首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosidases in mucin-dwelling protozoans   总被引:1,自引:0,他引:1  
A range of protozoans were tested for the presence of glycosidases using p-nitrophenyl sugars as substrates. Some of the organisms were mucin dwellers whereas others were blood borne parasites. It had been hypothesized that glycosidase production would be significantly higher in the mucin dwellers. The results obtained demonstrated that the urogenital protozoans Tritrichomonas foetus and Trichomonas vaginalis produced a vast range of glycosidases which included those required for mucin breakdown. The gut dwelling protozoans Giardia lamblia and Entamoeba histolytica both produced β-N-acetylglucosaminidase. G.lamblia also had detectable β N-acetylgalactosaminidase activity, and small amounts of β mannosidase were found in the extracts from E. histolytica. In contrast, little or no glycosidase activity was detected under the same experimental conditions in Leishmania donovani, Trypanosoma brucei or T. cruzi. The mucin dwelling protozoans all produce β-N-acetylglucosaminidase but only the Trichomonads produced the range of enzymes required for complete breakdown of mucin. This seems to suggest that mucin breakdown is not a characteristic of all mucin dwelling protozoans. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
Some glycosidases in light-grown cucumber (Cucumis sativus L. cv. Aonaga-jibae) hypocotyl sections were examined with respect to their localization and relation to endogenous and IAA-induced growth. Frozen-thawed sections were used directly for measurement of enzyme activities, and β-glucosidase, α- and β-galactosidases and β-xylosidase were assayed by using p- or o-nitro-phenylglycopyranosides as substrates. The order of the activity of these enzymes were β -glucosidase > β -galactosidase =α-galactosidase > β-xylosidase. No activity of α-glucosidase was detected. High glycosidase activities were found in the youngest region of the hypocotyl, where the endogenous growth rate was highest. However, there was no significant difference in the activities of this region between seedlings at different growth stages. Among the enzymes tested, β -glucosidase showed a high correlation with the endogenous growth rate. β-glucosidase was found to be mostly associated with the cell wall fraction, while β-galactosidase was rather found in the soluble fraction of the cell. Separation of the epidermis from the section showed that a very high activity of β-glucosidase was associated with the epidermis. In both whole sections and isolated cell wall fractions, IAA was shown to have no effect on the activities of β-glucosidase and β-galactosidase.  相似文献   

3.
Mucin is a glycoprotein that is the primary component of the mucus overlaying the epithelial tissues. Because mucin functions as a first line of the innate immune system, Pseudomonas aeruginosa appears to require interaction with mucin to establish infection in the host. However, the interactions between P. aeruginosa and mucin have been poorly understood. In this study, using in vivo expression technology (IVET), we attempted to identify mucin-inducible promoters that are likely to be involved in the establishment of P. aeruginosa infection. The IVET analysis revealed that the genes encoding glycosidases, sulfatases, and peptidases that are thought to be required for the utilization of mucin as a nutrient are present in 13 genes downstream of the identified promoters. Our results indicated that, among them, sdsA1 encoding a secreted sulfatase plays a central role in the degradation of mucin. It was then demonstrated that disruption of sdsA1 leads to a decreased release of sulfate from mucin and sulfated sugars. Furthermore, the sdsA1 mutant showed a reduction in the ability of mucin gel penetration and an attenuation of virulence in leukopenic mice compared with the wild-type strain. Collectively, these results suggest that SdsA1 plays an important role as a virulence factor of P. aeruginosa.  相似文献   

