首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The recent shift toward dispersal rather than vicariant explanations of disjunct distributions has been driven by the use of molecular data to estimate divergence dates between lineages. However, other kinds of evidence can also be critical in evaluating such biogeographic hypotheses. In the present study, we used a multifaceted approach employing diverse analyses of mitochondrial DNA sequences to assess explanations for the disjunct distribution of the gartersnake Thamnophis validus. The occurrence of this species in the Cape Region of the Baja California peninsula, isolated from mainland populations that occur along the west coast of Mexico, might be explained by: (1) separation of the peninsula from mainland Mexico through rifting 4–8 Mya (tectonic vicariance); (2) fragmentation of the range of this semi‐aquatic species because of post‐Pleistocene aridification (vicariance by aridification); (3) natural overwater dispersal across the Gulf of California; or (4) human introduction. Divergence dating indicates that peninsular and mainland T. validus separated from each other within the last 0.5 Myr, thus rejecting tectonic vicariance. In addition, the estimated closest mainland relatives of peninsular snakes are found farther north than expected under this hypothesis. Three findings argue against vicariance by aridification: (1) peninsular snakes and their closest mainland relatives are more genetically similar than predicted; (2) the location of closest mainland relatives is farther south than predicted; and (3) the species is absent from areas where one might expect to find relict populations. Taken together, refutation of the vicariance hypotheses and the fact that the estimated closest mainland relatives are found almost directly across the Gulf from the Cape Region supports some form of overwater colonization. Various additional arguments suggest that natural dispersal is more likely than human introduction. The present study emphasizes the need for multiple kinds of evidence, beyond divergence dates, to discriminate among hypotheses and to provide independent sources of corroboration or refutation in historical biogeography. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 409–424.  相似文献   

3.
Genetic variation at six microsatellite DNA loci and a segment of the mitochondrial cytochrome oxidase subunit I (COI) locus was used to estimate gene flow, population structure, and demographic history in the cactophilic Drosophila pachea from the Sonoran Desert of North America, a species that shows a strict association with its senita host cactus (genus Lophocereus). For microsatellite analyses, thirteen populations of D. pachea were sampled, five in mainland Mexico and the southwestern USA, and eight on the Baja California (Baja) peninsula, covering essentially the entire range of the species. Analysis of molecular variance (AMOVA) of microsatellite data revealed that populations from both the mainland and the Baja peninsula generally showed little structure, although there were a few exceptions, suggesting some local differentiation and restriction of gene flow within both regions. Pairwise comparisons of F(ST) among each of the mainland and Baja populations showed evidence of both panmixia and population subdivision. AMOVA performed on grouped populations from both the mainland and Baja, however, revealed significant partitioning of genetic variation among the two regions, but no partitioning among localities within each region. Bayesian skyline analyses of the COI data set, consisting of four mainland and seven peninsular populations, revealed population expansions dating to the Pleistocene or late Pliocene in D. pachea from both regions, although regional differences were seen in the estimated timing of the expansions and in changes in effective population size over time.  相似文献   

4.
This paper explores my shifting understandings of interactions primarily between salmonid fish culture and fish conservation during the latter half of the 20th century. The idea that conspecific natural and cultured fish were largely interchangeable among phenotypically similar populations began to change with the advent of molecular genetic markers. With the gradual clarification of major geographic lineages beginning in the 1970s came awareness that translocations among anadromous lineages were generally destined for failure; in contrast, gene flow more readily occurred among non-anadromous lineages and sometimes, species. Within lineages, data concurrently were accumulating that showed adaptations to their respective environments distinguished cultured and wild populations. Reduced obstacles to gene flow at this level often resulted in homogenizations among wild and cultured fish in areas where widespread hatchery releases occurred; conversely, adaptive radiations in vacant habitats sometimes occurred over a few decades from single source hatchery releases. Current ideas relating to salmonid interbreeding, population substructure and culture evolved from these observations. Among lineages, resistance to gene flow is much greater between anadromous than purely freshwater populations or species. Within lineages, ease of gene flow in both anadromous and freshwater populations is problematical with regard to cultured and wild populations because large-scale supplementation programs erode local adaptations and fine-scale population substructures. At this level, a potential ability to regenerate natural substructure upon relaxation of supplementation is offset by uncertainties of time scales and intrinsic capabilities of homogenized populations. However, management that separates harvest and reproduction of wild and cultured subpopulations can minimize these losses. Some generality of this strategy to other fishes is supported by losses of local adaptations and outbreeding depression in black basses following population admixtures that parallel those observed in salmonids.  相似文献   

