首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To predict the possible evolutionary response of a plant species to a new environment, it is necessary to separate genetic from environmental sources of phenotypic variation. In a case study of the invader Solidago altissima, the influences of several kinds of parental effects and of direct inheritance and environment on offspring phenotype were separated. Fifteen genotypes were crossed in three 5 × 5 diallels excluding selfs. Clonal replicates of the parental genotypes were grown in two environments such that each diallel could be made with maternal/paternal plants from sand/sand, sand/soil, soil/sand, and soil/soil. In a first experiment (1989) offspring were raised in the experimental garden and in a second experiment (1990) in the glasshouse. Parent plants growing in sand invested less biomass in inflorescences but produced larger seeds than parent plants growing in soil. In the garden experiment, phenotypic variation among offspring was greatly influenced by environmental heterogeneity. Direct genetic variation (within diallels) was found only for leaf characters and total leaf mass. Germination probability and early seedling mass were significantly affected by phenotypic differences among maternal plants because of genotype ( genetic maternal effects ) and soil environment ( general environmental maternal effects ). Seeds from maternal plants in sand germinated better and produced bigger seedlings than seeds from maternal plants in soil. They also grew taller with time, probably because competition accentuated the initial differences. Height growth and stem mass at harvest (an integrated account of individual growth history) of offspring varied significantly among crosses within parental combinations ( specific environmental maternal effects ). In the glasshouse experiment, the influence of environmental heterogeneity and competition could be kept low. Except for early characters, the influence of direct genetic variation was large but again leaf characters (= basic module morphology) seemed to be under stricter genetic control than did size characters. Genetic maternal effects, general environmental maternal effects, and specific environmental maternal effects dominated in early characters. The maternal effects were exerted both via seed mass and directly on characters of young offspring. Persistent effects of the general paternal environment ( general environmental paternal effects ) were found for leaf length and stem and leaf mass at harvest. They were opposite in direction to the general environmental maternal effects, that is the same genotypes produced “better mothers” in sand but “better fathers” in soil. The general environmental paternal effects must have been due to differences in pollen quality, resulting from pollen selection within the male parent or leading to pre- or postzygotic selection within the female parent. The ranking of crosses according to mean offspring phenotypes was different in the two experiments, suggesting strong interaction of the observed effects with the environment. The correlation structure among characters changed less between experiments than did the pattern of variation of single characters, but under the competitive conditions in the garden plant height seemed to be more directly related to fitness than in the glasshouse. Reduced competition could also explain why maternal effects were less persistent in the glasshouse than in the garden experiment. Evolution via selection of maternal effects would be possible in the study population because these effects are in part due to genetic differences among parents.  相似文献   

2.
Genetic models of maternal effects and models of mate choice have focused on the evolutionary effects of variation in parental quality. There have been, however, few attempts to combine these into a single model for the evolution of sexually selected traits. We present a quantitative genetic model that considers how male and female parental quality (together or separately) affect the expression of a sexually selected offspring trait. We allow female choice of males based on this parentally affected trait and examine the evolution of mate choice, parental quality and the indicator trait. Our model reveals a number of consequences of maternal and paternal effects. (1) The force of sexual selection owing to adaptive mate choice can displace parental quality from its natural selection optimum. (2) The force of sexual selection can displace female parental quality from its natural selection optimum even when nonadaptive mate choice occurs (e.g. runaway sexual selection), because females of higher parental quality produce more attractive sons and these sons counterbalance the loss in fitness owing to over-investment in each offspring. (3) Maternal and paternal effects can provide a source of genetic variation for offspring traits, allowing evolution by sexual selection even when those traits do not show direct genetic variation (i.e. are not heritable). (4) The correlation between paternal investment and the offspring trait influenced by the parental effects can result in adaptive mate choice and lead to the elaboration of both female preference and the male sexually selected trait. When parental effects exist, sexual selection can drive the evolution of parental quality when investment increases the attractiveness of offspring, leading to the elaboration of indicator traits and higher than expected levels of parental investment.  相似文献   

