首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important assumption made in most lifehistory theory is that there is a trade-off between age and size at reproduction. This trade-off may, however, disappear if growth rate varies adaptively. The fact that individuals do not always grow at the maximum rate can only be understood if high growth rates carry a cost. This study investigates the presence and nature of such costs inPararge aegeria. Five females from two populations with known differences in life history (south Sweden and Maderia) were allowed to oviposit in the laboratory and their offspring were reared in environmental chambers under conditions leading to direct development. We measured several aspects of life history, including development times, pupal and adult weights, growth rate, female fecundity, longevity and larval starvation endurance. In both populations there seemed to be genetic variation in growth rate. There was no evidence for a trade-off between age and size at pupation. As predicted, larvae with high growth rates also lost weight at a relatively higher rate during starvation. High weight-loss rates were furthermore associated with a lower probability of surviving when food became available again. This is apparently the first physiological trade-off with growth rate that has been experimentally demonstrated. In both populations there were significant differences in growth rate between the sexes, but the populations differed in which sex was growing at the highest rate. In Sweden males had higher growth rates than females, whereas the reverse was true for Madeira. These patterns most likely reflect differences in selection for protandry, in turn caused by differences in seasonality between Sweden and Madeira. Together with the finding that males had shorter average longevity than females in the Swedish, but not in the Maderiran, population, this indicates that a lower adult quality also may be a cost of high growth rate. We argue that for the understanding of life history variation it is necessary to consider not only the two dimensions of age and size, but also to take into full account the triangular nature of the relationship between size, time and growth rate.  相似文献   

2.
Age and size at maturity can have significant fitness consequences. Selection often favors early-maturing individuals because of their higher survival to maturity and greater relative contribution to population growth rate, but it may also favor delayed maturation if fitness increases with age or size at maturity. Males of several poeciliid fishes exhibit variation in age and size at maturity primarily controlled by a sex-linked gene called the P-locus. Wild-caught Phallichthys quadripunctatus males show a bimodal size distribution, which is often associated with a P-locus polymorphism in other poeciliids. We conducted two experiments to evaluate the inheritance of male age and size at maturity and the influence of social environment (presence of mature or juvenile males during development) on these traits. We specifically tested the hypothesis that male age and size at maturity in P. quadripunctatus are governed by a single Y-linked locus, and modified by the social environment. Although our results imply both a genetic and an environmental component to the dimorphism in maturation, both large and small males were able to sire both large and small sons, allowing us to reject the hypothesis that age and size at maturity in this species are controlled by a single, Y-linked locus. Our data do not conform adequately to any of the genetic mechanisms described to date for maturation polymorphism in poeciliids. We suggest alternative mechanisms that may operate in P. quadripunctatus.  相似文献   

3.
We analyzed variation in phenotypic plasticity of life history traits between two Cardamine flexuosa populations based on differences in plasticity of age and size at maturity. C. flexuosa (Cruciferae) is a facultative, vernalization-sensitive, long-day annual, and its phenology and the phenotypic expressions of many life history traits are largely controlled by photoperiod and vernalization in natural populations. We used plants from two populations which differed in their responses to chilling and photoperiod treatments. The timing of developmental processes was changed by controlling temperature and photoperiod regimes in growth chambers. Plasticity in size at maturity was analyzed as changes in a growth trajectory using two parameters, age at maturity (Δt) and growth rate (k). Both traits showed plasticity, but differences between the populations were found mostly for Δt. Distinctive differences in size at maturity of individuals in the two populations were mainly due to different amounts of plasticity in Δt. Variations in plasticity of nine other life history traits and their associations to age and size at maturity were also analyzed. Variation for eight of the traits can be described, at least in part, as a function of age and size at maturity for both populations, and most of the variation in the total number of seeds was explained by age and size at maturity. Only age at maturity had any effect on changes in resource allocation. The nine life history traits were integrated through associated character expressions with age and size at maturity. Changes in the association between a trait and age and/or size at maturity were rather conservative compared to changes in the plasticity of a trait between the two populations. Associations with age and size at maturity are mostly explicable in terms of inherent relationships in the developmental processes, and they may limit the ecological range expansion and the adaptive evolution of plasticity in C. flexuosa. The negative correlation between reproductive allocation and age at maturity can be a cost of delaying maturation in C. flexuosa.  相似文献   

