首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This case study examines the pollen dispersal distance, pollen dispersal patterns and intra‐family genetic structure for isolated trees in pastures of the bat‐pollinated Neotropical tree species Hymenaea stigonocarpa using six microsatellite loci and parentage analysis. The sampling included 28 grouped trees (referred to as the population) and six isolated trees in pastureland along a highway in Mato Grosso do Sul State, Brazil. From the population, we sampled 137 seeds from 12 seed‐trees, and from the isolated trees, we sampled 34 seeds from two seed‐trees. The results showed that pollen was dispersed over long distances (reaching 7353 m) and therefore the spatially isolated trees were not reproductively isolated. The pollen immigration rate in the population was also high (31%). Isolated trees presented a higher selfing rate (s=26%) than trees in the population (s=12%), suggesting that the spatial isolation of the trees increased selfing. However, selfing was responsible for only 30 percent of the inbreeding in offspring and mating among relatives was 70 percent. In the population, excluding selfing, ca 72 percent of the pollen was dispersed over distances <1000 m (average: 860 m). For the two isolated seed‐trees, excluding selfing, the average pollen dispersal distance was 5229 m. The results demonstrate that although pollen can be dispersed over long distances for H. stigonocarpa isolated trees, a high percentage of pollen comes from the same tree (selfing) and mating was correlated. Consequently, seeds must be collected from a large number of seed‐trees for conservation purposes.  相似文献   

2.
We assessed the pollen and seed dispersal patterns, genetic diversity, inbreeding and spatial genetic structure of Himatanthus drasticus (Apocynaceae), a tree native to the Brazilian Savanna (Cerrado) that is heavily exploited for its medicinal latex. The study was conducted in the Araripe National Forest, Ceará State, Brazil. Within a one-hectare plot, samples were collected from all adult trees, adult trees located in the immediate vicinity of the plot, and seedlings. All sampled individuals were mapped and genotyped using microsatellite markers. High levels of polymorphism and significant levels of inbreeding were found, which indicates that self-fertilisation and mating among relatives occur in this population. Both the adults and seedlings had significant spatial genetic structure up to ~40 m and our results confirmed the occurrence of isolation by distance. Pollen and seeds were dispersed over short distances and immigration of pollen and seeds into the plot was estimated at 13 and 9 %, respectively. Taking into consideration the degree of inbreeding, relatedness, intrapopulation spatial genetic structure and pollen dispersal distance, we recommend collecting seeds from a large number of trees spaced at least 150 m apart to avoid collecting seeds from related individuals and an overlap of pollen pools among seed trees.  相似文献   

3.
Vegetation clearing, land modification and agricultural intensification have impacted on many ecological communities around the world. Understanding how species respond to fragmentation and the scales over which functionality is retained, can be critical for managing biodiversity in agricultural landscapes. Allocasuarina verticillata (drooping sheoak, drooping she-oak) is a dioecious, wind-pollinated and -dispersed species with key conservation values across southeastern Australia. But vegetation clearing associated with agricultural expansion has reduced the abundance and spatial distribution of this species in many regions. Spatial genetic structure, relatedness among trees, pollen dispersal and mating patterns were examined in fragmented A. verticillata populations selected to represent the types of remnants that now characterise this species. Short scale spatial genetic structure (5–25 m) and relatedness among trees were observed in most populations. Unexpectedly, the two male trees closest to each female did not have a reproductive advantage accounting for only 4–15% of the seed produced in larger populations. Biparental inbreeding was also generally low (<4%) with limited evidence of seed crop domination by some male trees. More male trees contributed to seed crops in linear remnants (mean 17) compared to those from patch remnants (mean 11.3) which may reflect differences in pollen dispersal within the two remnant types. On average, pollen travels ~100 m irrespective of remnant type but was also detected to have dispersed as far as 1 km in open landscapes. Low biparental inbreeding, limited reproductive assurance for near-neighbour and probably related males and variability in the distances over which females sample pollen pools suggest that some mechanism to prevent matings between relatives exists in this species.  相似文献   

