首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic variation in sexual and clonal lineages of a freshwater snail   总被引:3,自引:0,他引:3  
Sexual reproduction within natural populations of most plants and animals continues to remain an enigma in evolutionary biology. That the enigma persists is not for lack of testable hypotheses but rather because of the lack of suitable study systems in which sexual and asexual females coexist. Here we review our studies on one such organism, the freshwater snail Potamopyrgus antipodarum (Gray). We also present new data that bear on hypotheses for the maintenance of sex and its relationship to clonal diversity. We have found that sexual populations of the snail are composed of diploid females and males, while clonal populations are composed of a high diversity of triploid apomictic females. Sexual and asexual individuals coexist in stable frequencies in many ‘mixed’ populations; genetic data indicate that clones from these mixed populations originated from the local population of sexual individuals without interspecific hybridization. Field data show that clonal and sexual snails have completely overlapping life histories, but individual clonal genotypes are less variable than individuals from the sympatric sexual population. Field data also show segregation of clones among depth‐specific habitat zones within a lake, but clonal diversity remains high even within habitats. A new laboratory experiment revealed extensive clonal variation in reproductive rate, a result which suggests that clonal diversity would be low in nature without some form of frequency‐dependent selection. New results from a long‐term field study of a natural, asexual population reveal that clonal diversity remained nearly constant over a 10‐year period. Nonetheless, clonal turnover occurs, and it occurs in a manner that is consistent with parasite‐mediated, frequency‐dependent selection. Reciprocal cross‐infection experiments have further shown that parasites are more infective to sympatric host snails than to allopatric snails, and that they are also more infective to common clones than rare clones within asexual host populations. Hence we suggest that sexual reproduction in these snails may be maintained, at least in part, by locally adapted parasites. Parasite‐mediated selection possibly also contributes to the maintenance of local clonal diversity within habitats, while clonal selection may be responsible for the distribution of clones among habitats. © 2003 The Linnean Society of London. Biological Journal of the Linnean Society 2003, 79 , 165–181.  相似文献   

2.
The redlegged earth mite (Halotydeus destructor) and the blue oat mite (Penthaleus major) are major pests of pastures and crops in southern Australia. Reproductive modes, migration rates and levels of differentiation between populations were investigated using allozyme electrophoresis. Collections were made throughout Victoria and a sample was also obtained from Western Australia. Three enzyme loci were polymorphic in H. destructor (Mdh-1, Mdh-2 and Idh). Genotype frequencies of these loci did not differ between phenotypic males and females, providing no evidence for haplodiploidy. Allele frequencies were in Hardy-Weinberg equilibrium, indicating that H. destructor is diploid and sexual. This was confirmed via crosses between males and females. Allele frequencies differed between Victorian sites, although F statistics indicated little differentiation over all loci. A sample from Western Australia did not differ in allele frequencies from the Victorian sites. Four polymorphic loci were found in P. major (Mdh-1, Mdh-2, Idh and Gpi). Only a few multilocus genotypes occurred in a sample, indicating that P. major is parthenogenic. No male P. major were found in this study. A number of colour morphs were also identified and a genetic association between genital plate colour and clonal type was found in one population of P. major. Two different body colour morphs were associated with different clonal types.  相似文献   

3.
One explanation for the widespread abundance of sexual reproduction is the advantage that genetically diverse sexual lineages have under strong pressure from virulent coevolving parasites. Such parasites are believed to track common asexual host genotypes, resulting in negative frequency‐dependent selection that counterbalances the population growth‐rate advantage of asexuals in comparison with sexuals. In the face of genetically diverse asexual lineages, this advantage of sexual reproduction might be eroded, and instead sexual populations would be replaced by diverse assemblages of clonal lineages. We investigated whether parasite‐mediated selection promotes clonal diversity in 22 natural populations of the freshwater snail Melanoides tuberculata. We found that infection prevalence explains the observed variation in the clonal diversity of M. tuberculata populations, whereas no such relationship was found between infection prevalence and male frequency. Clonal diversity and male frequency were independent of snail population density. Incorporating ecological factors such as presence/absence of fish, habitat geography and habitat type did not improve the predictive power of regression models. Approximately 11% of the clonal snail genotypes were shared among 2–4 populations, creating a web of 17 interconnected populations. Taken together, our study suggests that parasite‐mediated selection coupled with host dispersal ecology promotes clonal diversity. This, in return, may erode the advantage of sexual reproduction in M. tuberculata populations.  相似文献   

