expression did not significantly alter melanosomal distribution. Live-cell tracking of OA1-GFP-tagged melanosomes revealed a bimodal kinetic profile, with melanosomes exhibiting combinations of slow and fast movement. We also found that exposure to UV radiation increased the fraction of melanosomes exhibiting fast versus slow movement. In addition, using OA1-GFP in live co-cultures, we monitored melanosomal transfer using time-lapse microscopy. These results highlight OA1-GFP as a specific and effective melanosomal marker for live-cell studies, reveal new aspects of melanosomal dynamics and transfer, and are relevant to understanding the skin's physiological response to UV radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号