首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Uncertainty over the role of shifts in social behavior in the process of speciation in social insects has stimulated interest in determining the extent of gene flow between conspecific populations differing in colony social organization. Allele and genotype frequencies at 12 neutral polymorphic protein markers, as well as the numbers of alleles at the sex-determining locus (loci), are shown here to be consistent with significant ongoing gene flow between two geographically adjacent populations of Solenopsis invicta that differ in colony queen number. Data from a thirteenth protein marker that is under strong differential selection in the two social forms confirm that such gene flow occurs. Data from this selected locus, combined with knowledge of the reproductive biology of the two social forms, further suggest that interform gene flow is largely unidirectional and mediated through males only. This unusual pattern of gene flow results from the influence of the unique social enviroments of the two forms on the behavior of workers and on the reproductive physiology of sexuals.  相似文献   

2.
Variation in queen phenotype and reproductive role in the fire ant Solenopsis invicta has been shown to have a simple genetic basis in a single introduced population in the United States. The evidence consists of an association between this variation and queen genotype at Pgm-3, a phosphoglucomutase-encoding gene. In the present study, we surveyed Pgm-3 allele and genotype frequencies in diverse populations from the native and introduced ranges of this ant to learn whether this simple genetic basis for reproductive traits is a general feature of the species or a genetic anomaly in introduced ants stemming from a recent bottleneck or the invasion of novel habitats. No egg-laying queens living in polygyne (multiple-queen) nests possessed the homozygous genotype Pgm-3a/a in any of the study populations, yet nonreproductive females from such nests (workers as well as queens that had not yet initiated oogenesis) possessed this genotype at moderate frequencies. Remarkably, Pgm-3a/a was the most common genotype among all classes of females, including egg-laying queens, in monogyne (single-queen) nests from all populations studied. Genotype proportions at Pgm-3 in polygyne populations typically departed strongly from the proportions expected under Hardy-Weinberg equilibrium, whereas those in monogyne populations did not. These patterns establish that a single mendelian gene influences queen reproductive role in S. invicta and that this gene uniformly is under strong directional selection in the polygyne social form only. Moreover, the perfect association of Pgm-3 genotype and reproductive role in all populations, combined with the known function of phosphoglucomutase in insect metabolism, suggest that this gene may directly influence queen phenotypes rather than merely serving as a marker for a linked gene that causes the effects.  相似文献   

3.
4.
We assessed patterns of new queen recruitment in a polygyne(multiple queens per nest) population of the fire ant Solenopsisinvicta in its introduced range. Newly recruited queens wereidentified using four physiological markers, and genotypic datafrom nuclear and mitochondrial markers were used to estimaterelatedness of new nest mate queens to each other and to theolder nest mate queens. In total, 1.7% of the queens collectedin late spring and early summer were deemed to be new recruits.The relatedness of these queens to each other and to the olderqueens within nests was not significantly different from zero,suggesting that newly recruited queens represent a random sampleof potential reproductive queens in the population. Moreover,the number of new queens recruited within nests was not correlatedwith the number of older queens present and did not differ significantlyfrom a Poisson distribution. Thus, queen recruitment in this populationof S. invicta appears to occur at random with respect to thenumber of older queens present within nests.  相似文献   

5.
We develop cytonuclear, hybrid zone models for haplodiploid species or X-linked genes in diploid species using a stepping-stone framework of migration, in which migration rates vary with both direction and sex. The equilibrium clines for the allele frequencies, cytonuclear disequilibria, and frequencies of pure parental types are examined for species with diagnostic markers, under four important migration schemes: uniform migration of both sexes in both directions, greater migration of both sexes from one direction, greater migration of females, and greater migration of males. Of the three cytonuclear variables examined, the allele frequency clines are the most informative in differentiating among the various migration patterns. The cytonuclear disequilibria and the frequency of the pure parental types tend to be useful only in revealing directional asymmetries in migration. The extent of hybrid zone subdivision has quantitative but not qualitative effects on the distribution of cytonuclear variables, in that the allele frequency clines become more gradual, the cytonuclear disequilibria decrease in magnitude, and the frequencies of pure parentals decline with increasing subpopulation number. Also, the only major difference between the X-linked and haplodiploid frameworks is that a higher frequency of pure parentals is found when considering haplodiploids, in which male production does not require mating. The final important theoretical result is that censusing after migration yields greater disequilibria and parental frequencies than censusing after mating. We analyzed cytonuclear data from two transects from a naturally occurring hybrid zone between two haplodiploid fire ant species, Solenopsis invicta and S. richteri, using our stepping-stone framework. The frequency of S. invicta mtDNA exceeds the frequency of the S. invicta nuclear markers through much of this hybrid zone, indicating that sex differences in migration or selection may be occurring. Maximum-likelihood estimates for the migration rates are very high, due to an unexpectedly large number of pure parental types in the hybrid zone, and differ substantially between the two transects. Overall, our model does not provide a good fit, in part because the S. invicta–S. richteri hybrid zone has not yet reached equilibrium.  相似文献   