4.
Estimates of inbreeding depression obtained from the literature were used to evaluate the association between inbreeding depression and the degree of self-fertilization in natural plant populations. Theoretical models predict that the magnitude of inbreeding depression will decrease with inbreeding as deleterious recessive alleles are expressed and purged through selection. If selection acts differentially among life history stages and deleterious effects are uncorrelated among stages, then the timing of inbreeding depression may also evolve with inbreeding. Estimates of cumulative inbreeding depression and stage-specific inbreeding depression (four stages: seed production of parent, germination, juvenile survival, and growth/reproduction) were compiled for 79 populations (using means of replicates, N = 62) comprising 54 species from 23 families of vascular plants. Where available, data on the mating system also were collected and used as a measure of inbreeding history. A significant negative correlation was found between cumulative inbreeding depression and the primary selfing rate for the combined sample of angiosperms (N = 35) and gymnosperms (N = 9); the correlation was significant for angiosperms but not gymnosperms examined separately. The average inbreeding depression in predominantly selfing species (δ = 0.23) was significantly less (43%) than that in predominantly outcrossing species (δ = 0.53). These results support the theoretical prediction that selfing reduces the magnitude of inbreeding depression. Most self-fertilizing species expressed the majority of their inbreeding depression late in the life cycle, at the stage of growth/reproduction (14 of 18 species), whereas outcrossing species expressed much of their inbreeding depression either early, at seed production (17 of 40 species), or late (19 species). For species with four life stages examined, selfing and outcrossing species differed in the magnitude of inbreeding depression at the stage of seed production (selfing δ = 0.05, N = 11; outcrossing δ = 0.32, N = 31), germination (selfing δ = 0.02, outcrossing δ = 0.12), and survival to reproduction (selfing δ = 0.04, outcrossing δ = 0.15), but not at growth and reproduction (selfing δ = 0.21, outcrossing δ = 0.27); inbreeding depression in selfers relative to outcrossers increased from early to late life stages. These results support the hypothesis that most early acting inbreeding depression is due to recessive lethals and can be purged through inbreeding, whereas much of the late-acting inbreeding depression is due to weakly deleterious mutations and is very difficult to purge, even under extreme inbreeding.  相似文献   

5.
Most models of mating-system evolution predict inbreeding depression to be low in inbred populations due to the purging of deleterious recessive alleles. This paper presents estimates of outcrossing rates and inbreeding depression for two highly selfing, monoecious annuals Begonia hirsuta and B. semiovata. Outcrossing rates were estimated using isozyme polymorphisms, and the magnitude of inbreeding depression was quantified by growing progeny in the greenhouse produced through controlled selfing and outcrossing. The estimated single-locus outcrossing rate was 0.03 ± 0.01 (SE) for B. hirsuta and 0.05 ± 0.02 for B. semiovata. In both species, the seed production of selfed flowers was on average 12% lower than that of outcrossed flowers (B. hirsuta P = 0.07, B. semiovata P < 0.05, mixed model ANOVAs). There was no significant effect of crosstype on germination rate or survival, but selfed offspring had a lower dry mass than outcrossed offspring 18 weeks after planting in both species (on average 18% lower in B. hirsuta and 31% lower in B. semiovata). Plants that were the products of selfing began flowering later than plants produced through outcrossing in B. semiovata, but not in B. hirsuta. The effects of crosstype on seed production (B. semiovata), days to first flower and offspring dry mass (both species) varied among maternal parents, as indicated by significant crosstype x maternal parent interactions for these characters. Both species showed significant inbreeding depression for total fitness (estimated as the product of seed production, germination rate, survival and dry mass at 18 weeks). In B. hirsuta, the average total inbreeding depression was 22% (range -57%-98%; N = 23 maternal parents), and in B. semiovata, it was 42% (-11%-84%; N = 21). This study demonstrates that highly selfing populations can harbor substantial inbreeding depression. Our findings are consistent with the hypothesis that a high mutation rate to mildly deleterious alleles contributes to the maintenance of inbreeding depression in selfing populations.  相似文献   

