首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Equal transmission of the two alleles at a locus from a heterozygote parent to the offspring is rarely violated. Beside the differential embryonic mortality, nondisjunction and gene conversion that are rather irregular forms of transmission-ratio distortion (TRD), there are two major forms of departure from Mendelian segregation. The first, found in females, based on the asymmetric nature of female meiosis, is usually referred to as meiotic drive, and has been well documented in a few cases. The second is segregation distortion found in males. There are several known male-related segregation distortion systems that are caused by different fertilizing capacity of sperm cells carrying alternative alleles at a particular locus. Observation of TRD effects requires a sufficient number of offspring produced by a parental pair. As individuals in a population most likely have different genotypes in TRD affecting loci, the total transmission ratio is close to the expected Mendelian ratio and masks potential TRD effects. Highly inbred strains of laboratory mice provide a very good model for studying this phenomenon, because comparing two mice strains is effectively similar as comparison of two individuals in a population. This study tests both forms of TRD in progeny of F1 hybrids from reciprocal crosses of inbred mice. Three previously unknown instances of TRD in females were observed. Therefore, this study concludes that some genes in females may carry alleles that can cause segregation distortion.  相似文献   

2.
    
Huang SW  Ardlie KG  Yu HT 《Molecular ecology》2001,10(9):2349-2354
t-haplotypes are a meiotic drive system found on the 17th chromosome of the house mouse (Mus musculus). They can be found in wild populations of all four genetically differentiated subspecies. The drive phenomenon is male-specific, such that heterozygous males (+/t) show non-Mendelian transmission and transmit the t-chromosome to > 90% of their offspring. So far the most comprehensive studies on the frequencies of t-haplotypes in natural populations have been on just one of the subspecies (M. musculus domesticus). We applied molecular methods to accurately screen t-haplotypes in a large number of populations of a second subspecies (M. musculus castaneus) distributed in Taiwan. We found that the overall t-haplotype frequency is low in M. m. castaneus (0.108), and the chromosomes are patchily distributed among its populations, closely resembling the situation found in M. m. domesticus. Further, we found the frequencies of t-haplotypes in our sample did not differ in relation to the sex or age of mice. This resemblance in the frequency and distribution among populations of the two distinct subspecies suggests that similar general mechanisms might be responsible for the low frequencies in both subspecies.  相似文献   

3.
Segregation distortion genes are widespread in plants and animals and function by their effect on competition among gametes for preferential fertilization. In this study, we evaluated the segregation distortion of molecular markers in multiple reciprocal backcross populations derived from unique cytogenetic stocks involving the durum cultivar Langdon (LDN) and wild emmer accessions that allowed us to study the effects of chromosome 5B in isolation. No segregation distortion of female gametes was observed, but three populations developed to analyze segregation of male gametes had genomic regions containing markers with skewed segregation ratios. One region of distortion was due to preferential transmission of LDN alleles over wild emmer alleles through male gametes. Another region required the presence of LDN 5B chromosomes in the female for preferential fertilization by male gametes harboring LDN alleles indicating that the corresponding genes in the female gametes can govern genes affecting segregation distortion of male gametes. A third region of distortion was the result of preferential transmission of wild emmer alleles over LDN alleles through male gametes. These results indicate the existence of different distorter/meiotic drive elements among different genotypes and show that distortion factors along wheat chromosome 5B differ in chromosomal location as well as underlying mechanisms.  相似文献   

4.
    
Deviation from Mendelian inheritance expectations (transmission ratio distortion, TRD) has been observed in several species, including the mouse and humans. In this study, TRD was characterized in the turkey genome using both allelic (specific- and unspecific-parent TRD) and genotypic (additive- and dominance-TRD) parameterizations within a Bayesian framework. In this study, we evaluated TRD for 23 243 genotyped Turkeys across 56 393 autosomal SNPs. The analyses included 500 sires, 2013 dams and 11 047 offspring (trios). Three different haplotype sliding windows of 4, 10 and 20 SNPs were used across the autosomal chromosomes. Based on the genotypic parameterizations, 14 haplotypes showed additive and dominance TRD effects highlighting regions with a recessive TRD pattern. In contrast, the allelic model uncovered 12 haplotype alleles with the allelic TRD pattern which showed an underrepresentation of heterozygous offspring in addition to the absence of homozygous animals. For regions with the allelic pattern, only one particular region showed a parent-specific TRD where the penetrance was high via the dam, but low via the sire. The gene set analysis uncovered several gene ontology functional terms, Reactome pathways and several Medical Subject Headings that showed significant enrichment of genes associated with TRD. Many of these gene ontology functional terms (e.g. mitotic spindle assembly checkpoint, DRM complex and Aneuploidy), Reactome pathways (e.g. Mismatch repair) and Medical Subject Headings (e.g. Adenosine monophosphate) are known to be related to fertility, embryo development and lethality. The results of this study revealed potential novel candidate lethal haplotypes, functional terms and pathways that may enhance breeding programs in Turkeys through reducing mortality and improving reproduction rate.  相似文献   

5.
    