6.
Two introduced fire ants, Solenopsis invicta and S. richteri, hybridize over an extensive area in the United States spanning central Mississippi, Alabama, and western Georgia. We studied a portion of this hybrid zone in northwestern Mississippi in detail by sampling ants at many sites along two transects extending across the zone and examining gene frequency and size distributions at a large number of genetic and morphological markers. The distributional patterns at these markers are most consistent with the mosaic hybrid zone model, whereby the distribution of various fire ant genotypes is determined initially by the historical patterns of colonization of newly available habitats. However, these distributional patterns probably do not reflect the equilibrium state of interactions because of the very recent secondary contact of the species (< 60 yr) and the dynamic nature of available nesting habitats in this area. Our data suggest that, with prolonged contact and interaction, differential fitness of various hybrid genotypes due to intrinsic and extrinsic selective factors is important in structuring the hybrid zone. For instance, consistent differential introgression of morphological and genetic markers, combined with previous evidence of differences in developmental stability among genotypes, suggest reduced fitness of hybrids relative to parentals due to intrinsic selection (as may be caused by breakup of parental gene complexes). Furthermore, marked reductions in the occurrence of parental-like hybrids in areas where the similar parental species is common suggest reduced fitness of these parental-like hybrids in competition with the parentals (i.e., extrinsic selection). Because the relative roles of such deterministic as well as stochastic forces apparently vary both spatially and temporally, the eventual distribution of the various fire ant genotypes and the fate of the hybrid zone in the United States is difficult to predict.  相似文献   

7.
Abstract.— Introduced species often possess low levels of genetic diversity relative to source populations as a consequence of the small population sizes associated with founder events. Additionally, native and introduced populations of the same species can possess divergent genetic structuring at both large and small geographic scales. Thus, genetic systems that have evolved in the context of high diversity may function quite differently in genetically homogeneous introduced populations. Here we conduct a genetic analysis of native and introduced populations of the Argentine ant (Linepithema humile) in which we show that the population‐level changes that have occurred during introduction have produced marked changes in the social structure of this species. Native populations of the Argentine ant are characterized by a pattern of genetic isolation by distance, whereas this pattern is absent in introduced populations. These differences appear to arise both from the effects of recent range expansion in the introduced range as well as from differences in gene flow within each range. Relatedness within nests and colonies is lower in the introduced range than in the native range as a consequence of the widespread genetic similarity that typifies introduced populations. In contrast, nestmates and colony‐mates in the native range are more closely related, and local genetic differentiation is evident. Our results shed light on the problem posed for kin selection theory by the low levels of relatedness that are characteristic of many unicolonial species and suggest that the loss of genetic variation may be a common mechanism for the transition to a unicolonial colony structure.  相似文献   

8.
The glacial refugium hypothesis (GRH) proposes that glaciers promoted differentiation and generation of intraspecific diversity by isolating populations in ice-free refugia. We tested three predictions of this hypothesis for the evolutionary divergence of rock ptarmigan (Lagopus mutus) during the Wisconsin glaciation of the late Pleistocene. To do this, we examined subspecies distributions, population genetic structure, and phylogenetic relationships in 26 populations across North America and the Bering Sea region. First, we analyzed sequence variation in the mitochondrial control region, in a nuclear intron (Gapdh), and in an internal transcribed spacer (ITS1). Control region sequences of 154 rock ptarmigan revealed strong population and phylogeographic structure. Variation in intron sequences of 114 rock ptarmigan also revealed significant population structure compatible with results for the control region. Rock ptarmigan were invariant for ITS1. Second, we show that five known Nearctic refugia and an Icelandic refugium are concordant with the current distribution of morphologically distinct subspecies; five of these six refugia are geographically concordant with the distribution of closely related control region haplotypes. Third, our estimates of the time since phylogenetic lineages diverged predated the last glacial maximum for all but two lineages. In addition, all lines of evidence suggest that two unknown refugia in the Bering Sea region supported rock ptarmigan during the Wisconsin glaciation. Overall, our results are most consistent with the hypothesis that isolated populations of rock ptarmigan diverged in multiple refugia during the Wisconsin and that geographic variation reflects patterns of recolonization of the Nearctic after the ice receded. The GRH may therefore offer the most plausible explanation for similar biogeographic patterns in a variety of Nearctic vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号