4.
Many disorders are characterised by changes in O-glycosylation, but analysis of O-glycosylation has been limited by the availability of specific endo- and exo-glycosidases. As a result chemical methods are employed. However, these may give rise to glycan degradation, so therefore novel O-glycosidases are needed. Artificial substrates do not always identify every glycosidase activity present in an extract. To overcome this, an HPLC-based protocol for glycosidase identification from microbial culture was developed using natural O-glycans and O-glycosylated glycoproteins (porcine stomach mucin and fetuin) as substrates. O-glycans were released by ammonia-based β-elimination for use as substrates, and the bacterial culture supernatants were subjected to ultrafiltration to separate the proteins from glycans and low molecular size molecules. Two bacterial cultures, the psychrotroph Arthrobacter C1-1 and a Corynebacterium isolate, were examined as potential sources of novel glycosidases. Arthrobacter C1-1 culture contained a β-galactosidase and N-acetyl-β-glucosaminidase when assayed using 4-methylumbelliferyl substrates, but when defucosylated O-glycans from porcine stomach mucin were used as substrate, the extract did not cleave β-linked galactose or N-acetylglucosamine. Sialidase activity was identified in Corynebacterium culture supernatant, which hydrolysed sialic acid from fetuin glycans. When both culture supernatants were assayed using the glycoproteins as substrate, neither contained endoglycosidase activity. This method may be applied to investigate a microbial or other extract for glycosidase activity, and has potential for scale-up on high-throughput platforms.  相似文献   

5.
Post-translational modifications (PTMs) of proteins play important roles in the physiology of eukaryotes. In the PTMs, non-reversible glycosylations are classified as N-glycosylations and O-glycosylations, and are catalyzed by various glycosidases and glycosyltransferases. However, β-glycosidases are not known to play a role in N- and O-glycan processing, although both glycans provide partial structures as substrates for β-galactosidase and β-N-acetylglucosaminidase in the Golgi apparatus of human cells. We explored human Golgi β-galactosidase using fluorescent substrates based on a quinone methide cleavage (QMC) substrate design platform that was previously developed to image exo-type glycosidases in living cells. As a result, we discovered a novel Golgi β-galactosidase in human cells. It is possible to predict a novel and important function in glycan processing of this β-galactosidase, because various β-galactosyl linkages in N- and O-glycans exist in Golgi apparatus. In addition, these results show that the QMC platform is excellent for imaging exo-type glycosidases.  相似文献   

6.
We investigated the presence of enzymes on the surface of Drosophila melanogaster spermatozoa that might bind to the carbohydrate residues of the egg shell. Spectrophotometric and fluorimetric studies were used on whole spermatozoa to assay galactosyltransferase and glycosidase activities. No galactosyltransferase is present on the sperm surface, whereas two glycosidases, β-N-acetylglucosaminidase (GlcNAc′ase) and α-mannosidase (Man′ase), have been evidenced. They have an optimal pH of 6–6.5 and 4, respectively. The same glycosidases were detected as soluble forms probably secreted by the seminal vesicle epithelium. We suggest that these enzymes might be involved in the recognition of α-mannose and β-N-acetylglucosamine residues present on the egg shell at the site of sperm entry. Mol. Reprod. Dev. 48:276–281, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
8.
For the investigation of glycosidases, and for the construction of glycan arrays the p-nitrophenyl- and p-aminophenyl glycosides of mucin O-glycan core structures 1–7 and the 2,6-ST-antigen have been chemically synthesized using d-galactose as a precursor for GalNAc residues. GlcNAc residues have partly been introduced using a 4,6-di-O-benzoyl-2,3-N,O-oxazolidinone-protected donor, which allowed deprotection of the formed di- and tri-saccharides in one step using sodium methoxide.  相似文献   

9.
The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 Å. The high intense d-spacing signal at 4.22 Å is attributed to the antiparallel β-sheet structure identified in the fraction of the homology modeled mucin molecule (amino acid residues 800–980) using Nidogen–Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 Å reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.  相似文献   