3.
Knowledge of how genetic effects arising from parental care influence the evolution of offspring traits comes almost exclusively from studies of maternal care. However, males provide care in some taxa, and often this care differs from females in quality or quantity. If variation in paternal care is genetically based then, like maternal care and maternal effects, paternal effects may have important consequences for the evolution of offspring traits via indirect genetic effects (IGEs). IGEs and direct–indirect genetic covariances associated with parental care can contribute substantially to total heritability and influence predictions about how traits respond to selection. It is unknown, however, if the magnitude and sign of parental effects arising from fathers are the same as those arising from mothers. We used a reciprocal cross‐fostering experiment to quantify environmental and genetic effects of paternal care on offspring performance in the burying beetle, Nicrophorus vespilloides. We found that IGEs were substantial and direct–indirect genetic covariances were negative. Combined, these patterns led to low total heritabilities for offspring performance traits. Thus, under paternal care, offspring performance traits are unlikely to evolve in response to selection, and variation in these traits will be maintained in the population despite potentially strong selection on these traits. These patterns are similar to those generated by maternal care, indicating that the genetic effects of care on offspring performance are independent of the caregiver's sex.  相似文献   

4.
There has been a long‐standing conceptual debate over the legitimacy of assigning components of offspring fitness to parents for purposes of evolutionary analysis. The benefits and risks inherent in assigning fitness of offspring to parents have been given primarily as verbal arguments and no explicit theoretical analyses have examined quantitatively how the assignment of fitness can affect evolutionary inferences. Using a simple quantitative genetic model, we contrast the conclusions drawn about how selection acts on a maternal character when components of offspring fitness (such as early survival) are assigned to parents vs. when they are assigned directly to the individual offspring. We find that there are potential shortcomings of both possible assignments of fitness. In general, whenever there is a genetic correlation between the parental and direct effects on offspring fitness, assigning components of offspring fitness to parents yields incorrect dynamical equations and may even lead to incorrect conclusions about the direction of evolution. Assignment of offspring fitness to parents may also produce incorrect estimates of selection whenever environmental variation contributes to variance of the maternal trait. Whereas assignment of offspring fitness to the offspring avoids these potential problems, it introduces the possible problem of missing components of kin selection provided by the mother, which may not be detected in selection analyses. There are also certain conditions where either model can be appropriate because assignment of offspring fitness to parents may yield the same dynamical equations as assigning offspring fitness directly to offspring. We discuss these implications of the alternative assignments of fitness for modelling, selection analysis and experimentation in evolutionary biology.  相似文献   

5.
Maternal influences on progeny characters affect phenotypic correlations between characters expressed in maternal and progeny generations and consequently influence evolutionary responses to selection. Net selection on maternally influenced characters depends on selection both on the progeny character and on the maternal characters that influence it. I used seed dispersal in Cakile edentula as a system in which to identify the mechanisms of environmentally mediated maternal effects and to determine how selection on maternal characters alters the adaptive value of dispersal. In C. edentula, maternal morphology responds to conspecific density experienced by the mother. Maternal morphology in turn affects offspring (seed) dispersal and density and thereby offspring morphology and fitness. I estimated the magnitude of density-mediated maternal effects on dispersal and identified their mechanism by characterizing the plasticity of maternal morphology to density. I also measured density-dependent selection on maternal characters that influence dispersal. Maternal plasticity to density was caused by both allometric and nonallometric variation in morphology, and this plasticity resulted in a negative correlation between maternal and progeny density. Such negative maternal effects are expected to retard responses to selection. Maternal morphology influenced maternal fitness, in part through the relationship of fitness to maternal plant size and in part through size-independent fitness effects. Maternal phenotypes that promote dispersal, and thereby increase progeny fitness, were associated with decreased maternal fitness. Selection on dispersal at the level of progeny favors increased dispersal; maternal influences on dispersal, however, not only cause a greatly reduced adaptive value of dispersal but lead to the prediction of a slower response to selection.  相似文献   