Meiotic drivers have been proposed as a potent evolutionary force underlying genetic and phenotypic variation, genome structure, and also speciation. Due to their strong selective advantage, they are expected to rapidly spread through a population despite potentially detrimental effects on organismal fitness. Once fixed, autosomal drivers are cryptic within populations and only become visible in between‐population crosses lacking the driver or corresponding suppressor. However, the assumed ubiquity of meiotic drivers has rarely been assessed in crosses between populations or species. Here we test for meiotic drive in hybrid embryos and offspring of Timor and Australian zebra finches—subspecies that have evolved in isolation for about two million years—using 38,541 informative transmissions of 56 markers linked to either centromeres or distal chromosome ends. We did not find evidence for meiotic driver loci on specific chromosomes. However, we observed a weak overall transmission bias toward Timor alleles at centromeres in females (transmission probability of Australian alleles of 47%, nominal p = 6 × 10–5). While this is in line with the centromere drive theory, it goes against the expectation that the subspecies with the larger effective population size (i.e., the Australian zebra finch) should have evolved the more potent meiotic drivers. We thus caution against interpreting our finding as definite evidence for centromeric drive. Yet, weak centromeric meiotic drivers may be more common than generally anticipated and we encourage further studies that are designed to detect also small effect meiotic drivers.  相似文献   

6.
    
Meiotic drive is an evolutionary force in which natural selection is uncoupled from organismal fitness. Recently, it has been proposed that meiotic drive and genetic drift represent major forces in the evolution of the mammalian karyotype. Meiotic drive involves two types of genetic elements, Responders and Distorters , the latter being required to induce transmission ratio distortion at the former. We have previously described the Om meiotic drive system in mouse chromosome 11. To investigate the natural history of this drive system we have characterized the alleles present at the distorter in wild-derived inbred strains. Our analysis of transmission of maternal alleles in both classical and wild-derived inbred strains indicated that driving alleles are found at high frequency in natural populations and that the existence of driving alleles predates the split between the Mus spicilegus and M. musculus lineages.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 487–492.  相似文献   

7.
    
Most discussions of ‘sperm competition’ have ignored the potential for competition among the different sperm genotypes present in the ejaculate of a single male. Rivalry within ejaculates may limit cooperation among the members of an ejaculate when they compete with sperm produced by other males. A gene that gains an advantage in competition within an ejaculate (a segregation distorter) may increase in frequency even if it is associated with significant costs to organismal fitness. Therefore, selection will favor genes expressed in males that suppress competition within ejaculates. This may explain why sperm function is largely controlled by the diploid genotype of the male progenitor, rather than by the genotypes of individual haploid sperm. Females who mate with multiple males reduce the relative advantage of a segregation distorter whenever the distorter impairs the competitive effectiveness of the ejaculates in which it occurs. If the distorter is associated with costs to organismal fitness, selection will favor female mating behavior that reduces the distorter's equilibrium frequency. Competition within ejaculates may thus be one reason why females choose to mate with multiple males.  相似文献   

8.
A sex-ratio distortion factor was found at high frequency in D. simulans strains from Seychelles and New Caledonia. This factor is poorly or not expressed within those strains which are resistant to it. Its presence was detected by crossing females from New Caledonia or the Seychelles with males from a different geographic origin. Most of the F1 males obtained produced an excess of females (up to 99%) in their progeny. The two strains are infected with Wolbachia, but these micro-organisms are not involved in the sex-ratio distortion. The sex-ratio factor is shown to be an X-linked meiotic driver; nuclear resistance factor(s) act by suppressing the drive. It is likely that the same X-located driver invaded the two populations, which subsequently developed resistance factor(s) against it.  相似文献   

9.
    