5.
On the basis of terpene composition, populations ofB. microphylla show north to south affinities on both the Baja California peninsula and the northwest coast of Mexico. The lack of east to west population affinities corresponds with the presumed absence of land connections between the peninsula and mainland throughout the history of this taxon. Morphological similarities between populations in an east-west direction are explained on the basis of contemporary parallel selective influences and not by the closeness of relationship.  相似文献   

6.
The Gulf of California endemic reef fish, Acanthemblemaria crockeri (Blennioidei, Chaenopsidae), reportedly has two colour morphs, one with melanic lateral spots ('Gulf' morph) and one with orange spots ('Cape' morph). In this study, we recorded colour morph in both males and females and collected mitochondrial DNA sequence data for cytochrome c oxidase I (COI) and tRNA-Pro/D-loop of specimens from throughout the Gulf to explore the genetic basis of the colour morphs. Two highly divergent (HKY + I distance = 11.9% for COI), reciprocally monophyletic lineages were identified, consistent with the presence of two parapatric species. A 30-km gap between the distributions of mitochondrial lineages roughly corresponds to a hypothesized former seaway across the Baja California peninsula north of La Paz, although the estimated divergence time (1.84 million years ago) is more recent than the hypothetical seaway (3–4 million years ago). Surprisingly, the distribution of mitochondrial species is not congruent with the distribution of either male or female colour morphs. Our analysis also revealed significant population differentiation within both species and no shared haplotypes among populations. The northern Gulf species includes four populations (NB, CB, NM and CM) corresponding to northern and central Baja and northern and central mainland sites, while the Cape species includes two populations (SB and SM) corresponding to the Baja and mainland sides of the southern Gulf. The NB/CB division corresponds to a hypothesized Plio–Pleistocene mid-peninsular seaway. The level of genetic divergence documented in this lineage is extraordinary for a marine fish with a pelagic larval stage within a semi-enclosed basin.  相似文献   

7.
Some excavating sponges of the genus Cliona compete with live reef corals, often killing and bioeroding entire colonies. Important aspects affecting distribution of these species, such as dispersal capability and population structure, remain largely unknown. Thus, the aim of this study was to determine levels of genetic connectivity and dispersal of Cliona delitrix across the Greater Caribbean (Caribbean Sea, Bahamas and Florida), to understand current patterns and possible future trends in their distribution and effects on coral reefs. Using ten species‐specific microsatellite markers, we found high levels of genetic differentiation between six genetically distinct populations: one in the Atlantic (Florida‐Bahamas), one specific to Florida and four in the South Caribbean Sea. In Florida, two independent breeding populations are likely separated by depth. Gene flow and ecological dispersal occur among other populations in the Florida reef tract, and between some Florida locations and the Bahamas. Similarly, gene flow occurs between populations in the South Caribbean Sea, but appears restricted between the Caribbean Sea and the Atlantic (Florida‐Bahamas). Dispersal of C. delitrix was farther than expected for a marine sponge and favoured in areas where currents are strong enough to transport sponge eggs or larvae over longer distances. Our results support the influence of ocean current patterns on genetic connectivity, and constitute a baseline to monitor future C. delitrix trends under climate change.  相似文献   

8.
Describing patterns of connectivity among populations of species with widespread distributions is particularly important in understanding the ecology and evolution of marine species. In this study, we examined patterns of population differentiation, migration, and historical population dynamics using microsatellite and mitochondrial loci to test whether populations of the epinephelid fish, Gag, Mycteroperca microlepis, an important fishery species, are genetically connected across the Gulf of Mexico and if so, whether that connectivity is attributable to either contemporary or historical processes. Populations of Gag on the Campeche Bank and the West Florida Shelf show significant, but low magnitude, differentiation. Time since divergence/expansion estimates associated with historical population dynamics indicate that any population or spatial expansions indicated by population genetics would have likely occurred in the late Pleistocene. Using coalescent-based approaches, we find that the best model for explaining observed spatial patterns of contemporary genetic variation is one of asymmetric gene flow, with movement from Campeche Bank to the West Florida Shelf. Both estimated migration rates and ecological data support the hypothesis that Gag populations throughout the Gulf of Mexico are connected via present day larval dispersal. Demonstrating this greatly expanded scale of connectivity for Gag highlights the influence of “ghost” populations (sensu Beerli) on genetic patterns and presents a critical consideration for both fisheries management and conservation of this and other species with similar genetic patterns.  相似文献   

