首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular composition of the purified progenitor toxin produced by a Clostridium botulinum type C strain 6813 (C-6813) was analyzed. The strain produced two types of progenitor toxins (M and L). Purified L toxin is formed by conjugation of the M toxin (composed of a neurotoxin and a non-toxic nonhemagglutinin) with additional hemagglutinin (HA) components. The dual cleavage sites at loop region of the dichain structure neurotoxin were identified between Arg444-Ser445 and Lys449-Thr450 by the analyses of C-terminal of the light chain and N-terminal of the heavy chain. Analysis of partial amino acid sequences of fragments generated by limited proteolysis of the neurotoxin has shown to that the neurotoxin protein produced by C-6813 was a hybrid molecule composed of type C and D neurotoxins as previously reported. HA components consist of a mixture of several subcomponents with molecular weights of 70-, 55-, 33-, 26~21- and 17-kDa. The N-terminal amino acid sequences of 70-, 55-, and 26~21-kDa proteins indicated that the 70-kDa protein was intact HA-70 gene product, and other 55- and 26~21-kDa proteins were derived from the 70-kDa protein by modification with proteolysis after translation of HA-70 gene. Furthermore, several amino acid differences were exhibited in the amino acid sequence as compared with the deduced sequence from the nucleotide sequence of the HA-70 gene which was common among type C (strains C-St and C-468) and D progenitor toxins (strains D-CB16 and D-1873).  相似文献   

2.
C1 neurotoxin of Clostridium botulinum strains C-Stockholm (C-ST), C beta-Yoichi, C-468, CD6F, and C-CB19 and type D toxin of strains D-1873 and D-CB16 were purified by gel filtration, ion exchange, and affinity chromatographies. The purified toxins had di-chain structure made of heavy and light chains. The toxins of C beta-Yoichi, C-468, CD6F, and C-CB19 reacted with anti-C-ST heavy chain and anti-C-ST light chain in immunodiffusion tests and enzyme-linked immunosorbent assay, whereas D-CB16 toxin reacted with anti-D-1873 heavy chain and anti-D-1873 light chain. However, C-6813 toxin reacted with anti-D-1873 heavy chain and anti-C-ST light chain but not with anti-C-ST heavy chain or anti-D-1873 light chain immunoglobulin G. These results indicate common antigens in the heavy chains of C-6813 and D-1873 toxins and in the light chains of C-6813 and C-ST toxins. Further, they provide evidence for heterogeneity within type C1 toxin subunits.  相似文献   

3.
J O Ochanda  B Syuto  K Oguma  H Iida    S Kubo 《Applied microbiology》1984,47(6):1319-1322
C1 neurotoxin of Clostridium botulinum strains C-Stockholm (C-ST), C beta-Yoichi, C-468, CD6F, and C-CB19 and type D toxin of strains D-1873 and D-CB16 were purified by gel filtration, ion exchange, and affinity chromatographies. The purified toxins had di-chain structure made of heavy and light chains. The toxins of C beta-Yoichi, C-468, CD6F, and C-CB19 reacted with anti-C-ST heavy chain and anti-C-ST light chain in immunodiffusion tests and enzyme-linked immunosorbent assay, whereas D-CB16 toxin reacted with anti-D-1873 heavy chain and anti-D-1873 light chain. However, C-6813 toxin reacted with anti-D-1873 heavy chain and anti-C-ST light chain but not with anti-C-ST heavy chain or anti-D-1873 light chain immunoglobulin G. These results indicate common antigens in the heavy chains of C-6813 and D-1873 toxins and in the light chains of C-6813 and C-ST toxins. Further, they provide evidence for heterogeneity within type C1 toxin subunits.  相似文献   

4.
A 9.8-kbp DNA fragment which contained a neurotoxin gene and its upstream region was cloned from Clostridium botulinum type D strain CB-16. Nucleotide sequencing of the fragment revealed that genes encoding for hemagglutinin (HA) subcomponents and one for a nontoxic-nonhemagglutinin (NTNH) component were located upstream of the neurotoxin gene. This strain produced two toxins of different molecular size (approximately 300 kDa and 500 kDa) which were designated as progenitor toxins (M and L toxins). The molecular size of the NTNH component of L toxin was approximately 130 kDa on SDS-PAGE and its N-terminal amino acid sequence was M-D-I-N-D-D-L-N-I-N-S-P-V-D-N-K-N-V-V-I which agreed with that deduced from the nucleotide sequence. In contrast, the M toxin had a 115-kDa NTNH component whose N-terminal sequence was S-T-I-P-F-P-F-G-G-Y-R-E-T-N-Y-I-E, corresponding to the sequence from Ser141 of the deduced sequence. A 15-kDa fragment, which was found to be associated with an M toxin preparation, possessed the same N-terminal amino acid sequence as that of the 130-kDa NTNH component. Furthermore, five major fragments generated by limited proteolysis with V8 protease were shown to have N-terminal amino acid sequences identical to those deduced from the nucleotide sequence of 130-kDa NTNH. These results indicate that the 130-kDa NTNH of the L toxin is cleaved at a unique site, between Thr and Ser, leading to the 115-kDa NTNH of the M toxin.  相似文献   