Transmission Ratio Distortion (TRD), the uneven transmission of an allele from a parent to its offspring, can be caused by allelic differences affecting gametogenesis, fertilization or embryogenesis. However, TRD remains vaguely studied at a genomic scale. We sequenced the diploid and haploid genomes of three boars from leukocytes and spermatozoa at 50x to shed light into the genetic basis of spermatogenesis-caused Allelic Ratio Distortion (ARD). We first developed a Binomial model to identify ARD by simultaneously analysing all three males. This led to the identification of 55 ARD SNPs, most of which were animal-specific. We then evaluated ARD individually within each pig by a Fisher’s exact test and identified two shared genes (TOP3A and UNC5B) and four shared genomic regions harbouring distinct ARD SNPs in the three boars. The shared genomic regions contained candidate genes with functions related to spermatogenesis including AK7, ARID4B, BDKRB2, GSK3B, NID1, NSMCE1, PALB2, VRK1 and ZC3H13. Using the Fisher’s test, we also identified 378 genes containing variants with protein damaging potential in at least one boar, a high proportion of which, including FAM120B, TDRD15, JAM2 or AOX4 among others, are associated to spermatogenesis. Overall, our results show that sperm is subjected to ARD with variants associated to a wide variety of genes involved in different stages of spermatogenesis.  相似文献   

10.
Transmission ratio distortion (TRD), in which one allele is transmitted more frequently than the opposite allele, is presumed to act as a driving force in the emergence of a reproductive barrier. TRD acting in a sex-specific manner has been frequently observed in interspecific and intraspecific hybrids across a broad range of organisms. In contrast, sex-independent TRD (siTRD), which results from preferential transmission of one of the two alleles in the heterozygote through both sexes, has been detected in only a few plant species. We previously reported an S(6) locus-mediated siTRD, in which the S(6) allele from an Asian wild rice strain (Oryza rufipogon) was transmitted more frequently than the S(6)(a) allele from an Asian cultivated rice strain (O. sativa) through both male and female gametes in heterozygous plants. Here, we report on the effect of a difference in genetic background on S(6) locus-mediated siTRD, based on the analysis using near-isogenic lines and the original wild strain as a parental strain for crossing. We found that the degree of TRD through the male gametes varied depending on the genetic background of the female (pistil) plants. Despite the occurrence of TRD through both male and female gametes, abnormality was detected in ovules, but not in pollen grains, in the heterozygote. These results suggest the involvement of unlinked modifiers and developmentally distinct, sex-specific genetic mechanisms in S(6) locus-mediated siTRD, raising the possibility that siTRD driven by a single locus may be affected by multiple genetic factors harbored in natural populations.  相似文献   

11.
    
By means of population genetical models, we investigate the competition between sex-specific segregation distorters. Although the models are quite general, they are motivated by a specific example, the t complex of the house mouse. Some variants at this gene complex, the t haplotypes, distort Mendelian segregation in heterozygous males in their favor. The selective advantage at the gamete level is counterbalanced by strong negative fitness effects at the individual level (male sterility or even lethality in both sexes). A plethora of different t haplotypes has been found, both in the field and in the lab. Up to now, however, models have focused on the equilibrium frequency of a single t haplotype. In contrast, we explicitly model the competition between several t haplotypes. A deterministic model for a large, well-mixed population predicts a surprisingly high degree of polymorphism. Haplotypes with seemingly inferior fitness characteristics may easily coexist with “superior” haplotypes. For instance, a lethal haplotype with a low segregation ratio may stably coexist with a sterile haplotype with a high segregation ratio. Stable coexistence is even possible for haplotypes with a segregation disadvantage. A simple stochastic model shows that the same principles apply in the context of a structured metapopulation. Although counterintuitive at first sight, all our results can be explained by the fact that segregation distorters have an inherent advantage when they are rare. We conclude that fitness comparisons are not sufficient to predict the outcome of competition when selective forces are acting at different levels.  相似文献   

12.
Mouse chimaeras produced by aggregation of embryos heterozygous for two different recessive mutations at the T/t complex have been analyzed by breeding to explore the basis for the phenomena of male transmission ratio distortion and sterility associated with these genes. Whereas males of genotype tw2/tw5 are always sterile, male chimaeras of the type +/tw2 ? +/tw5 are normally fertile; furthermore, they transmit each t mutation to the same very high extent seen in ordinary (+/t) heterozygotes. Since spermatogenic cells derived from either the +/tw2 and +/tw5 genotypes thus function quite independently of one another in mosaic testes, it can be concluded that sterility, and presumably distorted transmission ratio as well, depends on specific interactions between T/t alleles in diploid spermatogenic cells or their individual meiotic descendants.  相似文献   

13.
    