6.
Hymenaea stigonocarpa is a neotropical tree that is economically important due to its high‐quality wood; however, because it has been exploited extensively, it is currently considered threatened. Microsatellite loci were used to investigate the pollen and seed dispersal, mating patterns, spatial genetic structure (SGS), genetic diversity, and inbreeding depression in H. stigonocarpa adults, juveniles, and open‐pollinated seeds, which were sampled from isolated trees in a pasture and trees within a forest fragment in the Brazilian savannah. We found that the species presented a mixed mating system, with population and individual variations in the outcrossing rate (0.53–1.0). The studied populations were not genetically isolated due to pollen and seed flow between the studied populations and between the populations and individuals located outside of the study area. Pollen and seed dispersal occurred over long distances (>8 km); however, the dispersal patterns were isolated by distance, with a high frequency of mating occurring between near‐neighbor trees and seeds dispersed near the parent trees. The correlated mating for individual seed trees was higher within than among fruits, indicating that fruits present a high proportion of full‐sibs. Genetic diversity and SGS were similar among the populations, but offspring showed evidence of inbreeding, mainly originating from mating among related trees, which suggests inbreeding depression between the seed and adult stages. Selfing resulted in a higher inbreeding depression than mating among relatives, as assessed through survival and height. As the populations are not genetically isolated, both are important targets for in situ conservation to maintain their genetic diversity; for ex situ conservation, seeds can be collected from at least 78 trees in both populations separated by at least 250 m.  相似文献   

7.
Inbreeding depression and selfing rates were investigated in Schiedea membranacea (Caryophyllaceae), a hermaphroditic species endemic to the Hawaiian Islands. Most theoretical models predict high inbreeding depression in outcrossing hermaphroditic species and low inbreeding depression in inbreeding species. Although high outcrossing rates and high levels of inbreeding depression are characteristic of many species of Schiedea, self- fertilization is common among relatives of hermaphroditic S. membranacea, and high selfing rates and low levels of inbreeding depression were predicted in this species. Sixteen individuals grown in the greenhouse were used to produce selfed and outcrossed progeny. Inbreeding depression, which was evident throughout the stages measured (percentage viable seeds per capsule, mean seed mass, percentage seed germination, percentage seedling survival, and biomass after 8 mo), averaged 0.70. Inbreeding depression among maternal families varied significantly for all measured traits and ranged from −0.12 to 0.97. Using isozyme analysis, the multilocus selfing rate varied from 0.13 to 0.38 over 4 yr. Contrary to the initial prediction of high selfing and low inbreeding depression based on phylogenetic relationships within Schiedea, low selfing rates and high levels of inbreeding depression were found in S. membranacea. These results indicate that outcrossing is stable in this species and maintained by high levels of inbreeding depression.  相似文献   

8.
The magnitude of inbreeding depression caused by recessive mutations in a population is dependent on the mutation rate and on the intensity of selection against the mutations. We studied geographical differences in the level of early inbreeding depression of Scots pine in a common garden experiment. The mean abortion rate of experimentally self-pollinated seeds was significantly lower (75.4%) among trees that originated from northern populations (66–69°N) than among trees from more southern (60–62°N) populations (86.5%). Thus, the number of embryonic lethal equivalents was lower in the northern populations (4.5) than in the southern ones (6.9). The outcrossing rate at the mature seed stage was slightly lower in the northern populations (average 0.93) than in the southern one (0.99). The estimated selfing rate at the zygote stage varied from 0–0.28 in the populations. The reduction in the magnitude of inbreeding depression in the north may have been caused by increased levels of self-fertilization in the northern populations. The proportion of self-fertilized seedlings and adults was very small in all populations (F ≈ 0), indicating high inbreeding depression also in later life stages. The high level of inbreeding depression in the partially selfing Scots pine can be explained by mutation-selection balance only if the mutation rate is high.  相似文献   