6.
Successful reproduction is an important determinant of the fitness of an individual and of the dynamics of populations. Offspring of the European common frog (Rana temporaria) exhibit a high degree of variability in metamorphic traits. However, environmental factors alone cannot explain this phenotypic variability, and the influence of genetic factors remains to be determined. Here, we tested whether the maternal genotype influences developmental time, body size, and body condition of offspring in a forest pond in Germany. We collected fertilized eggs from all 57 clutches deposited in the pond. We used multilocus genotypes based on seven microsatellite loci to assign metamorphosed offspring to mothers and to determine the number of fathers for a single matriline. We tested the influence of genetic effects in the same environment by comparing variability of metamorphic traits within and between full‐sib offspring grouped to matrilines and tested whether multiple paternity increases the variability of metamorphic traits in a single matriline. The variability in size and body condition was higher within matrilines than between them, which indicates that these traits are more strongly influenced by environmental effects, which are counteracting underlying genetic effects. The developmental time varied considerably between matrilines and variability increased with the effective number of fathers, suggesting an additive genetic effect of multiple paternity. Our results show that metamorphic traits are shaped by environmental as well as genetic effects.  相似文献   

7.
To determine the evolutionary importance of parental environmental effects in natural populations, we must begin to measure the magnitude of these effects in the field. For this reason, we conducted a combined growth chamber-field experiment to measure parental temperature effects in Plantago lanceolata. We grew in the field offspring of controlled crosses of chamber-grown parents subjected to six temperature treatments. Each treatment was characterized by a unique combination of maternal prezygotic (prior to fertilization), paternal prezygotic, and postzygotic (during fertilization and seed set) temperatures. Offspring were followed for three years to measure the effects of treatment on several life-history traits and population growth rate, our estimate of fitness. Parental treatment influenced germination, growth, and reproduction of newborns, but not survival or reproduction of offspring at least one year old. High postzygotic temperature significantly increased germination and leaf area at 17 weeks by approximately 35% and 2%, respectively. Probability of flowering and spike production in the newborn age class showed significant parental genotype x parental treatment interactions. High postzygotic temperature increased offspring fitness by approximately 50%. The strongest contributors to fitness were germination and probability of flowering and spike production of newborns. A comparison of our data with previously collected data for chambergrown offspring shows that the influence of parental environment on offspring phenotype is weaker but still biologically meaningful in the field. The results provide evidence that parental environment influences offspring fitness in natural populations of P. lanceolata and does so by affecting the life-history traits most strongly contributing to fitness. The data suggest that from the perspective of offspring fitness, natural selection favors parents that flower later in the flowering season in the North Carolina Piedmont when it is warmer. Genotypic-specific differences in response of offspring reproductive traits to parental environment suggest that parental environmental effects can influence the rate of evolutionary change in P. lanceolata.  相似文献   

8.
Parents should differentially invest in sons or daughters depending on the sex‐specific fitness returns from male and female offspring. In species with sexually selected heritable male characters, highly ornamented fathers should overproduce sons, which will be more sexually attractive than sons of less ornamented fathers. Because of genetic correlations between the sexes, females that express traits which are under selection in males should also overproduce sons. However, sex allocation strategies may consist in reaction norms leading to spatiotemporal variation in the association between offspring sex ratio (SR) and parental phenotype. We analysed offspring SR in barn swallows (Hirundo rustica) over 8 years in relation to two sexually dimorphic traits: tail length and melanin‐based ventral plumage coloration. The proportion of sons increased with maternal plumage darkness and paternal tail length, consistently with sexual dimorphism in these traits. The size of the effect of these parental traits on SR was large compared to other studies of offspring SR in birds. Barn swallows thus manipulate offspring SR to overproduce ‘sexy sons’ and potentially to mitigate the costs of intralocus sexually antagonistic selection. Interannual variation in the relationships between offspring SR and parental traits was observed which may suggest phenotypic plasticity in sex allocation and provides a proximate explanation for inconsistent results of studies of sex allocation in relation to sexual ornamentation in birds.  相似文献   