In wild house mice, genes linked to the t transmission distortion complex cause meiotic drive by sabotaging wild-type gametes. The t complex is consequently inherited at frequencies higher than 90%. Yet, for unclear reasons, in wild mouse populations this selfish DNA is found at frequencies much lower than expected. Here, we examine selection on the t complex in 10 seminatural populations of wild mice based on data from 234 founders and nearly 2000 progeny. Eight of the 10 populations decreased in t frequency over one generation, and the overall frequency of t haplotypes across all 10 populations was 48.5% below expectations based on transmission distortion and 34.3% below Mendelian (or Hardy-Weinberg) expectations. Behavioral and reproductive data were collected for 10 months for each population, and microsatellite genotyping was performed on seven of the populations to determine parentage. These combined data show t-associated fitness declines in both males and females. This is the first study to show evidence for a reduction in the ability of +/t males to maintain territories. Because females tend to mate with dominant males, impairment of territorial success can explain much of the selection against t observed in our populations. In nature, selection against heterozygote carriers of the t complex helps solve the puzzlingly low t frequencies found in wild populations. This ecological approach for determining fitness consequences of genetic variants has broad application for the discovery of gene function in general.  相似文献   

14.
    
Earlier we showed that Sperm adhesion molecule1 (Spam1), the best studied sperm hyaluronidase, is involved in the sperm dysfunction associated with Robertsonian translocations (Rb). The dysfunction results in reduced fertility in mice homozygous for the Rb(6.16) or the Rb(6.15) translocation and transmission ratio distortion (TRD) in heterozygous males. This conclusion was based on the finding that Spam1 in the Rbs harbors multiple point mutations and a genomic alteration at the locus [in the case of Rb(6.16)]; and is accompanied by reduced steady-state levels of the RNA and protein. Here we show that closely linked family members in the hyaluronidase gene cluster on mouse chromosome 6, Hyalp1 and Hyal5, also harbor point mutations in these Rbs, leading to nonconservative substitutions in both the encoded proteins. To test if Spam1 by itself is capable of producing TRD we analyzed the transmission of wild-type and null alleles of the gene in the progeny of carriers and show that there is no significant TRD. This lack of TRD in null carriers argues for only a contributory role of Spam1 in the TRD seen in the Rb-bearing mice, and supports the involvement of Hyalp1 and/or Hyal5 in the sperm dysfunction and the resulting TRD. It is proposed that the clustering of point mutations in all three genes results from the cumulative effect of spontaneous mutations that do not disperse in the population due to suppression of recombination that occurs at Rb junctions.  相似文献   

15.
    
The two parental alleles at a specific locus are usually inherited with equal probability to the offspring. However, at least three processes can lead to an apparent departure from fair segregation: early viability selection, biased gene conversion and various kinds of segregation distortion. Here, we conduct a genome‐wide scan for transmission distortion in a captive population of zebra finches (Taeniopygia guttata) using 1302 single‐nucleotide polymorphisms (SNPs) followed by confirmatory analyses on independent samples from the same population. In the initial genome‐wide scan, we found significant distortion at three linked loci on chromosome Tgu2 and we were able to replicate this finding in each of two follow‐up data sets [overall transmission ratio = 0.567 (95% CI = 0.536–0.600), based on 1101 informative meioses]. Although the driving allele was preferentially transmitted by both heterozygous females [ratio = 0.560 (95% CI = 0.519–0.603)] and heterozygous males [ratio = 0.575 (95% CI = 0.531–0.623)], we could rule out postzygotic viability selection and biased gene conversion as possible mechanisms. Early postzygotic viability selection is unlikely, because it would result in eggs with no visible embryo and hence no opportunity for genotyping, and we confirmed that both females and males heterozygous for the driving allele did not produce a larger proportion of such eggs than homozygous birds. Biased gene conversion is expected to be rather localized, while we could trace transmission distortion in haplotypes of several megabases in a recombination desert. Thus, we here report the rare case of a prezygotically active transmission distorter operating equally effectively in female and male meioses.  相似文献   