9.
植物的有性繁殖是生活史和进化的核心, 母本及环境对繁殖的影响固然重要, 父本的贡献亦不容忽视。父本来源与多样性对坐果结籽和后代质量的影响明显, 但由于不同物种或种群的繁殖特点和进化历程, 往往也会呈现其独特性。该研究旨在探究挺水植物野慈姑(Sagittaria trifolia)是否存在自交或远交衰退, 以及父本数量对其繁殖和后代表现的影响。通过人工控制授粉, 设置自交、近距离异交(<50 km)、远距离异交(>200 km) 3种交配距离以及单、双两类父本数量, 共计5种授粉处理, 观测野慈姑坐果概率、单果种子数量、种子面积、萌发率(2018和2019年)、幼苗芽长(2018和2019年)共7项指标。结果显示: 不同距离的交配对野慈姑的坐果概率、单果种子数量、种子面积、萌发率、幼苗芽长没有显著影响, 野慈姑未出现明显的自交衰退或远交衰退现象。父本数量的增加对野慈姑的结实数量(坐果概率、单果种子数量、种子面积)无影响, 但结实质量方面, 双父本处理的种子萌发率略高于单父本处理。综上所述, 交配距离与父本数量对野慈姑的繁殖表现影响较小, 这可能与其频繁的自交历史、远距离的基因扩散以及高度相似的水生环境有关; 同时, 该研究基于20余个自然种群的基因型, 研究结果也表明了野慈姑物种水平有性繁殖的优异和稳定性。  相似文献   

10.
Recent theoretical models have addressed the influence of metapopulation dynamics on the fitness of females and hermaphrodites in gynodioecious plants. In particular, selection is thought to favor hermaphrodites during population establishment because that sex should be less prone to pollen limitation, especially if self-fertilization is possible. However, inbreeding depression could limit this advantage. In this experimental study of Silene vulgaris, a weedy gynodioecious plant, the fitness of females and hermaphrodites was estimated from seed production in both mixed-sex populations and for individuals isolated from these populations by 20, 40, 80, or 160 m. In mixed populations females display statistically significant greater per capita seed production owing to higher capsule production and higher rates of seed germination. The fitness of both sexes declines with increasing isolation, but at different rates, such that in the 160-m treatment hermaphrodites are by far the more fit sex. Allozyme studies suggest that this differential decline is because the selfing rate in hermaphrodites increases as a function of isolation, at least partially compensating for a decline in the availability of outcross pollen. Overall, the negative effects of pollen limitation on females far outweighs the negative effects of inbreeding depression following selfing in hermaphrodites. Thus, extinction/recolonization dynamics would appear to favor hermaphrodites as long as seed dispersal events exceed some critical distance.  相似文献   

11.
Hermaphroditic plants can potentially self‐fertilize, but most possess adaptations that promote outcrossing. However, evolutionary transitions to higher selfing rates are frequent. Selfing comes with a transmission advantage over outcrossing, but self‐progeny may suffer from inbreeding depression, which forms the main barrier to the evolution of higher selfing rates. Here, we assessed inbreeding depression in the North American herb Arabidopsis lyrata, which is normally self‐incompatible, with a low frequency of self‐compatible plants. However, a few populations have become fixed for self‐compatibility and have high selfing rates. Under greenhouse conditions, we estimated mean inbreeding depression per seed (based on cumulative vegetative performance calculated as the product of germination, survival and aboveground biomass) to be 0.34 for six outcrossing populations, and 0.26 for five selfing populations. Exposing plants to drought and inducing defences with jasmonic acid did not magnify these estimates. For outcrossing populations, however, inbreeding depression per seed may underestimate true levels of inbreeding depression, because self‐incompatible plants showed strong reductions in seed set after (enforced) selfing. Inbreeding‐depression estimates incorporating seed set averaged 0.63 for outcrossing populations (compared to 0.30 for selfing populations). However, this is likely an overestimate because exposing plants to 5% CO2 to circumvent self‐incompatibility to produce selfed seed might leave residual effects of self‐incompatibility that contribute to reduced seed set. Nevertheless, our estimates of inbreeding depression were clearly lower than previous estimates based on the same performance traits in outcrossing European populations of A. lyrata, which may help explain why selfing could evolve in North American A. lyrata.  相似文献   