4.
Rapid larval growth in insects may be selected for by rapid ephemeral phenological changes in food resources modifying the structure of phenotypic and genetic (co)variation in and among individual traits. We studied the relative effects of three processes which can modify expression of additive genetic and nongenetic variation in traits. First, natural selection tends to erode genetic variation in fitness-related traits. Second, there may be high variance even in traits closely coupled with fitness, if these traits are themselves products of variable lower level traits. Third, traits may be canalized by developmental processes which reduce phenotypic variation. Moreover, we investigated the phenotypic and genetic role played by the underlying traits in attaining simultaneously both large size and short development time. We measured phenotypic and genetic (co)variation in several pre- and post-ingestive foraging traits, growth, development rate, development time and size, together forming a hierarchical network of traits, in the larvae of a flush feeding geometrid, Epirrita autumnata. Rapid larval growth rate and high pupal mass are closely related to fitness in E. autumnata. Traits closely associated with larval growth displayed low levels of additive genetic variation, indicating that genetic variability may have been exhausted by selection for rapid growth. The body size of E. autumnata, in spite of its close correlation with fitness, exhibited a significant additive genetic variation, possiblye because caterpillar size is the outcome of many underlying heritable traits. The low level traits in the hierarchical net, number (indicating larval movements) and size of feeding bouts in leaves, relative consumption rate and efficiency of conversion of ingested food, displayed high levels of residual variation. High residual variation in consumption and physiological ability to handle leaf material resulted from their flexibility which reduced variation in growth rate, i.e. growth rate was canalized. We did not detect a trade-off between development time and final size. On the contrary, large pupal masses were attained by short larval periods, and this relationship was strongly genetically determined, suggesting that both developmental time and final size are expressions of the same developmental process (vigorous growth) and the same genes (or linkage disequilibrium).  相似文献   

5.
Despite decades of research assessing the genetic structure of natural populations, the biological meaning of low yet significant genetic divergence often remains unclear due to a lack of associated phenotypic and ecological information. At the same time, structured populations with low genetic divergence and overlapping boundaries can potentially provide excellent models to study adaptation and reproductive isolation in cases where high‐resolution genetic markers and relevant phenotypic and life history information are available. Here, we combined single nucleotide polymorphism (SNP)‐based population inference with extensive phenotypic and life history data to identify potential biological mechanisms driving fine‐scale subpopulation differentiation in Atlantic salmon (Salmo salar) from the Teno River, a major salmon river in Europe. Two sympatrically occurring subpopulations had low but significant genetic differentiation (FST = 0.018) and displayed marked differences in the distribution of life history strategies, including variation in juvenile growth rate, age at maturity and size within age classes. Large, late‐maturing individuals were virtually absent from one of the two subpopulations, and there were significant differences in juvenile growth rates and size at age after oceanic migration between individuals in the respective subpopulations. Our findings suggest that different evolutionary processes affect each subpopulation and that hybridization and subsequent selection may maintain low genetic differentiation without hindering adaptive divergence.  相似文献   

6.
A number of invertebrates show predator-induced plasticity in life-history and morphological traits that are considered adaptive. Evidence is accumulating that vertebrates may also adjust their life-history traits in response to predators; however, some of the patterns of plasticity, which appear to be an adaptive response specifically to the risk of size-selective predation, may instead result from reduced foraging in response to predator presence. Here, we describe a study of predator-induced plasticity in guppies (Poecilia reticulata). We have predicted that the plastic response to cues from a small, gape-limited, natural predator of guppies, the killlifish (Rivulus hartii), would be the opposite of that caused by reduced food intake. We have found that male guppies increased their size at maturity, both length and mass, in response to the non-lethal presence of this predator. This pattern of plasticity is the opposite of that observed in response to reduced food intake, where male guppies reduce size at maturity. The increase in size at maturity that we observed would likely reduce predation on adult male guppies by this native predator because it is gape-limited and can only eat juvenile and small adult guppies. This size advantage would be important especially because male guppies grow very little after maturity. Therefore, the pattern of plasticity that we observed is likely adaptive. In contrast, female guppies showed no significant response in size at first parturition to the experimental manipulation; however, we did find evidence suggesting that females may produce more, smaller offspring in response to cues from this predator.  相似文献   