5.
The complete nucleotide and deduced amino acid sequence of the nontoxic component of botulinum type E progenitor toxin is determined in recombinant plasmid pU9BUH containing about 6.0 kb HindIII fragment obtained from chromosomal DNA of Clostridium butyricum strain BL6340. The open reading frame (ORF) of this nontoxic component gene is composed of 3,486 nucleotide bases (1,162 amino acid residues). The molecular weight calculated from deduced amino acid residues is estimated 13,6810.1. The present study revealed that 33 nucleotide bases of 3,486 are different in the nontoxic component gene between C.butyricum strain BL6340 and C. botulinum type E strain Mashike. This corresponds to the difference of 17 amino acid residues in these nontoxic component.  相似文献   

6.
A unique strain of Clostridium botulinum, serotype D 4947 (D-4947), produces a considerable amount of a 650 kDa toxin complex (L-TC) and a small amount of a 280 kDa M-TC, a 540 kDa TC, and a 610 kDa TC. The complexes are composed of only un-nicked components, including neurotoxin (NT), nontoxic nonhemagglutinin (NTNHA) and hemagglutinin subcomponents (HA-70, HA-33 and HA-17). Unlike other NTs from all serotype strains, separation of D-4947 NT from L-TC, except for M-TC, during chromatography required highly alkaline conditions around pH 8.8. The separated NT and NTNHA/HAs complex can be reconstituted to L-TC that is indistinguishable from the parent L-TC with respect to toxicity, hemagglutination activity and gel filtration profile. The isoelectric points of NT and NTNHA/HAs were close together depending on the number of HA-33/17 molecules. We have established a new method to separate the unique D-4947 NT from the complex, which will yield valuable information on structure of botulinum toxin.  相似文献   

7.
We report novel findings of significant amounts of 60- and 10-kDa proteins on SDS-PAGE in a culture supernatant of the Clostridium botulinum type D strain 4947 (D-4947). The N-terminal amino acid sequences of the purified proteins were closely related to those of other bacterial GroEL and GroES proteins, and both positively cross-reacted with Escherichia coli GroEL and GroES antibodies. Native GroEL homologue as an oligomeric complex is a weak ATPase whose activity is inhibited by the presence of GroES homologue. The 2634-bp groESL operon of D-4947 was isolated by PCR and sequenced. The sequence included two complete open reading frames (282 and 1629 bp), which were homologous to the groES and groEL gene family of bacterial proteins. Southern and Northern blot analyses indicate that the groESL operon is encoded on the genomic DNA of D-4947 as a single copy, and not on that of its specific toxin-converting phage.  相似文献   

8.
Clostridium botulinum type G progenitor toxin was chromatographed on DEAE-Sephadex and Q-Sepharose equilibrated with 0.05 M Tris-HCl buffer, pH 8.0, containing 0.2 M urea. The toxin was eluted in a single protein peak from DEAE-Sephadex, but it was eluted in four protein peaks from Q-Sepharose; the third peak was toxic and the others were nontoxic. The third peak, appearing to be the toxic component, had a molecular mass of 150,000. In SDS-polyacrylamide gel electrophoresis, purified type G progenitor toxin migrated in six bands, with molecular masses of 150,000, 140,000, 58,000, 10,800, 10,600, and 10,400. Type G progenitor toxin may be composed of a toxin component with a molecular mass of 150,000 and a nontoxic component in a manner similar to progenitor toxins of other types. Type G toxic component, whether it was reduced or not, migrated in a single band to the same relative positions in SDS-PAGE; type A toxic component reduced with 2-mercaptoethanol migrated in two bands.  相似文献   