9.
Little is known about the natural history, biology, and population genetic structure of the Hardhead Silverside, Atherinomorus stipes, a small schooling fish found around islands throughout the Caribbean. Our field observations of A. stipes in the cays of Belize and the Florida Keys found that populations tend to be in close association with the shoreline in mangrove habitats. Due to this potential island‐based population structuring, A. stipes represents an ideal system to examine questions about gene flow and isolation by distance at different geographic scales. For this study, the mitochondrial gene nd2 was amplified from 394 individuals collected from seven different Belizean Cays (N = 175) and eight different Floridian Keys (N = 219). Results show surprisingly high haplotype diversity both within and between island‐groups, as well as a high prevalence of unique haplotypes within each island population. The results are consistent with models that require gene flow among populations as well as in situ evolution of rare haplotypes. There was no evidence for an isolation by distance model. The nd2 gene tree consists of two well‐supported monophyletic groups: a Belizean‐type clade and a Floridian‐type clade, indicating potential species‐level differentiation.  相似文献   

10.
The Manchurian trout, Brachymystax lenok tsinlingensis (family: Salmonidae), is a cold freshwater fish endemic to Northeast Asia. South Korean populations of this species, which comprise its southern range limit, have recently decreased markedly in size and are now becoming critically endangered. We assessed the current population status of this species in South Korea by estimating the levels of genetic diversity and genetic structure of five natural and four restored populations using mitochondrial DNA (mtDNA) control region sequences and eight nuclear microsatellite loci. Levels of within-population genetic diversity were low, suggesting that past effective population sizes (N e) have been small. Each population had one or a maximum of two mtDNA haplotypes. Microsatellite allelic richness (AR) was significantly higher for natural populations (mean AR?=?3.51; 95% confidence interval, 3.00–4.03) than for restored populations (mean AR?=?2.61; 2.38–2.98). South Korean populations were significantly genetically isolated from one another, with private mtDNA haplotypes and microsatellite alleles, suggesting that limited gene flow has been occurring among populations. A mtDNA phylogeny revealed that South Korean lineages were more closely related to those of China than to those of North Korea and Russia. Overall, we suggest that future restoration efforts aimed at South Korean populations should consider the genetic characteristics reported here, which should help to fulfil effective conservation strategies for this highly cherished species. Our results will inform other conservation efforts, including assisted migration of freshwater fish populations at the equatorial end of the geographical range limit of the species.  相似文献   

11.
Divergent selection pressures induced by different environmental conditions typically lead to variation in life history, behavior, and morphology. When populations are locally adapted to their current environment, selection may limit movement into novel sites, leading to neutral and adaptive genetic divergence in allopatric populations. Subsequently, divergence can be reinforced by development of pre‐ or postzygotic barriers to gene flow. The threespine stickleback, Gasterosteus aculeatus, is a primarily marine fish that has invaded freshwater repeatedly in postglacial times. After invasion, the established freshwater populations typically show rapid diversification of several traits as they become reproductively isolated from their ancestral marine population. In this study, we examine the genetic and morphometric differentiation between sticklebacks living in an open system comprising a brackish water lagoon, two freshwater lakes, and connecting rivers. By applying a set of microsatellite markers, we disentangled the genetic relationship of the individuals across the diverse environments and identified two genetic populations: one associated with brackish and the other with the freshwater environments. The “brackish” sticklebacks were larger and had a different body shape than those in freshwater. However, we found evidence for upstream migration from the brackish lagoon into the freshwater environments, as fish that were genetically and morphometrically similar to the lagoon fish were found in all freshwater sampling sites. Regardless, few F1‐hybrids were identified, and it therefore appears that some pre‐ and/or postzygotic barriers to gene flow rather than geographic distance are causing the divergence in this system.  相似文献   