9.
In nonresource based mating systems females are thought to derive indirect genetic benefits by mating with high-quality males. Such benefits can be due either to the intrinsic genetic quality of sires or to beneficial interactions between maternal and paternal haplotypes. Animals with external fertilization and no parental care offer unrivaled opportunities to address these hypotheses. With these systems, cross-classified breeding designs and in vitro fertilization can be used to disentangle sources of genetic and environmental variance in offspring fitness. Here, we employ these approaches in the Australian sea urchin Heliocidaris erythrogramma and explore how sire-dam identities influence fertilization rates, embryo viability (survival to hatching), and metamorphosis, as well as the interrelationships between these potential fitness traits. We show that fertilization is influenced by a combination of strong maternal effects and intrinsic male effects. Our subsequent analysis of embryo viability, however, revealed a highly significant interaction between parental genotypes, indicating that partial incompatibilities can severely limit offspring survival at this life-history stage. Importantly, we detected no significant relationship between fertilization rates and embryo viability. This finding suggests that fertilization rates should not be inferred from hatching rates, which is commonly practiced in species in which it is not possible to estimate fertilization at conception. Finally, we detected significant additive genetic variance due to sires in rates of juvenile metamorphosis, and a positive correlation between fertilization rates and metamorphosis. This latter finding indicates that the performance of a male's ejaculate in noncompetitive IVF trials predicts heritable offspring traits, although the fitness implications of variance in rates of spontaneous juvenile metamorphosis have yet to be determined.  相似文献   

10.
Very few studies have examined parent-offspring interactions from a quantitative genetic perspective. We used a cross-fostering design and measured genetic correlations and components of social selection arising from two parental and two offspring behaviors in the burying beetle Nicrophorus vespilloides. Genetic correlations were assessed by examining behavior of relatives independent of common social influences. We found positive genetic correlations between all pairs of behaviors, including between parent and offspring behaviors. Patterns of selection were assessed by standardized performance and selection gradients. Parental provisioning had positive effects on offspring performance and fitness, while remaining near the larvae without feeding them had negative effects. Begging had positive effects on offspring performance and fitness, while increased competition among siblings had negative effects. Coadaptations between parenting and offspring behavior appear to be maintained by genetic correlations and functional trade-offs; parents that feed their offspring more also spend more time in the area where they can forage for themselves. Families with high levels of begging have high levels of sibling competition. Integrating information from genetics and selection thus provides a general explanation for why variation persists in seemingly beneficial traits expressed in parent-offspring interactions and illustrates why it is important to measure functionally related suites of behaviors.  相似文献   

11.
Mating between relatives generally results in reduced offspring viability or quality, suggesting that selection should favor behaviors that minimize inbreeding. However, in natural populations where searching is costly or variation among potential mates is limited, inbreeding is often common and may have important consequences for both offspring fitness and phenotypic variation. In particular, offspring morphological variation often increases with greater parental relatedness, yet the source of this variation, and thus its evolutionary significance, are poorly understood. One proposed explanation is that inbreeding influences a developing organism’s sensitivity to its environment and therefore the increased phenotypic variation observed in inbred progeny is due to greater inputs from environmental and maternal sources. Alternatively, changes in phenotypic variation with inbreeding may be due to additive genetic effects alone when heterozygotes are phenotypically intermediate to homozygotes, or effects of inbreeding depression on condition, which can itself affect sensitivity to environmental variation. Here we examine the effect of parental relatedness (as inferred from neutral genetic markers) on heritable and nonheritable components of developmental variation in a wild bird population in which mate choice is often constrained, thereby leading to inbreeding. We found greater morphological variation and distinct contributions of variance components in offspring from highly related parents: inbred offspring tended to have greater environmental and lesser additive genetic variance compared to outbred progeny. The magnitude of this difference was greatest in late-maturing traits, implicating the accumulation of environmental variation as the underlying mechanism. Further, parental relatedness influenced the effect of an important maternal trait (egg size) on offspring development. These results support the hypothesis that inbreeding leads to greater sensitivity of development to environmental variation and maternal effects, suggesting that the evolutionary response to selection will depend strongly on mate choice patterns and population structure.  相似文献   