9.
10.
Abstract The progenitor toxin of Clostridium botulinum type AB was purified; both large-sized (L) and medium-sized (M) toxins were found. The toxicity of M toxin increased by about 10-fold upon trypsinization; the increase was due mostly to type B toxin and a little to type A toxin. M toxin appeared to consist of one molecule each of toxic and nontoxic components. The activated toxic component was made up of four fragments, A-H- and L-chains and B-H- and L-chains. AB toxin may be a mixture of A and B toxins.  相似文献   

11.
Arabinose and galactose were detected in purified type G botulinum toxin (Mr about 500,000) of Clostridium argentinense. The i.p. LD50/mg N of type G progenitor toxin was one-tenth, but the oral LD50/mg N twice that of type A-L toxin. The lysozyme-, endo-beta-galactosidase-, and N-glucanase-treated toxins each had a molecular mass of about 300,000. The oral toxicity of the endo-beta-galactosidase or N-glucanase-treated toxin was one-fifth that of untreated progenitor toxin. On DEAE-Sephadex chromatography, the N-glucanase-treated toxin dissociated into two fractions, nontoxic and toxic. SDS-PAGE of the toxic fraction showed a single band with a Mr of about 150,000, and after dithiothreitol treatment, two bands with Mr of 100,000 and 50,000.  相似文献   

12.
[目的]旨在对鸡源丁酸梭菌进行分离鉴定与安全性评估.[方法]利用厌氧培养方法对源自汶上芦花鸡与SPF鸡粪便样品进行丁酸梭菌的分离与纯化,挑选可疑菌落进行微生物质谱鉴定,进一步通过16S rRNA基因测序进行鉴定,16S rRNA测序结果与NCBI核苷酸数据库中丁酸梭菌的16S rRNA序列进行同源性分析;同时,进行所有...  相似文献   

13.
Botulinum neurotoxin (BoNT) is produced as a large toxin complex (TC) associated with nontoxic nonhemagglutinin (NTNHA) and three hemagglutinin subcomponents (HA-70, -33 and -17). To assess the role of nontoxic components in the oral intoxication of botulinum TCs, we investigated the permeability of serotype D strain 4947 BoNT and its various TC species through cultured Caco-2 cell monolayers. The L-TC species (complexes composed of BoNT, NTNHA, HA-70, HA-33 and HA-17) showed potent permeability through the cell layer, whereas free BoNT, M-TC (BoNT and NTNHA complexes) and M-TC/HA-70 showed little or no permeability. Cell binding tests demonstrated that HA-33/HA-17 complexes bound to cells, whereas other components did not. These findings suggest that BoNT in the 650-kDa L-TC permeates into the cell mainly in an HA-33/HA-17-mediated manner, although free BoNT can permeate into the cell. As free BoNT and M-TC were susceptible to digestion with gastrointestinal juice, it is likely that L-TC species containing HA-33 caused higher oral toxicity in mice than others. We conclude that the HA-33 subcomponent plays a critical role in the permeation of TCs into intestinal epithelium, and that other HA subcomponents protect BoNT against gastrointestinal digestion.  相似文献   

14.
A total of 13 killer toxin producing strains belonging to the genera Saccharomyces, Candida and Pichia were tested against each other and against a sensitive yeast strain. Based on the activity of the toxins 4 different toxins of Saccharomyces cerevisiae, 2 different toxins of Pichia and one toxin of Candida were recognized. The culture filtrate of Pichia and Candida showed a much smaller activity than the strains of Saccharomyces. Extracellular killer toxins of 3 types of Saccharomyces were concentrated and partially purified. The pH optimum and the isoelectric point were determined. The killer toxins of S. cerevisiae strain NCYC 738, strain 399 and strain 28 were glycoproteins and had a molecular weight of Mr=16,000. The amino acid composition of the toxin type K2 of S. cerevisiae strain 399 was determined and compared with the composition of two other toxins.  相似文献   

15.
Clostridium botulinum type E toxin was isolated in the form of a complex with RNA(s) from bacterial cells. Characterization of the complexed RNA remains to be elucidated. The RNA is identified here as ribosomal RNA (rRNA) having 23S and 16S components. The RNA-toxin complexes were found to be made up of three types with different molecular sizes. The three types of RNA-toxin complex are toxin bound to both the 23S and 16S rRNA, toxin bound to the 16S rRNA and a small amount of 23S rRNA, and toxin bound only to the 16S rRNA.  相似文献   