4.
According to the Red Queen hypothesis for sex, parasite‐mediated selection against common clones counterbalances the reproductive advantage of asexual lineages, which would otherwise outcompete sexual conspecifics. Such selection on the clonal population is expected to lead to a faster clonal turnover in habitats where selection by parasites is stronger. We tested this prediction by comparing the genetic structure of clonal and sexual populations of freshwater snail Potamopyrgus antipodarum between years 2003 and 2007 in three depth‐specific habitats in Lake Alexandrina (South Island, New Zealand). These habitats differ in the risk of infection by castrating trematodes and in the relative proportion of sexual individuals. As predicted, we found that the clonal structure changed significantly in shallow and mid‐water habitats, where prevalence of infection was high, but not in the deep habitat, where parasite prevalence was low. Additionally, we found that both clonal diversity and evenness of the asexual population declined in the shallow habitat. In contrast, the genetic structure (based on F–statistics) of the coexisting sexual population did not change, which suggests that the change in the clonal structure cannot be related to genetic changes in the sexual population. Finally, the frequency of sexuals had no effect on the diversity of the sympatric clonal population. Taken together, our results show a more rapid clonal turnover in high‐infection habitats, which gives support for the Red Queen hypothesis for sex.  相似文献   

5.
Understanding the source and diversity of clones is necessary to resolve the complicated issues surrounding the apparent evolutionary stability of sexual reproduction. The source of clones is important because present theory is based on an “all else equal” assumption, which is predicated on the idea that clonal mutants are derived from and compete with local sexual populations. Clonal diversity is important because it reduces the advantage of sexual reproduction under either soft selection (the Tangled Bank Hypothesis) or under strict frequency-dependent selection (the Red Queen Hypothesis). In the present study, protein electrophoresis was used to determine the source and diversity of clones in a freshwater snail (Potamopyrgus antipodarum) in four glacial lakes in which sexual and clonal females were thought to coexist. The results showed (1) that the populations were mixtures of diploid sexual and triploid asexual individuals, (2) that genotypic diversity of clonal populations is very high in all four lakes (but lower than in the sympatric sexual populations), and (3) that the clones are polyphyletically derived from their sympatric sexual populations. Consequently, repeated mutation to parthenogenetic reproduction since the Pleistocene has introduced a different and diverse set of clones in all four lakes. Such diversity may provide a challenge for the ecological theories of sex that rely on frequency-dependent selection.  相似文献   

6.
Pueraria lobata (kudzu), a clonal, leguminous vine, is invading the southeastern United States at a rate of 50 000 ha per year. Genetic variability and clonal diversity were measured in 20 southeastern U.S. populations using 14 allozyme loci. Within its U.S. range, 92.9% of the loci were polymorphic and overall genetic diversity was 0.290. Such high levels of genetic diversity are consistent with its history of multiple introductions over an extended period of time. The average proportions of polymorphic loci and genetic diversity within populations were 55.7% (range = 28.6–85.7%) and 0.213 (range = 0.114–0.317), respectively. The proportion of total genetic diversity found among populations was similar to species with equivalent life history characters (GST = 0.199). No regional patterns of variation were seen. The number of putative genotypes in each population ranged from 2 to 26. Mean genotypic diversity was 0.694, ranging from 0.223 to 0.955. Such high levels of genotypic diversity indicate that local sites are often colonized by several propagules (most likely seeds) and/or that sexual reproduction occurs within populations after establishment. An excess of heterozygosity was observed in populations with few unique genets, implying that selection for highly heterozygous individuals may occur in populations of P. lobata.  相似文献   

7.
1 Sitobion avenae (F.) is a serious pest in Danish cereal crops. To understand the population genetic structure, aphids were sampled in seven different winter wheat (Triticum sativum Lamarck) fields throughout Denmark. The aphids were genotyped with seven microsatellite markers. In total, 2075 aphids were collected and 1203 of these were genotyped. 2 The Danish S. avenae populations displayed very high genotypic diversity, high percentages of unique genotypes and low linkage disequilibria; this is likely to be a result of genetic recombination encompassed by their holocyclic lifestyle. The populations showed very limited differentiation and no sign of isolation by distance. Almost all the genetic variation was ascribed within the populations rather than between populations, probably due to a high migration rate at approximate 10% per generation. 3 Seasonal changes in clonal diversity and distribution of asexual summer generations of S. avenae within the infestation period in a single winter wheat field were followed over two consecutive years by weekly sampling from 60 plots each of 20 × 20 m. Clonal diversity was high in all samples with no dominant clonal lineages and no significant difference in the genotypic diversity between weeks or between years. However, a temporal genetic differentiation effect, throughout the infestation, suggests that selective factors or high temporal migration play an important role in shaping the genetic structure S. avenae. 4 Analyses of fungal infected and uninfected aphids were performed to test whether some clonal linage were more often infected by fungi from the Entomophthorales under field conditions. In total, 54 progeny from aphids with Entomophthorales were genotyped and compared with 422 uninfected aphid genotypes. The Entomophthorales‐infected aphid genotypes did not cluster out together, suggesting that these fungal pathogens did not affect the population differentiation or clonal distribution of S. avenae in a Danish agroecosystem. 5 Our findings indicate that S. avenae populations can be controlled using conservation biological control  相似文献   