12.
Pollen flow and dispersal patterns were investigated in a small, isolated forest fragment of the Neotropical insect pollinated tree Copaifera langsdorffii, using paternity analysis and eight microsatellite loci. We also investigated the coancestry and effective population size of progeny arrays for conservation and environmental restoration purposes. Open-pollinated seeds were collected from 15 seed trees within the forest fragment, in which all adult trees were mapped, measured and genotyped. Twenty seeds were also collected from the nearest neighbor tree located 1.2 km from the forest fragment. Our results show that levels of genetic diversity were significantly higher in adults than offspring and significant levels of inbreeding were detected in offspring (F = 0.226). From paternity analysis, we observed low levels of selfing (s = 8%) and pollen immigration (m = 8%) in the fragment, but very high levels were detected for the isolated tree (s = 20%; m = 75%), indicating that the population and the tree are not reproductively isolated and are connected by patterns of long distance pollen dispersal (maximum detected 1,420 m). Within the forest fragment, the pattern of pollen dispersal was a near neighbor pattern with 49% of the pollen being dispersed within 50 m. The effective population size of the progeny array was low, indicating the need to collect seeds from a large number of seed trees (at least 76) for conservation purposes. The results show that the spatial isolation of the population and isolated tree due to forest fragmentation has not disrupted genetic connectivity; however, spatial isolation does seem to increase selfing and correlated mating.  相似文献   

13.
Understanding how the scale of pollen transfer determines the outcome of matings is important evolutionarily and a key issue in restoration ecology. We tested the effects of pollen transfer distance for the self‐incompatible shrub Grevillea sphacelata using (1) open pollination and transfer among (2) near neighbours, (3) neighbouring subpopulations and (4) populations separated by c. 4 km. We used AFLP markers to test for evidence of genetic differentiation within and among populations. Patterns of seed initiation suggest that open pollinated flowers were pollen limited, although in one subpopulation open seed set was greater than that achieved with pollen from near neighbours or other subpopulations. We detected no other effects of pollen source on seed initiation or seed and seedling development. In contrast, our genetic survey revealed significant spatial autocorrelation to 5 m, moderate differentiation of populations separated by up to 4 km and significant isolation by distance > 16 km. Our data suggest that, although dispersal of pollen may typically be localized, gene flow prevents localized adaptation or co‐adaptation and we detected no effects of inbreeding depression. In a restoration context, our results imply that movement of seed between populations separated by 4 km will not have detrimental consequences, despite significant differentiation at neutral genetic markers, and may be beneficial in maintaining genetic diversity and evolutionary potential. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 290–302.  相似文献   

14.
In hermaphroditic plants, theory for mating system evolution predicts that populations will evolve to either complete autonomous selfing (AS) or complete outcrossing, depending on the balance between automatic selection favouring self‐fertilization and costs resulting from inbreeding depression (ID). Theory also predicts that selection for selfing can occur rapidly and is driven by purging of genetic load and the loss of ID. Therefore, selfing species are predicted to have low levels of ID or even to suffer from outbreeding depression (OD), whereas predominantly outcrossing species are expected to have high levels of ID. To test these predictions, we related the capacity of AS to the magnitude of early‐acting inbreeding or OD in both allogamous and autogamous species of the orchid genus Epipactis. For each species, the level of AS was assessed under controlled greenhouse conditions, whereas hand‐pollinations were performed to quantify early costs of inbreeding or OD acting at the level of fruit and seed production. In the autogamous species, the capacity of AS was high (> 0.72), whereas in the allogamous species AS was virtually absent (< 0.10). Consistent with our hypothesis, allogamous Epipactis species had significantly higher total ID (average: 0.46) than autogamous species, which showed severe costs of OD (average: ?0.45). Overall, our findings indicate that strong early‐acting ID represents an important mechanism that contributes to allogamy in Epipactis, whereas OD may maintain selfing in species that have evolved to complete selfing.  相似文献   