12.
Geological events, landscape features, and climate fluctuations have shaped the distribution of genetic diversity and evolutionary history in freshwater fish, but little attention has been paid to that around the Gulf of Tonkin; therefore, we investigated the phylogeographic structure of the dwarf snakehead (Channa gachua) on Hainan Island and mainland China, as well as two populations in Vietnam. We attempted to elucidate the origins of freshwater fish in South Hainan by incorporating genetic data from DNA markers on both the mitochondrial cytochrome b gene (cyt b) and the nuclear recombination‐activating gene 1 (RAG‐1). Mitochondrial phylogenetic analysis identified two major lineages (lineages A and B), which may represent separate species. Divergence data suggested that C. gachua populations diverged between 0.516 and 2.376 myr. The divergence of the two cryptic species is congruent with sea‐level rise, which subsequently isolated Hainan from the mainland. During the Pleistocene glaciations, the entire region of the Gulf of Tonkin and the Qiongzhou Strait became part of the coastal plain of the Asian continent, which might have resulted in the current distribution patterns and dispersal routes of C. gachua populations. The formation of three sublineages in lineage A indicated that the Gulf of Tonkin was a geographical barrier between Hainan Island and mainland China but not between Vietnam and Hainan Island. The results of this study may help to elucidate the origins of freshwater fish in South Hainan and the phylogeographic structure of C. gachua.  相似文献   

13.
In strict symbiotic associations, the genetic structure of the symbiont often mirrors that of its host, with interesting implications for population dynamics and phylogeography. An unresolved case of symbiotic specificity and phylogeographic consequence is the relationship between the marine triclad Bdelloura candida and its host, the American horseshoe crab, Limulus polyphemus. A recent study by Riesgo et al. (2017, Marine Biology, 164, 111) identified a strong genetic break between populations of B. candida in the Gulf of Mexico and the Atlantic Ocean but had minimal sampling around the Florida peninsula such that the exact location of the boundary zone was not specified. To solve this, a comprehensive analysis of 16S rRNA and ITS2 genetic markers was conducted from new collections around the Florida peninsula. A clear and significant genetic break was identified between populations of supposed B. candida between Cumberland Island, Georgia, and Mosquito Lagoon, Florida. This genetic break establishes two cryptic lineages, an Atlantic population as far south as Georgia and a Floridian population inclusive of the entire peninsula and Gulf of Mexico, potentially due to niche partitioning of the unique intertidal habitats of its horseshoe crab hosts in Florida. This result directly refutes the previous hypothesis that a population break exists between the coasts of the Atlantic Ocean and Gulf of Mexico, and instead matches the genetic break of its host. Furthermore, a third cryptic lineage was identified in Key West. Overall, this work demonstrates the challenges in maintaining genetic connections between populations of both B. candida and L. polyphemus across their distributions, and poses meaningful implications for both species in the larger context of marine conservation and biodiversity.  相似文献   

14.
During the 1960s, water management practices resulted in the conversion of the wetlands that fringe northeastern Florida Bay (USA) from freshwater/oligohaline herbaceous marshes to dwarf red mangrove forests. Coincident with this conversion were several ecological changes to Florida Bay’s fauna, including reductions in the abundances of top trophic-level consumers: piscivorous fishes, alligators, crocodiles, and wading birds. Because these taxa rely on a common forage base of small demersal fishes, food stress has been implicated as playing a role in their respective declines. In the present study, we monitored the demersal fishes seasonally at six sites over an 8-year time period. During monitoring, extremely high rainfall conditions occurred over a 3.5-year period leading to salinity regimes that can be viewed as “windows” to the area’s natural past and future restored states. In this paper, we: (1) examine the changes in fish communities over the 8-year study period and relate them to measured changes in salinity; (2) make comparisons among marine, brackish and freshwater demersal fish communities in terms of species composition, density, and biomass; and (3) discuss several implications of our findings in light of the intended and unintended water management changes that are planned or underway as part of Everglades restoration. Results suggest the reduction in freshwater flow to Florida Bay over the last several decades has reduced demersal fish populations, and thus prey availability for apex consumers in the coastal wetlands compared to the pre-drainage inferred standard. Furthermore, greater discharge of freshwater toward Florida Bay may result in the re-establishment of pre-1960s fauna, including a more robust demersal-fish community that should prompt increases in populations of several important predatory species.  相似文献   