12.
Females often prefer males with elaborate traits, even when they receive no direct benefits from their choice. In such situations, mate discrimination presumably has genetic advantages; selective females will produce offspring of higher genetic quality. Over time, persistent female preferences for elaborate secondary-sexual traits in males should erode genetic variance in these traits, eventually eliminating any benefit to the preferences. Yet, strong female preferences persist in many taxa. This puzzle is called the lek paradox and raises two primary questions: do females obtain genetic benefits for offspring by selecting males with elaborate secondary-sexual characteristics and, if so, how is the genetic variation in these male traits maintained? We suggest that indirect genetic effects may help to resolve the lek paradox. Maternal phenotypes, such as habitat selection behaviours and offspring provisioning, often influence the condition and the expression of secondary-sexual traits in sons. These maternal influences are commonly genetic based (i.e. they are indirect genetic effects). Females choosing mates with elaborate traits may receive ‘good genes’ for daughters in the form of effective maternal characteristics. Recognizing the significance of indirect genetic effects may be important to our understanding of the process and consequences of sexual selection.  相似文献   

13.
Theory suggests that multiple mating by females can evolve as a mechanism for acquiring compatible genes that promote offspring fitness. Genetic compatibility models predict that differences in fitness among offspring arise from interactions between male and female haplotypes. Using a cross-classified breeding design and in vitro fertilization, we raised families of maternal and paternal half-siblings of the frog Crinia georgiana, a species with a polyandrous breeding system and external fertilization. After controlling for variation in maternal provisioning, we found significant effects of interacting parental haplotypes on fertilization success, and nonadditive genetic effects on measures of offspring fitness such as embryo survival, and survival to, size at, and time to metamorphosis. Additive genetic variation due to males and females was negligible, and not statistically significant for any of the fitness traits measured. Combinations of parental haplotypes that resulted in high rates of fertilization produced offspring with higher embryo survival and rapid juvenile development. We suggest that a gamete recognition mechanism for selective fertilization by compatible sperm may promote offspring fitness in this system.  相似文献   

14.
Chen J  Lin D  Hochner H 《Biometrics》2012,68(3):869-877
Summary Case-control mother-child pair design represents a unique advantage for dissecting genetic susceptibility of complex traits because it allows the assessment of both maternal and offspring genetic compositions. This design has been widely adopted in studies of obstetric complications and neonatal outcomes. In this work, we developed an efficient statistical method for evaluating joint genetic and environmental effects on a binary phenotype. Using a logistic regression model to describe the relationship between the phenotype and maternal and offspring genetic and environmental risk factors, we developed a semiparametric maximum likelihood method for the estimation of odds ratio association parameters. Our method is novel because it exploits two unique features of the study data for the parameter estimation. First, the correlation between maternal and offspring SNP genotypes can be specified under the assumptions of random mating, Hardy-Weinberg equilibrium, and Mendelian inheritance. Second, environmental exposures are often not affected by offspring genes conditional on maternal genes. Our method yields more efficient estimates compared with the standard prospective method for fitting logistic regression models to case-control data. We demonstrated the performance of our method through extensive simulation studies and the analysis of data from the Jerusalem Perinatal Study.  相似文献   

15.
Genetic variation in fitness is required for the adaptive evolution of any trait but natural selection is thought to erode genetic variance in fitness. This paradox has motivated the search for mechanisms that might maintain a population''s adaptive potential. Mothers make many contributions to the attributes of their developing offspring and these maternal effects can influence responses to natural selection if maternal effects are themselves heritable. Maternal genetic effects (MGEs) on fitness might, therefore, represent an underappreciated source of adaptive potential in wild populations. Here we used two decades of data from a pedigreed wild population of North American red squirrels to show that MGEs on offspring fitness increased the population''s evolvability by over two orders of magnitude relative to expectations from direct genetic effects alone. MGEs are predicted to maintain more variation than direct genetic effects in the face of selection, but we also found evidence of maternal effect trade-offs. Mothers that raised high-fitness offspring in one environment raised low-fitness offspring in another environment. Such a fitness trade-off is expected to maintain maternal genetic variation in fitness, which provided additional capacity for adaptive evolution beyond that provided by direct genetic effects on fitness.  相似文献   