10.
The crude phlorotannins from the brown alga Eisenia bicyclis showed inhibitory activity against 10 of 13 kinds of glycosidases present in the viscera of the turban shell Turbo cornutus. Phloroglucinol and its oligomers – eckol (a trimer), phlorofucofuroeckol A (a pentamer), dieckol and 8,8′-bieckol (hexamers), and an unidentified tetramer – were isolated from the crude phlorotannins by column and thin-layer chromatography. Phlorofucofuroeckol A, dieckol and 8,8′-bieckol inhibited α-fucosidase, β-galactosidase and β-mannosidase partially purified from T. cornutus, while phloroglucinol, eckol and the unidentified tetramer were weakly active. Dieckol was a competitive inhibitor of α-fucosidase with an inhibition constant (K i) of 0.12?mM. The amounts of phlorotannins released after the immersion of freshly collected E. bicyclis in seawater or deionized water were estimated by high-performance liquid chromatography. Nearly all the phlorotannins were exuded into the medium following the death of the algae, whereas no phlorotannins were detected in the medium of living algae. These findings indicate that the phlorotannins deter the feeding of marine herbivorous gastropods by inhibiting the glycosidases.  相似文献   

11.
Bacteroides thetaiotaomicron NCTC 10582 grown in media containing pig gastric mucin was found to be capable of producing all the glycosidases required to degrade the carbohydrate moieties of human colonic mucin. These are α-fucosidase, β -galactosidase, α- N -acetylgalactosaminidase, β-N -acetylglucosaminidase and neuraminidase. Moreover, a novel glycosulphatase was identified using glucose-6-sulphate as substrate. This enzyme has a Km of 43·4 mmol/l and a pH optimum of 5·0. The bacteria, when cultured for 24 h in broth, were capable of removing 18% of [35S]-sulphate from [35S]-labelled mucin and of removing 15% of [3H]-glucosamine from [3H]-glucosamine-labelled human colonic mucin. The results suggest that this bacterium is likely to play an important role in mucus degradation in the human colon.  相似文献   

12.
An extract of glycosidic enzymes from young rat brain was immobilized to cyanogen bromide-activated Sepharose 4B. Most glycosidases retained approximately 10-25% of their activities after immobilization. Immobilized β-galactosidases were used repeatedly without detectable loss of enzyme activity in the hydrolysis of p-nitrophenyl-β-d -galactopyranoside. In addition to the synthetic substrate, the immobilized rat brain β-galactosidases could also hydrolyze galactose from lactose, galactosylcerebroside, asialofetuin, and GM1-ganglioside. The hydrolysis of GM1- to GM2-ganglioside was confirmed on TLC.  相似文献   

13.
ABSTRACT. Extracts of the pathogenic ameba Naegleria fowleri, prepared by freeze-thawing and sonication, were analyzed for their content of various hydrolytic enzymes that have acid pH optima. The organism is rich in acid phosphatase activity as well as a variety of glycosidases which include β-glucosidase, β-galactosidase, β-fucosidase, α-mannosidase, hexosaminidase, arylsulfatase A, and β-glucuronidase. The crude extract contained only negligible levels of sphingomyelinase, neuraminidase, or arylsulfatase B. All of the hydrolases exhibited higher activity at pH 5.5 than at 7.0, indicating that they are truly “acid” hydrolases. In general, after centrifugation (100,000 g, 1 h), except for arylsulfatase B, more than half of the activity of each of the various hydrolases was recovered in the supernatant fraction. The acid phosphatase in the high-speed supernatant was purified 45-fold (32% yield) by chromatography on QAE-Sephadex and Sephadex G-200 and shown to have the following properties: 1) pH optima, 5.5; 2) Km (4-methylumbelliferyl phosphate), 0.60 mM; 3) molecular weight (estimated by gel filtration chromatography), 92,000; 4) inhibited by heteropolymolybdate complexes but not by L(+) sodium tartrate (0.5 mM) or sodium fluoride (0.5 mM). In addition, unlike the tartrate-resistant acid phosphatase of Leishmania donovani, the major acid phosphatase of N. fowleri is less than 5% as effective in inhibiting superoxide anion production by f-Met-Leu-Phe-stimulated human neutrophils. The finding of high levels of a number of acid hydrolases in Naegleria fowleri raises several questions that merit further study: Do the hydrolases perform a housekeeping function in this single cell eukaryote or do they play some role in the pathogenic process that ensues when the organism infects a suitable host?  相似文献   