15.
Global climate change and increases in sea levels will affect coastal marine communities. The conservation of these ecologically important areas will be a challenge because of their wide geographic distribution, ecological diversity and species richness. To address this problem, we need to better understand how the genetic variation of the species in these communities is distributed within local populations, among populations and between distant regions. In this study we apply genotyping by sequencing (GBS) and examine 955 SNPs to determine Sailfin molly (Poecilia latipinna) genetic diversity among three geographically close mangrove salt marsh flats in the Florida Keys compared to populations in southern and northern Florida. The questions we are asking are whether there is sufficient genetic variation among isolated estuarine fish within populations and whether there are significant divergences among populations. Additionally, we want to know if GBS approaches agree with previous studies using more traditional molecular approaches. We are able to identify large genetic diversity within each saltmarsh community (π ≈ 36%). Additionally, among the Florida Key populations and the mainland or between southern and northern Florida regions, there are significant differences in allele frequencies seen in population structure and evolutionary relationships among individuals. Surprisingly, even though the cumulative FST value using all 955 SNPs within the three Florida Key populations is small, there are 29 loci with significant FST values, and 11 of these were outliers suggestive of adaptive divergence. These data suggest that among the salt marsh flats surveyed here, there is significant genetic diversity within each population and small but significant differences among populations. Much of the genetic variation within and among populations found here with GBS is very similar to previous studies using allozymes and microsatellites. However, the meaningful difference between GBS and these previous measures of genetic diversity is the number of loci examined, which allows more precise delineations of population structure as well as facilitates identifying loci with excessive FST values that could indicate adaptive divergence.  相似文献   

16.
Hawaiian biogeography and the islands' freshwater fish fauna   总被引:3,自引:0,他引:3  
Aim This paper describes known patterns in the distributions and relationships of Hawaiian freshwater fishes, and compares these patterns with those exhibited by Hawaii's terrestrial biota. Location The study is based in Hawaii, and seeks patterns across the tropical and subtropical Indo‐west Pacific. Methods The study is based primarily on literature analysis. Results The Hawaiian freshwater fish fauna comprises five species of goby in five different genera (Gobiidae). Four species are Hawaiian endemics, the fifth shared with islands in the western tropical Pacific Ocean. All genera are represented widely across the Indo‐west Pacific. All five species are present on all of the major Hawaiian islands. All five species are amphidromous – their larval and early juvenile life being spent in the sea. Although there has been some local phyletic evolution to produce Hawaiian endemics, there has been no local radiation to produce single‐island endemics across the archipelago. Nor is there evidence for genetic structuring among populations in the various islands. Main conclusions In this regard, the freshwater fish fauna of Hawaii differs from the well‐known patterns of local evolution and radiation in Hawaiian Island terrestrial taxa. Amphidromy probably explains the biogeographical idiosyncrasies of the fish fauna – dispersal through the sea initially brought the fish species to Hawaii, and gene flow among populations, across the archipelago, has hitherto inhibited the evolution of local island endemics, apparently even retarding genetic structuring on individual islands.  相似文献   

17.
The green anole lizard (Anolis carolinensis) is a model organism for behavior and genomics that is native to the southeastern United States. It is currently thought that the ancestors of modern green anoles dispersed to peninsular Florida from Cuba. However, the climatic changes and geological features responsible for the early diversification of A. carolinensis in North America have remained largely unexplored. This is because previous studies (1) differ in their estimates of the divergence times of populations, (2) are based on a single genetic locus or (3) did not test specific hypotheses regarding the geologic and topographic history of Florida. Here we provide a multi-locus study of green anole genetic diversity and find that the Florida peninsula contains a larger number of genetically distinct populations that are more diverse than those on the continental mainland. As a test of the island refugia hypothesis in Pleistocene Florida, we use a coalescent approach to estimate the divergence times of modern green anole lineages. We find that all demographic events occurred during or after the Upper Pliocene and suggest that green anole diversification was driven by population divergence on interglacial island refugia in Florida during the Lower Pleistocene, while the region was often separated from continental North America. When Florida reconnected to the mainland, two separate dispersal events led to the expansion of green anole populations across the Atlantic Seaboard and Gulf Coastal Plain.  相似文献   