15.
We evaluated the degree of selfing and inbreeding depression at the seed and seedling stages of a threatened tropical canopy tree, Neobalanocarpus heimii, using microsatellite markers. Selection resulted in an overall decrease in the level of surviving selfed progeny from seeds to established seedlings, indicating inbreeding depression during seedling establishment. Mean seed mass of selfed progeny was lower than that of outcrossed progeny. Since the smaller seeds suffered a fitness disadvantage at germination in N. heimii, the reduced seed mass of selfed progeny would be one of the determinants of the observed inbreeding depression during seedling establishment. High selfing rates in some mother trees could be attributed to low local densities of reproductive individuals, thus maintenance of a sufficiently high density of mature N. heimii should facilitate regeneration and conservation of the species.  相似文献   

16.
We investigated the effect of population density of compatible neighbours on inbreeding level of Primula sieboldii, a heterostylous clonal herb. Pollinator availability, seed set, selfing rate, diversity of pollen donors, and fitness of progenies were compared between less and more isolated genets, which differed in the number of compatible opposite-morph genets within 20 m, the range at which most pollen flow occurred. Although pollinator availability did not differ between the two groups, seed set and diversity of pollen donors in more isolated genets were significantly lower than in less isolated genets. Additionally, the mean selfing rates of less and more isolated genets were 1.3 and 36.7%, respectively, and the mean leaf area of the self-fertilized seedlings was 70 to 40% smaller than that of outcrossed seedlings of the same mother genet. Due to this large inbreeding depression, it is unlikely that self-fertilized seedlings could successfully establish in natural habitats and hence the inbreeding level in the next generation around the more isolated genet would not increase rapidly. However, the possibility of mating between full-sibs would increase because the diversity of pollen donors was low and both pollen and seed dispersal were spatially restricted. Thus the inbreeding level of the next generations would gradually increase around the more isolated genets owing to biparental inbreeding. This study suggested that the population density of compatible neighbours has a critical impact on the future inbreeding level within P. sieboldii populations.  相似文献   

17.
If inbreeding depression is caused by deleterious recessive alleles, as suggested by the partial dominance hypothesis, a negative correlation between inbreeding and inbreeding depression is predicted. This hypothesis has been tested several times by comparisons of closely related species or comparisons of populations of the same species with different histories of inbreeding. However, if one is interested in whether this relationship contributes to mating-system evolution, which occurs within populations, comparisons among families within a population are needed; that is, inbreeding depression among individuals with genetically based differences in their rate of selfing should be compared. In gynodioecious species with self-compatible hermaphrodites, hermaphrodites will have a greater history of potential inbreeding via both selfing and biparental inbreeding as compared to females and may therefore express a lower level of inbreeding depression. We estimated the inbreeding depression of female and hermaphrodite lineages in gynodioecious Lobelia siphilitica in a greenhouse experiment by comparing the performance of selfed and outcrossed progeny, as well as sibling crosses and crosses among subpopulations. We did not find support for lower inbreeding depression in hermaphrodite lineages. Multiplicative inbreeding depression (based on seed germination, juvenile survival, survival to flowering, and flower production in the first growing season) was not significantly different between hermaphrodite lineages (δ = 0.30 ± 0.08) and female lineages (δ = 0.15 ± 0.18), although the trend was for higher inbreeding depression in the hermaphrodite lineages. The population-level estimate of inbreeding depression was relatively low for a gynodioecious species (δ = 0.25) and there was no significant inbreeding depression following biparental inbreeding (δ = 0.01). All measured traits showed significant variation among families, and there was a significant interaction between family and pollination treatment for four traits (germination date, date of first flowering, number of flowers, and aboveground biomass). Our results suggest that the families responded differently to selfing and outcrossing: Some families exhibited lower fitness following selfing whereas others seemed to benefit from selfing as compared to outcrossing. Our results support recent simulation results in that prior inbreeding of the lineages did not determine the level of inbreeding depression. These results also emphasize the importance of determining family-level estimates of inbreeding depression, relative to population-level estimates, for studies of mating-system evolution.  相似文献   