16.
In natural populations, mating between relatives can have important fitness consequences due to the negative effects of reduced heterozygosity. Parental level of inbreeding or heterozygosity has been also found to influence the performance of offspring, via direct and indirect parental effects that are independent of the progeny own level of genetic diversity. In this study, we first analysed the effects of parental heterozygosity and relatedness (i.e. an estimate of offspring genetic diversity) on four traits related to offspring viability in great tits (Parus major) using 15 microsatellite markers. Second, we tested whether significant heterozygosity–fitness correlations (HFCs) were due to ‘local’ (i.e. linkage to genes influencing fitness) and/or ‘general’ (genome‐wide heterozygosity) effects. We found a significant negative relationship between parental genetic relatedness and hatching success, and maternal heterozygosity was positively associated with offspring body size. The characteristics of the studied populations (recent admixture, polygynous matings) together with the fact that we found evidence for identity disequilibrium across our set of neutral markers suggest that HFCs may have resulted from genome‐wide inbreeding depression. However, one locus (Ase18) had disproportionately large effects on the observed HFCs: heterozygosity at this locus had significant positive effects on hatching success and offspring size. It suggests that this marker may lie near to a functional locus under selection (i.e. a local effect) or, alternatively, heterozygosity at this locus might be correlated to heterozygosity across the genome due to the extensive ID found in our populations (i.e. a general effect). Collectively, our results lend support to both the general and local effect hypotheses and reinforce the view that HFCs lie on a continuum from inbreeding depression to those strictly due to linkage between marker loci and genes under selection.  相似文献   

17.
Variability in demographic traits between individuals within populations has profound implications for both evolutionary processes and population dynamics. Parental effects as a source of non-genetic inheritance are important processes to consider to understand the causes of individual variation. In iteroparous species, parental age is known to influence strongly reproductive success and offspring quality, but consequences on an offspring fitness component after independence are much less studied. Based on 37 years longitudinal monitoring of a long-lived seabird, the wandering albatross, we investigate delayed effects of parental age on offspring fitness components. We provide evidence that parental age influences offspring performance beyond the age of independence. By distinguishing maternal and paternal age effects, we demonstrate that paternal age, but not maternal age, impacts negatively post-fledging offspring performance.  相似文献   

18.
Summary Because seed size is often associated with survival and reproduction in plant populations, genetic variation for seed size may be reduced or eliminated by natural selection. To test this hypothesis we assessed genetic sources of variation in seed size in a population ofPhlox drummondii to determine whether genetic differences among seeds influence the size they attain. A diallel cross among 12 plants from a population at Bastrop, Texas, USA allowed us to partition variance in the mass of seeds among several genetic and parental effects. We found no evidence of additive genetic variance or dominance genetic variance for seed mass in the contribution of plants to their offspring. Extranuclear maternal effects accounted for 56% of the variance in seed mass. A small interaction was observed between seed genotype and maternal plant. Results of this study support theory that predicts little genetic variation for traits associated with fitness.  相似文献   

19.
Recent studies in plant populations have found that environmental heterogeneity and phenotypic selection vary at local spatial scales. In this study, I ask if there is evolutionary change in response to environmental heterogeneity and, if so, whether the response occurs for characters or character plasticities. I used vegetative clones of Mimulus guttatus to create replicate populations of 75 genotypes. These populations were planted into the natural habitat where they differed in mean growth, flowering phenology, and life span. This phenotypic variation was used to define selective environments. There was variation in fitness (flower production) among genotypes across all planting sites and in genotype response to the selective environment. Offspring from each site were grown in the greenhouse in two water treatments. Because each population initially had the same genetic composition, variation in the progeny between selective environments reveals either evolutionary change in response to environmental heterogeneity or environmental maternal effects. Plants from experimental sites that flowered earlier, had shorter life spans and were less productive, produced offspring that had more flowers, on average, and were less plastic in vegetative allocation than offspring of longer-lived plants from high-productivity areas. However, environmental maternal effects masked phenotypic differences in flower production. Therefore, although there was evidence of genetic differentiation in both life-history characters and their plasticities in response to small-scale environmental heterogeneity, environmental maternal effects may slow evolutionary change. Response to local-scale selective regimes suggests that environmental heterogeneity and local variation in phenotypic selection may act to maintain genetic variation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号