16.
These studies show that Clostridium botulinum types C and D cultures can be cured of their prophages and converted to either type C or D depending on the specific phage used. Strains of types C and D were cured of their prophages and simultaneously ceased to produce their dominant toxins designated as C(1) and D, respectively. Cured nontoxigenic cultures derived from type C strain 162 were sensitive to the phages from the toxigenic type C strain 162 and type D strain South African. When cured nontoxigenic cultures derived from strain 162 were infected with the tox(+) phages from the 162 strain of type C and the South African strain of type D, they then produced toxin neutralized by types C and D antisera, respectively. Cured nontoxigenic cultures isolated from the type D South African strain were only sensitive to the parent phage, and, when reinfected with the tox(+) phage, they produced toxin neutralized by type D antiserum. Type C strain 153 and type D strain 1873, when cured of their respective prophages, also ceased to produce toxins C(1) and D, but, unlike strain 162 and the South African strain, they continued to produce a toxin designated as C(2). When the cured cultures from strains 153 and 1873 were infected with the tox(+) phage from type D strain 1873, the cultures simultaneously produced toxin that was neutralized by type D antiserum. When these cured cultures were infected with the tox(+) phage from type C strain 153, the cultures produced toxin that was neutralized by type C antiserum. These studies with the four strains of C. botulinum confirm that the toxigenicity of types C and D strains requires the continued participation of tox(+) phages. Evidence is presented that types C and D cultures may arise from a common nontoxigenic strain.  相似文献   

17.
An Escherichia coli R107 strain (O26 serotype) producing a Shiga-like toxin IIe variant (SLT-IIera) was isolated from the mesenteric lymph node of a freshly dead rabbit carcass. The entire structural gene for this SLT-IIera was cloned from chromosomal DNA by PCR using primers based on previously published slt-IIe sequences. Nucleotide sequence analysis indicated that the slt-llera gene was very similar to slt-IIe (formerly called slt-IIy) from E. coli strains S1191 and 412; five and one nucleotide changes were detected in A and B subunits, respectively, which resulted in changes in amino acid sequences of the corresponding subunits by three and one residues. Recombinant SLT-IIera and SLT-IIe produced using an E. coli host-vector system showed similar cytotoxicity, suggesting that the variations in the structural gene of SLT-IIera have no significant effect on cytotoxic level.  相似文献   

18.
将B型肉毒毒素在毒素粗提阶段用胰蛋白酶处理,再经浓缩、柱层析和结晶得到纯化的B型肉毒毒素复合物。结果表明:B型肉毒神经毒素经胰蛋白酶处理后单链裂解为双链,在非还原条件下SDS-PAGE显示神经毒素条带,在还原条件下SDS-PAGE只显示轻(L)、重(H)二链条带,而不显示神经毒素条带;纯化后毒素复合物的比活性提高了5.9倍,达到1.60×108LD50/mgPr;HPLC显示活性成分峰面积所占比例增加了9.83%。  相似文献   

19.
用皂土为载体与类毒素结合方法及破伤风类毒素抗原抗体絮状反应方法去除A、B、C、D、E、F型肉毒抗血清原料中的异型和异种抗毒素(破伤风抗毒素)。制备的A、B、C、D、E、F型肉毒诊断血清每1m l均能中和相应型的肉毒毒素10000LD50以上,而中和异型肉毒毒素或破伤风毒素均低于5 LD50;A、B、C、D、E、F各型混合后的混合型血清每1m l能中和各型肉毒毒素亦大于10000 LD50,中和破伤风毒素低于5 LD50,即效价和特异性符合规程要求。  相似文献   

20.
Clostridium botulinum C and D strains produce two types of progenitor toxins, M and L. Previously we reported that a 130-kDa nontoxic-nonhemagglutinin (NTNHA) component of the M toxin produced by type D strain CB16 was nicked at a unique site, leading to a 15-kDa N-terminal fragment and a 115-kDa C-terminal fragment. In this study, we identified the amino acid sequences around the nicking sites in the NTNHAs of the M toxins produced by C. botulinum type C and D strains by analysis of their C-terminal and N-terminal sequences and mass spectrometry. The C-terminus of the 15-kDa fragments was identified as Lys127 from these strains, indicating that a bacterial trypsin-like protease is responsible for the nicking. The 115-kDa fragment had mixtures of three different N-terminal amino acid sequences beginning with Leu135, Val139, and Ser141, indicating that 7–13 amino acid residues were deleted from the nicking site. The sequence beginning with Leu135 would also suggest cleavage by a trypsin-like protease, while the other two N-terminal amino acid sequences beginning with Val139 and Ser141 would imply proteolysis by an unknown protease. The nicked NTNHA forms a binary complex of two fragments that could not be separated without sodium dodecyl sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号