18.
Studies of inbreeding depression in plant populations have focused primarily on comparisons of selfing versus outcrossing in self-compatible species. Here we examine the effect of five naturally occurring levels of inbreeding (f ranging from 0 to 0.25 by pedigree) on components of lifetime fitness in a field population of the self-incompatible annual, Raphanus sativus. Pre- and postgermination survival and reproductive success were examined for offspring resulting from compatible cross-pollinations. Multiple linear regression of inbreeding level on rates of fruit and seed abortion as well as seed weight and total seed weight per fruit were not significant. Inbreeding level was not found to affect seed germination, offspring survival in the field, date of first flowering, or plant biomass (dry weight minus fruit). The effect of inbreeding on seedling viability in the greenhouse and viability to flowering was significant but small and inconsistently correlated with inbreeding level. Maternal fecundity, however, a measure of seed yield, was reduced almost 60% in offspring from full-sib crosses (f = 0.25) relative to offspring resulting from experimental outcross pollinations (f = 0). Water availability, a form of physiological stress, affected plant biomass but did not affect maternal fecundity, nor did it interact with inbreeding level to influence these characters. The delayed expression of strong inbreeding depression suggests that highly deleterious recessive alleles were not a primary cause of fitness loss with inbreeding. Highly deleterious recessives may have been purged by bottlenecks in population size associated with the introduction of Raphanus and its recent range expansions. In general, reductions in total relative fitness of greater than 50% associated with full-sib crosses should be sufficient to prohibit the evolution of self-compatibility via transmission advantage in Raphanus.  相似文献   

19.
Inbreeding depression was studied in two populations of a Mediterranean allogamous colonizing species Crepis sancta. In order to test the hypothesis that the magnitude of inbreeding depression can be modified by successional processes, the growth and survival of individuals resulting from two generations of inbred crosses including selfing were analysed with interspecific competition (in natural vegetation) and without interspecific competition (by removing natural vegetation). Inbreeding depression was weak for seed production. Germination was little affected by inbreeding but mortality and the number of capitula showed inbreeding depression, especially in the presence of competition. This suggests that inbreeding depression is very sensitive to variations in environmental conditions such as interspecific competition. As a consequence, inbreeding depression cannot be considered as constant in natural conditions.  相似文献   

20.
Prosopis species forests in Argentina are increasingly fragmented in the last years mainly by the deforestation activity without any reforestation strategy, the establishment of different crop plantations, and natural fires. The consequence of habitat fragmentation on the genetic potential of Prosopis alba requires a fine-scale analysis of population structure, in particular mating system and pollen dispersal. By means of short sequences repeats, we analyzed a fragmented population of this species in Santiago del Estero (Argentina). Most genetic variation was observed among families within zones (65.5%), whereas the lowest proportion corresponded to the differentiation among zones (2.8%). The fine analysis of structure at family level suggests that this population is complete outcrosser and there is a low but significant biparental inbreeding. Outcrossing rates differ among mother plants and the proportion of full sibs within mother plants ranged from 64% for seeds proceeding from the same pod to 10% for seeds from different pods. The average pollen dispersal distance was estimated to be among 5.36 and 30.92 m by using the KinDist or TwoGener approach. About seven pollen donors are siring each progeny array and the number of seed trees necessary for seed collection aiming to retain an effective population size of 100 was estimated in 16–39 individuals depending on the relatedness estimator used. Pollen and seed dispersal would be limited, what determines the need of conserving short distant patches to avoid the effects of inbreeding and drift within populations as a consequence of intensive use resource for agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号