8.
Some theories for the maintenance of sexual reproduction indicate that parthenogens may persist if there is high clonal diversity and high dispersal rates. Using allozymic variation, we report on the origin, clonal diversity and population structure of hybrid and spontaneous parthenogens from south-eastern United States populations of the freshwater snail Campeloma. Independent origins of triploid hybrid parthenogens in the Florida panhandle occurred by hybridization between an Atlantic coastal species (C. limum or C. floridense) and the Florida sexual species (C. geniculum). Allozyme genotypic diversity is similar between these hybrid parthenogens and sexuals. Diploid spontaneous parthenogens originated multiple times from nonlocal C.limum sexual populations in Atlantic coastal rivers, and levels of genotypic diversity are significantly higher in sexual C. limum. How parthenogens originate, the degree of clonal diversity, and their subsequent dispersal influence whether basic assumptions of evolution-of-sex models are met.  相似文献   

9.
The occurrence of alternating phases of clonal and sexual reproduction may strongly impact the interplay between neutral and selective genetic variation in populations. Using a physiologically structured model of the life history of Daphnia, we investigated to what extent clonal erosion associated with selection during the clonal phase affects the genetic structure as observed by neutral markers. Incorporating conservative levels of quantitative genetic variation at 11 physiological and life history traits induces strong clonal erosion, reducing clonal diversity (CD) near the end of the simulations (1000 days) to a level between 1 and 5, even in habitats with high initial CD (108 clones). This strong clonal erosion caused by selection can result in reduced genetic diversity, significant excess of heterozygotes and significant genetic differentiation between populations as observed by neutral markers. Our results indicate that, especially in relatively small habitats, clonal selection may strongly impact the genetic structure and may contribute to the often observed high level of neutral genetic differentiation among natural populations of cyclical parthenogens.  相似文献   

10.
To determine the relative importance of clonal growth and sexual reproduction, the Randomly Amplified Polymorphic DNA (RAPD) method was used to study genetic diversity and clonal structure of six populations of Elymus repens and four populations of Elymus hispidus from Poland. These outbreeding species are virtually self‐sterile and form widely spreading and long‐lived rhizomes. Using 12 primers, a total of 150 unambiguous RAPD fragments were amplified and scored. Results of AMOVA showed no significant genetic distinction between morphologically distinguished varieties of E. repens and E. hispidus. E. repens had slightly higher intra‐specific genetic polymorphism than E. hispidus; the percentage of polymorphic bands per population ranged from 38 to 49 and from 19 to 38 respectively. Clonal diversity measured using the Simpson diversity index (D) indicated different contributions of clonal reproduction in particular populations of E. repens (D: 0.20–0.72). Populations of E. hispidus were dominated by one or a few clones, which were generally restricted to a single population (D: 0.00–0.22). RAPD revealed that most genetic diversity resided within populations of the two studied species, suggesting that, despite their clonal character, propagation by seeds contributes considerably to reproduction of E. repens and E. hispidus.  相似文献   