16.
We investigated the prevalence, transmission mode and fitness effects of infections by obligatory intracellular, microsporidian parasites in the freshwater amphipod Gammarus roeseli. We found three different microsporidia species in this host, all using transovarial (vertical) transmission. All three coexist at different prevalences in two host populations, but bi-infected individuals were rarely found, suggesting no (or very little) horizontal transmission. It is predicted that vertically-transmitted parasites may exhibit sex-specific virulence in their hosts, or they may have either positive or neutral effects on host fitness. All three species differed in their transmission efficiency and infection intensity and our data suggest that these microsporidia exert sex-specific virulence by feminising male hosts. The patterns of infection we found exhibit convergent evolution with those of another amphipod host, Gammarus duebeni. Interestingly, we found that infected females breed earlier in the reproductive season than uninfected females. This is the first study, to our knowledge, to report a positive effect of microsporidian infection on female host reproduction.  相似文献   

17.
In the present study, we analysed different Podospora anserina strains for their ability to induce spore killing and identified three new killer strains. Test crosses of killer strains with different sensitive strains revealed different second division segregation ratios suggesting an influence of the sensitive strain on the crossing-over frequency. In crosses of killer strain O with a sensitive strain, the frequency of two-spored asci was found to vary extremely from perithecium to perithecium. Furthermore, crosses of strain O with sensitive strain Us5 led to a significant proportion of asci containing an unexpected high number of surviving spores as the result of gene conversion. Finally, for the first time, we present data demonstrating that in a number of ascospores the killer and the corresponding sensitive allele is located in one individual nucleus. Mycelia derived from such ascospores display a "sensitive killer" phenotype. Crosses of these mycelia with a killer strain as well as with a sensitive strain result in spore killing. Strikingly, heterokaryotic spores containing the recombined "sensitive/killer" allele and a nucleus with a killer allele give rise to mycelia protected against spore killing during selfing.  相似文献   

18.
    
Theory predicts that males adapt to sperm competition by increasing their investment in testis mass to transfer larger ejaculates. Experimental and comparative data support this prediction. Nevertheless, the relative importance of sperm competition in testis size evolution remains elusive, because experiments vary only sperm competition whereas comparative approaches confound it with other variables, in particular male mating rate. We addressed the relative importance of sperm competition and male mating rate by taking an experimental evolution approach. We subjected populations of Drosophila melanogaster to sex ratios of 1:1, 4:1, and 10:1 (female:male). Female bias decreased sperm competition but increased male mating rate and sperm depletion. After 28 generations of evolution, males from the 10:1 treatment had larger testes than males from other treatments. Thus, testis size evolved in response to mating rate and sperm depletion, not sperm competition. Furthermore, our experiment demonstrated that drift associated with sex ratio distortion limits adaptation; testis size only evolved in populations in which the effect of sex ratio bias on the effective population size had been compensated by increasing the numerical size. We discuss these results with respect to reproductive evolution, genetic drift in natural and experimental populations, and consequences of natural sex ratio distortion.  相似文献   

19.
We review our studies of mate choice with two MHC‐congenic strains of mice. This work was stimulated by findings from Yamazaki and colleagues showing that male mice exhibited mate preferences for females whose MHC‐haplotype was different from their own, while female mice exhibited either no preference or a weak preference for males of a particular MHC‐haplotype (see Beauchamp et al., 1988). Since these findings were unexpected (mate choice theory predicts that females will be more selective than males), we studied the preferences of mice from two additional MHC‐congenic strains to assess the generality of the previous findings. Specifically, the goals of our research were: (1) to determine the mate preferences of congenic mice with MHC‐haplotypes derived from wild populations, (2) to compare the mate preferences of male and female mice in a test situation where each sex has a clear opportunity to make a choice, and (3) to estimate effects of cross‐fostering on each sex. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Hybrid incompatibilities, measured as mortality and sterility, are caused by the disruption of gene interactions. They are important post-zygotic isolation barriers to species hybridization, and much effort is put into the discovery of the genes underlying these incompatibilities. In hybridization studies of the haplodiploid parasitic wasp genus Nasonia, genic incompatibilities have been shown to affect mortality and sterility. The genomic regions associated with mortality have been found to depend on the cytotype of the hybrids and thus suggest cytonuclear incompatibilities. As environmental conditions can affect gene expression and gene interaction, we here investigate the effect of developmental temperature on sterility and mortality in Nasonia hybrids. Results show that extreme temperatures strongly affect both hybrid sterility (mainly spermatogenic failure) and mortality. Molecular mapping revealed that extreme temperatures increase transmission ratio distortion of parental alleles at incompatible loci, and thus, cryptic incompatible loci surface under temperature stress that remain undiscovered under standard temperatures. Our results underline the sensitivity of hybrid incompatibilities to environmental factors and the effects of unstable epistasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号