7.
The body reserves of adult Lepidoptera are accumulated during larval development. In the Glanville fritillary butterfly, larger body size increases female fecundity, but in males fast larval development and early eclosion, rather than large body size, increase mating success and hence fitness. Larval growth rate is highly heritable, but genetic variation associated with larval development is largely unknown. By comparing the Glanville fritillary population living in the Åland Islands in northern Europe with a population in Nantaizi in China, within the source of the post‐glacial range expansion, we identified candidate genes with reduced variation in Åland, potentially affected by selection under cooler climatic conditions than in Nantaizi. We conducted an association study of larval growth traits by genotyping the extremes of phenotypic trait distributions for 23 SNPs in 10 genes. Three genes in clip‐domain serine protease family were associated with larval growth rate, development time and pupal weight. Additive effects of two SNPs in the prophenoloxidase‐activating proteinase‐3 (ProPO3) gene, related to melanization, showed elevated growth rate in high temperature but reduced growth rate in moderate temperature. The allelic effects of the vitellin‐degrading protease precursor gene on development time were opposite in the two sexes, one genotype being associated with long development time and heavy larvae in females but short development time in males. Sexually antagonistic selection is here evident in spite of sexual size dimorphism.  相似文献   

8.
Biologists who study the timing of development in insects have focused on variation in duration of pre‐adult stages almost without exception. However, development is not complete until adults are not only morphologically mature, but also reproductively mature. Here we describe an experiment in the fruit fly, Drosophila simulans, in which we used artificial selection to create lines with shortened and lengthened duration from eclosion to the age when the first egg was laid. We found significant genetic variation for this trait. The response to selection on age when the first egg was laid was due to variation among females. Delayed adult development was correlated with rapid pre‐adult development and longer life span in females. The approach we use here resolves some difficulties with previous approaches used to study the genetics of senescence, and provides an opportunity to study the hitherto unexamined predictions derived from classic models for the evolution of senescence.  相似文献   

9.
Kinnison MT  Quinn TP  Unwin MJ 《Heredity》2011,106(3):448-459
Size at age and age at maturity are important life history traits, affecting individual fitness and population demography. In salmon and other organisms, size and growth rate are commonly considered cues for maturation and thus age at maturity may or may not evolve independently of these features. Recent concerns surrounding the potential phenotypic and demographic responses of populations facing anthropogenic disturbances, such as climate change and harvest, place a premium on understanding the evolutionary genetic basis for evolution in size at age and age at maturity. In this study, we present the findings from a set of common-garden rearing experiments that empirically assess the heritable basis of phenotypic divergence in size at age and age at maturity in Chinook salmon (Oncorhynchus tshawytscha) populations introduced to New Zealand. We found consistent evidence of heritable differences among populations in both size at age and age at maturity, often corresponding to patterns observed in the wild. Populations diverged in size and growth profiles, even when accounting for eventual age at maturation. By contrast, most, but not all, cases of divergence in age at maturity were driven by the differences in size or growth rate rather than differences in the threshold relationship linking growth rate and probability of maturation. These findings help us understand how life histories may evolve through trait interactions in populations exposed to natural and anthropogenic disturbances, and how we might best detect such evolution.  相似文献   

10.
Quantitative genetic theory indicates that genetic covariance patterns among life history characters should have played an important role as genetic constraint in life history evolution. Highly positve (and negative) genetic correlations between larval development time (or larval growth rate) and adult size characters were detected by means of sib analysis for the small white butterfly Pieris rapae crucivora. The genetic associations suggested that evolution of developmental characteristics and adult phenotypic traits were constrained by pleiotropy. The positive genetic correlations between development time and adult body size may be compatible with the trade-off between them, but the negative genetic correlations between larval growth rate and adult body size are not predicted from theories of optimal energy allocation. That phenotypic correlations drastically differed from the genetic correlations indicates limitations of evolutionary inferences based only on phenotypic variation.  相似文献   