11.
Most perennial plants combine sexual reproduction with some form of clonal propagation. These mixed strategies may produce considerable variation among populations in levels of clonal diversity in response to ecological factors limiting one or other reproductive mode. Surveys of style morph frequencies in 163 populations of the eastern North American, clonal, tristylous aquatic, Decodon verticillatus (L.) Ell. (Lythraceae) suggested a wide range of clonal diversity among populations. Populations consisting of a single style morph were most common at the northern margin of the species' range and could have arisen through severe founder events followed by exclusive clonal propagation. Here, we test this hypothesis by comparing allozyme variation in populations monomorphic and polymorphic for style length located in Ontario and Michigan. Each of the four populations monomorphic for style length were fixed for a single three-locus allozyme genotype while the seven trimorphic and five dimorphic populations contained an average of 26 multilocus genotypes each. Measures of genotypic diversity were high in polymorphic populations (average D = 0.93 ± 0.02 standard error; D = 0.00 for all populations monomorphic for style length). Three of the populations monomorphic for style length were fixed for a heterozygous genotype at one of the loci surveyed, suggesting that each consists of a single clone. In contrast, genotype frequencies in polymorphic populations conformed to Hardy-Weinberg proportions indicative of sexual reproduction. The range of clonal diversity found in D. verticillatus is the largest reported for a clonal plant species, although the literature is too limited to determine whether this is truly unusual. Clonal diversity in D. verticillatus is likely to be regulated largely by ecological factors affecting seed production and establishment. However, genetically based sexual sterility also occurs in some populations.  相似文献   

12.
Studies on clonal plants indicate that the proportion between clonal and sexual reproduction can be variable, depending on local habitat conditions and the biological characteristics of the species. In the present study, we assessed this question in Trifolium alpestre by assaying genetic diversity and spatial genotypic structure of natural populations with the use of allozyme markers. Populations revealed high genetic diversity as well as strong spatial structure of multilocus genotypes. The values of genetic diversity were moderately high. Spatially aggregated, identical genotypes spread up to 15 m along linear transects and across 4‐m2 plots indicate extensive clonal propagation within populations. However, the existence of numerous unique and small‐sized clones reflects significant contribution from sexual reproduction. Spatially and temporarily stochastic soil disturbances have evidently opened new opportunities for the successful sexual recruitment from the permanent soil seed bank and thus counteracted losses of genetic and genotypic diversity. Seed production in all populations during the three study years was low, in average up to 1.5–2.4 seeds per shoot. The almost total lack of seed set for 57 bagged flower heads on genotypes grown in a common garden indicates that T. alpestre needs pollinators for seed production.  相似文献   

13.
Understanding the mode of temporal maintenance of plant pathogens is an important domain of microbial ecology research. Due to the inconspicuous nature of microbes, their temporal maintenance cannot be studied directly through tracking individuals and their progeny. Here, we suggest a series of population genetic analyses on molecular marker variation in temporally spaced samples to infer about the relative contribution of sexual reproduction, off‐season survival and migration to the temporal maintenance of pathogen populations. We used the proposed approach to investigate the temporal maintenance of wheat yellow rust pathogen, Puccinia striiformis f.sp. tritici (PST), in the Himalayan region of Pakistan. Multilocus microsatellite genotyping of PST isolates revealed high genotypic diversity and recombinant population structure across all locations, confirming the existence of sexual reproduction in this region. The genotypes were assigned to four genetic groups, revealing a clear differentiation between zones with and without Berberis spp., the alternate host of PST, with an additional subdivision within the Berberis zone. The lack of any differentiation between samples across two sampling years, and the very infrequent resampling of multilocus genotypes over years at a given location was consistent with limited over‐year clonal survival, and a limited genetic drift. The off‐season oversummering population in the Berberis zone, likely to be maintained locally, served as a source of migrants contributing to the temporal maintenance in the non‐Berberis zone. Our study hence demonstrated the contribution of both sexual recombination and off‐season oversummering survival to the temporal maintenance of the pathogen. These new insights into the population biology of PST highlight the general usefulness of the analytical approach proposed.  相似文献   

14.
Genetic and genotypic diversity found within populations of threatened plant species can have important implications for their conservation and management. In this study we describe genetic and genotypic diversity found within 10 populations of the endemic shrub Elliottiaracemosa (Ericaceae), the Georgia plume. E. racemosa is a threatened species known from fewer than 50 locations, all within the state of Georgia, USA. Seedset is limited to nonexistent in some E. racemosa populations and sexual recruitment has not been documented. However, the species is known to spread vegetatively via root-sprouts. Twenty-one allozyme loci were resolved for E. racemosa, nine of which were polymorphic. Compared with other woody taxa, E. racemosa has low genetic (i.e. allelic) diversity within populations (Hep = 0.063) and at the species level (Hes = 0.091). Most of the genetic variation (82%) was found within populations, and genetic identities between populations were high (mean I = 0.96). However, genotypic diversity (i.e. the number of multilocus genotypes) differed markedly among populations. Two of the 10 populations consisted almost entirely of single multilocus genotypes, whereas more than 20 multilocus genotypes (in samples of 48 stems) were detected at three sites. Sites in which few multilocus genotypes were detected have low seedset, suggesting that the lack of clonal diversity limits reproduction in some populations of this reportedly self-incompatible species.  相似文献   