14.
Iminoalditol analogues of galactofuranosides were synthesized from 1-C-(2′-oxo-propyl)-1,4-dideoxy-1,4-imino-d-galactosides and different amines by reductive amination, followed by removal of protecting groups. The activity of these compounds against galactosidases and other glycosidases was investigated. The best inhibitor against β-galactosidase (bovine liver) is a diastereomeric mixture of an iminoalditol (10h), which contains a hydrophobic hexadecyl aglycon (R = C16H33), whereas no significant inhibitory activity was observed with compounds having a hydrophilic aglycon. Surprisingly, activation of α-galactosidase (coffee bean) by 10h was also observed. Because these results were obtained from a mixture of iminoalditols, the inhibition and activation of glycosidases could result from different diastereomers.  相似文献   

15.
Glycosyl 1,2,3-triazoles with α-d-gluco, β-d-gluco, α-d-galacto, β-d-galacto and β-2-acetamido-2-deoxygluco (GlcNAc) stereochemistry were prepared by reaction of the corresponding azides with vinyl acetate under microwave irradiation. The deprotected glucosyl and galactosyl triazoles did not display inhibitory activity against the tested glycosidases at 1 mM. Of the four fungal glycosidases evaluated, GlcNAc-triazole was found to be hydrolyzed by Talaromyces flavus CCF 2686 β-N-acetylhexosaminidase. β-GlcNAc-triazole was furthermore established to act as a strong ligand of rat and human natural killer cell activating receptors.  相似文献   

16.
Several carbohydrases and glycosidases from the alimentary cancal and/or salivary glands of feeding larvae of mayetiola destructor have been identified. Pectinase activity was identified in the midgut and may be present in the salivary glands. No endocellulase activity was found in larvae; however, hemicellulase activity was detected in extract of larvae. Amylase activity was present in midguts from feeding larvae and at a low level in extract of salivary glands. Amylases detected in the midgut showed mobilities during polyacrylamide gel electrophoresis similar to the two major amylases in tissues of the insect's host plant. The possibility exists that Hessian fly larvae utilize amylases obtained from their host plant in the digestion of starch. The major glycosidases detected in the midgut lumen of larve were: α-D-glucosidase and α-D-and β-D-galactosidase. The role of these enzymes in the feeding process of Hessian fly larvae is discussed as well as their potential role in feeding damage to wheat.  相似文献   

17.
The activity and stability of a β-glycosidase (Thermus thermophilus) and two α-galactosidases (Thermotoga maritima and Bacillus stearothermophilus) were studied in different hydrophilic ionic liquid (IL)/water ratios. For the ILs used, the glycosidases showed the best stability and activity in 1,3-dimethylimidazolium methyl sulfate [MMIM][MeSO4] and 1,2,3-trimethylimidazolium methyl sulfate [TMIM][MeSO4]. A close correlation was observed between the thermostability of the enzymes and their stability in IL media. At high IL concentration (80%), a time-dependent irreversible denaturing effect was observed on glycosidases while, at lower concentration (<30%), a reversible inactivation affecting mainly the k cat was obtained. The results demonstrate that highly thermostable glycosidases are more suitable for biocatalytic reactions in water-miscible ILs.  相似文献   

18.

Introduction

Similar to matrix metalloproteinases, glycosidases also play a major role in cartilage degradation. Carbohydrate cleavage products, generated by these latter enzymes, are released from degrading cartilage during arthritis. Some of the cleavage products (such as hyaluronate oligosaccharides) have been shown to bind to Toll-like receptors and provide endogenous danger signals, while others (like N-acetyl glucosamine) are reported to have chondroprotective functions. In the current study for the first time we systematically investigated the expression of glycosidases within the joints.

Methods

Expressions of β-D-hexosaminidase, β-D-glucuronidase, hyaluronidase, sperm adhesion molecule 1 and klotho genes were measured in synovial fibroblasts and synovial membrane samples of patients with rheumatoid arthritis and osteoarthritis by real-time PCR. β-D-Glucuronidase, β-D-glucosaminidase and β-D-galactosaminidase activities were characterized using chromogenic or fluorogenic substrates. Synovial fibroblast-derived microvesicles were also tested for glycosidase activity.