18.
Size and age structures of stand populations of numerous tree species exhibit uneven or reverse J-distributions that can persist after non-catastrophic disturbance, especially windstorms. Among disjunct populations of conspecific trees, alternative distributions are also possible and may be attributed to more localized variation in disturbance. Regional differences in structure and demography among disjunct populations of sand pine (Pinus clausa (Chapm. ex Engelm.) Vasey ex Sarg.) in the Florida panhandle and peninsula may result from variation in hurricane regimes associated with each of these populations. We measured size, age, and growth rates of trees from panhandle and peninsula populations and then compiled size and age class distributions. We also characterized hurricanes in both regions over the past century. Size and age structures of panhandle populations were unevenly distributed and exhibited continuous recruitment; peninsula populations were evenly sized and aged and exhibited only periodic recruitment. Since hurricane regimes were similar between regions, historical fire regimes may have been responsible for regional differences in structure of sand pine populations. We hypothesize that fires were locally nonexistent in coastal panhandle populations, while periodic high intensity fires occurred in peninsula populations over the past century. Such differences in local fire regimes could have resulted in the absence of hurricane effects in the peninsula. Increased intensity of hurricanes in the panhandle and current fire suppression patterns in the peninsula may shift characteristics of sand pine stands in both regions.  相似文献   

19.
The blind cave gudgeon Milyeringa veritas is restricted to groundwaters of Cape Range and Barrow Island, northwestern Australia. It occurs in freshwater caves and in seawater in anchialine systems. It is associated with the only other stygobitic cave vertebrate in Australia, the blind cave eel, Ophisternon candidum, the world's longest cave fish, and a diverse stygofauna comprising lineages with tethyan tracks and widely disjunct distributions, often from North Atlantic caves. The cave gudgeon inhabits a karst wetland developed in Miocene limestones in an arid area. There is an almost complete lack of information on the basic biology of this cave fish, despite it being listed as threatened under the Western Australian Wildlife Conservation Act. Allozyme frequencies and distributions indicate significant population sub-structuring on the Cape Range peninsula such that the populations are essentially isolated genetically suggesting that more than one biological species is present. Further, they suggest that the vicariant events may have been associated with a series of eustatic low sealevels. Analysis of intestinal contents indicates that they are opportunistic feeders, preying on stygofauna and accidentals trapped in the water, at least at the sites sampled which were open to the surface, a conclusion supported by the results of stable isotope ratio analysis. The gudgeons are found in freshwater caves and throughout deep anchialine systems in which they occur in vertically stratified water columns in which there is a polymodal distribution of water chemistries (temperature, pH, salinity, dissolved oxygen, redox, dissolved inorganic nitrogen series, hydrogen sulphide).  相似文献   

20.
The adaptive radiation of the seven‐spined gobies (Gobiidae: Gobiosomatini) represents a classic example of how ecological specialization and larval retention can drive speciation through local adaptation. However, geographically widespread and phenotypically uniform species also do occur within Gobiosomatini. This lack of phenotypic variation across large geographic areas could be due to recent colonization, widespread gene flow, or stabilizing selection acting across environmental gradients. We use a phylogeographic approach to test these alternative hypotheses in the naked goby Gobiosoma bosc, a widespread and phenotypically invariable intertidal fish found along the Atlantic Coast of North America. Using DNA sequence from 218 individuals sampled at 15 localities, we document marked intraspecific genetic structure in mitochondrial and nuclear genes at three main geographic scales: (i) between Gulf of Mexico and Atlantic Coast, (ii) between the west coast of the Florida peninsula and adjacent Gulf of Mexico across the Apalachicola Bay, and (iii) at local scales of a few hundred kilometers. Clades on either side of Florida diverged about 8 million years ago, whereas some populations along the East Cost show divergent phylogroups that have differentiated within the last 200,000 years. The absence of noticeable phenotypic or ecological differentiation among lineages suggests the role of stabilizing selection on ancestral phenotypes, together with isolation in allopatry due to reduced dispersal and restricted gene flow, as the most likely explanation for their divergence. Haplotype phylogenies and spatial patterns of genetic diversity reveal frequent population bottlenecks followed by rapid population growth, particularly along the Gulf of Mexico. The magnitude of the genetic divergence among intraspecific lineages suggests the existence of cryptic species within Gobiosoma and indicates that modes of speciation can vary among lineages within Gobiidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号