15.
Organisms with sexual and asexual reproductive systems benefit from both types of reproduction. Sexual recombination generates new combinations of alleles, whereas clonality favours the spread of the fittest genotype through the entire population. Therefore, the rate of sexual vs. clonal reproduction has a major influence on the demography and genetic structure of natural populations. We addressed the effect of reproductive system on populations of the dinoflagellate Alexandrium minutum. More specifically, we monitored the spatiotemporal genetic diversity during and between bloom events in two estuaries separated by 150 km for two consecutive years. An analysis of population genetic patterns using microsatellite markers revealed surprisingly high genotypic and genetic diversity. Moreover, there was significant spatial and temporal genetic differentiation during and between bloom events. Our results demonstrate that (i) interannual genetic differentiation can be very high, (ii) estuaries are partially isolated during bloom events and (iii) genetic diversity can change rapidly during a bloom event. This rapid genetic change may reflect selective effects that are nevertheless not strong enough to reduce allelic diversity. Thus, sexual reproduction and/or migration may regularly erase any genetic structure produced within estuaries during a bloom event.  相似文献   

16.
For plants capable of both sexual and clonal reproduction, the relative frequency of these reproductive modes is influenced by genetic and ecological factors. Acacia carneorum is a threatened shrub from the Australian arid zone that occurs as a set of small, spatially isolated populations. Sexual reproduction appears to be very rare: despite regular flowering, only two populations set seed. It is not known whether this reflects an ancient pattern, or results from rapid land use changes following arrival of Europeans in the region 150 years ago. We assessed genotypic variation throughout the range of A. carneorum using AFLP markers, to elucidate the relative importance of clonal and sexual reproduction in this species’ history. Clonal diversity (CD) within populations ranged from 0 to 0.820 (mean CD = 0.270, SE = 0.094), but the relative abundances of genets were typically highly skewed. On average, the two fruiting populations had higher CD (mean CD = 0.590, SE = 0.265) than non-fruiting populations (mean CD = 0.179, SE = 0.077) (t = 2.315, p = 0.049), but most populations contained multiple genets. All genets were population-specific, and there was substantial divergence among populations (Φ ST = 0.690), implying a long history of isolation. We conclude that clonality has predominated in A. carneorum populations, with occasional sexual recruitment, and that current failure of most populations to set seed likely reflects both a long history of asexual reproduction and effects of habitat disturbance. Conservation of this species may benefit from translocations to increase genotypic diversity within populations.  相似文献   

17.
We examined genetic variation in sympatric diploid and polyploid brine shrimp Artemia parthenogenetica from each of three populations (China, Italy and Spain). Italian and Spanish tetraploids are closely related (I=0.964). Diploids and tetraploids within each of the two European populations are also closely related (mean I=0.905). Most alleles found in diploids also exist in sympatric polyploids. In contrast, the asexual Artemia (2N, 4N and 5N) in our study share few alleles with their close sexual relative, A. tunisiana (mean I=0.002). These results, as well as the work of other authors, strongly suggest that at least the tetraploid Artemia in our study have an autopolyploid origin.Clonal diversity of polyploid Artemia can be very high at least in some population. Both diploids and polyploids had low clonal diversities in the populations dominated by polyploids and high clonal diversities in the population dominated by diploids.The most common genotypes of sympatric diploid and polyploid Artemia frequently differed. Some alleles occurred only in diploids, while others were restricted to polyploids. These results suggest that polyploidy in Artemia has led to genetic divergence from diploid progenitors, and that ploidy-level variation must also be considered in developing an understanding of spatial and temporal allozyme polymorphism in asexual populations.  相似文献   

18.
We examined clonal diversity and the distribution of both clonal and sexual genotypes in a single population of freshwater snails (Potamopyrgus antipodarum) in which diploid sexual individuals and triploid parthenogens coexist. A genetic analysis of individuals from three habitat zones in Lake Alexandrina, New Zealand revealed extremely high clonal diversity: 165 genotypes among 605 clonal individuals. The frequency of triploid clonal individuals increased with increasing depth in the lake, and most of the individual clones were habitat specific, suggesting that differences among habitats are important in structuring the clonal subpopulation. There were also high levels of clonal diversity within habitats, suggesting frequent origins of habitat-specific clones. In contrast, diploid sexual individuals were proportionately more common in the shallow regions of the lake (where infection by trematode larvae is highest), and there was no significant spatial structure in the sexual subpopulation. We suggest that habitat specialization by clones, as well as parasite-mediated selection against common clones, are important factors affecting the structure of this mixed population of sexual and clonal snails.  相似文献   