Results

According to our data, β-D-hexosaminidase, β-D-glucuronidase, hyaluronidase, and klotho are expressed in the synovial membrane. Hexosaminidase is the major glycosidase expressed within the joints, and it is primarily produced by synovial fibroblasts. HexA subunit gene, one of the two genes encoding for the alpha or the beta chains of hexosaminidase, was characterized by the strongest gene expression. It was followed by the expression of HexB subunit gene and the β-D-glucuronidase gene, while the expression of hyaluronidase-1 gene and the klotho gene was rather low in both synovial fibroblasts and synovial membrane samples. Tumor growth factor-β1 profoundly downregulated glycosidase expression in both rheumatoid arthritis and osteoarthritis derived synovial fibroblasts. In addition, expression of cartilage-degrading glycosidases was moderately downregulated by proinflammatory cytokines including TNFα, IL-1β and IL-17.

Conclusions

According to our present data, glycosidases expressed by synovial membranes and synovial fibroblasts are under negative regulation by some locally expressed cytokines both in rheumatoid arthritis and osteoarthritis. This does not exclude the possibility that these enzymes may contribute significantly to cartilage degradation in both joint diseases if acting in collaboration with the differentially upregulated proteases to deplete cartilage in glycosaminoglycans.  相似文献   

19.
Certain highly purified forms of rat lysosomal glycosidases, β-glucuronidase and N-acetyl-β-d-glucosaminidase, are rapidly cleared from the circulation following intravenous infusion. Several lines of evidence are presented which indicate that the primary site of enzyme uptake is the liver. Clearance of the two enzymes was unaffected by nephrectomy, whereas it was abolished by evisceration. Tissue distribution experiments with native and [125I]β-glucuronidase indicate the liver as the major, if not exclusive, site of enzyme uptake. Experiments with the isolated perfused liver showed clearance of certain enzyme preparations but not others. Those enzymes cleared by the isolated perfused liver were likewise cleared in vivo. Liver fractionation studies following infusion of large doses of β-glucuronidase revealed a rapid, short-lived increase in microsomal β-glucuronidase and a slower but larger increase in lysosomal β-glucuronidase. The results indicate that β-glucuronidase, N-acetyl-β-d-glucosaminidase, and probably other glycosidases are rapidly incorporated into the lysosomal compartment of liver.  相似文献   

20.
汪庆兵  张建锋  陈光才  孙慧  吴灏  张颖  杨泉泉  王丽 《生态学报》2015,35(16):5364-5373
采用水培法,研究了旱柳苗在外源添加不同氮水平(贫氮、中氮、富氮、过氮)的铵态氮(NH+4-N)和硝态氮(NO-3-N)的生长、氮吸收、分配和生理响应。结果表明:一定范围氮浓度的增加能够促进旱柳苗的生长,但过量氮会抑制其生长,且NH+4-N的抑制作用大于NO-3-N;两种氮处理下,旱柳表现出对NH+4-N的吸收偏好,在同一氮水平时,旱柳各部位氮原子百分含量Atom%15N(AT%)、15N吸收量和来自氮源的N%(Ndff%)均为NH+4-N处理大于NO-3-N处理,且随着氮浓度的增加,差异增大,且在旱柳各部位的分布为根﹥茎﹥叶;2种氮素过量和不足均会对旱柳根和叶生理指标产生不同的影响,其中在过氮水平时,NH+4-N和NO-3-N处理下根系活力比对照减少了50.61%和增加了19.53%;在过氮水平时,NH+4-N处理柳树苗根总长、根表面积、根平均直径、根体积和侧根数分别对照下降了30.92%、29.48%、19.44%、27.01%和36.41%,NO-3-N处理柳树苗相应的根系形态指标分别对对照下降了1.66%、5.65%、1.49%、5.06%和25.72%。可见,高浓度NH+4-N对旱柳苗的胁迫影响大于NO-3-N,在应用于水体氮污染修复时可通过改变水体无机氮的比例,削弱其对旱柳的影响,从而提高旱柳对水体氮污染的修复效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号