19.
Clonal plant species have been shown to adopt different strategies to persist in heterogeneous environments by changing relative investments in sexual reproduction and clonal propagation. As a result, clonal diversity and genetic variation may be different along environmental gradients. We examined the regional and local population structure of the clonal rhizomatous forest herb Paris quadrifolia in a complex of forest fragments in Voeren (Belgium). Relationships between population size (the number of shoots), shoot density (the number of shoots per m2) and local growth conditions were investigated for 47 populations. Clonal diversity and genetic variation within and among 19 populations were investigated using amplified fragment length polymorphism markers. To assess the importance of sexual reproduction, seed set, seed weight and germination success were determined in 18 populations. As predicted, local growth conditions largely affected population distribution, size and density of P. quadrifolia. Populations occurring in moist and relatively productive sites contained significantly more shoots. Here, shoots were also much more sparsely distributed compared to populations occurring in dry and relatively unproductive sites, where shoots showed a strongly aggregated distribution pattern. Clonal diversity was relatively high, compared with other clonal species (G/N ratio = 0.43 and Simpson’s D=0.81). Clonal diversity significantly (P<0.01) decreased with increasing shoot density while molecular genetic variation was significantly (P<0.01) affected by population size and local environmental conditions. Lack of recruitment and out-competition of less-adapted genotypes may explain the decreased genetic variation in dry sites. Analysis of molecular variance revealed significant genetic variation among populations (Φ ST=0.42, P<0.001), whereas pairwise genetic distances were not correlated to geographic distances, suggesting that gene flow among populations is limited. Finally, the number of generative shoots, the number of seeds per fruit and seed weight were significantly and positively related to population size and local growth conditions. We conclude that under stressful conditions populations of clonal forest plant species can slowly evolve into remnant populations characterized by low levels of genetic variation and limited sexual reproduction. Conservation of suitable habitat conditions is therefore a prerequisite for effective long-term conservation of clonal forest plant species.  相似文献   

20.
Numerous studies of population structure in sessile clonal marine invertebrates have demonstrated low genotypic diversity and nonequilibrium genotype frequencies within local populations that are monopolized by relatively few, highly replicated genets. All of the species studied to date produce planktonic sexual propagules capable of dispersing long distances; despite local genotypic disequilibria, populations are often panmictic over large geographic areas. The population structure paradigm these species represent may not be typical of the majority of clonal invertebrate groups, however, which are believed to produce highly philopatric sexual propagules. I used allozyme variation to examine the population structure of the temperate soft coral, Alcyonium rudyi, a typical clonal species whose sexually produced larvae and asexually produced ramets both have very low dispersal capabilities. Like other clonal plants and invertebrates, the local population dynamics of A. rudyi are dominated by asexual reproduction, and recruitment of new sexually produced genets occurs infrequently. As expected from its philopatric larval stage, estimates of genetic differentiation among populations of A. rudyi were highly significant at all spatial scales examined (mean θ = 0.300 among 20 populations spanning a 1100-km range), suggesting that genetic exchange seldom occurs among populations separated by as little as a few hundred meters. Mapping of multilocus allozyme genotypes within a dense aggregation of A. rudyi ramets confirmed that dispersal of asexual propagules is also very limited: members of the same genet usually remain within < 50 cm of one another on the same rock surface. Unlike most previously studied clonal invertebrates, populations of A. rudyi do not appear to be dominated by a few widespread genets: estimates of genotypic diversity (Go) within 20 geographically distinct populations did not differ from expectations for outcrossing, sexual populations. Despite theoretical suggestions that philopatric dispersal combined with typically small effective population sizes should promote inbreeding in clonal species, inbreeding does not appear to contribute significantly to the population structure of A. rudyi. Genet genotype frequencies conformed to Hardy-Weinberg expectations in all populations, and inbreeding coefficients (f) were close to zero. In general, the population structure of A. rudyi did not differ significantly from that observed among outcrossing sexual species with philopatric larval dispersal. Age estimates suggest, however, that genets of A. rudyi live for many decades. Genet longevity may promote high genotypic diversity within A. rudyi populations and may be the most important evolutionary consequence of clonal reproduction in this species and the many others that share its dispersal characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号