11.
Drosophila melanogaster populations subjected to extreme larval crowding (CU lines) in our laboratory have evolved higher larval feeding rates than their corresponding controls (UU lines). It has been suggested that this genetically based behavior may involve an energetic cost, which precludes natural selection in a density-regulated population to simultaneously maximize food acquisition and food conversion into biomass. If true, this stands against some basic predictions of the general theory of density-dependent natural selection. Here we investigate the evolutionary consequences of density-dependent natural selection on growth rate and body size in D. melanogaster. The CU populations showed a higher growth rate during the postcritical period of larval life than UU populations, but the sustained differences in weight did not translate into the adult stage. The simplest explanation for these findings (that natural selection in a crowded larval environment favors a faster food acquisition for the individual to attain the same final body size in a shorter period of time) was tested and rejected by looking at the larva-to-adult development times. Larvae of CU populations starved for different periods of time develop into comparatively smaller adults, suggesting that food seeking behavior in a food depleted environment carries a higher cost to these larvae than to their UU counterparts. The results have important implications for understanding the evolution of body size in natural populations of Drosophila, and stand against some widespread beliefs that body size may represent a compromise between the conflicting effects of genetic variation in larval and adult performance.  相似文献   

12.
Survivorship and fecundity in the forest herb, Viola sororia, are size-dependent. The basis of size variation among individuals of Viola sororia was investigated with a uniform environment experiment. Plants collected from natural populations were vegetatively reproduced and grown under two light regimes in a greenhouse. Analysis of quantitative variation showed: 1) significant differences between light treatments for characters related to plant shape and relative growth rate; 2) significant among-genet variation for plant size, plant shape and relative growth rate but none for physiological characters; and 3) a size threshold for cleistogamous seed production and rhizome production. Heritability estimates for the characters associated with plant size and shape ranged from 0.09 to 0.39, indicating significant genetic determination for these traits. In addition, among-genet differences in relative growth rate were substantial. The results of this study suggest that the size variation found in natural populations is not solely a function of environmental heterogeneity but is significantly influenced by the genotypes composing the population.  相似文献   

13.
There is a long‐standing debate on whether the occurrence of the iconic high‐Andes Polylepis woodlands as small and isolated fragments is of natural or anthropogenic origin. We make inferences regarding the fragmentation history based on both a new population genetic study on P. besseri and a synthesis of available studies on the population genetics of Polylepis woodlands. We infer the timing of the main woodland fragmentation event by analysing: (1) the remaining levels of population genetic diversity and the relation to population size; (2) among‐population genetic differentiation; and (3) the difference in genetic diversity between the offspring and adult generation. We retrieved seven publications on the population genetics of five Polylepis spp. We did not find a relationship between population size and genetic diversity, and genetic differentiation was low compared with that reported for similar plant species. These findings do not support a history of long‐term fragmentation. The offspring showed a loss of genetic diversity and increasing differentiation compared with adults, suggesting that the main habitat fragmentation event is of relatively recent origin. For P. besseri, no significant differences were found between the adult and offspring genetic variation. We discuss the conservation and restoration consequences for this important high‐Andean genus. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 544–554.  相似文献   

14.
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare Ne in short‐lived, density‐dependent animal populations with different mating systems. We study the impact of a fluctuating, density‐dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual Ne/N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male‐biased, density‐dependent sex ratio reduces the rate of genetic drift compared to an equal, density‐independent sex ratio, but a stochastic change towards male bias reduces the Ne/N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes.  相似文献   

15.
Life-history theory predicts some cost to be associated with short development time, the most frequently assumed being small adult size. Alternatively, insects may increase developmental rates and grow fast to a larger size. Seasonal environments should select for phenotypic plasticity in growth and development, based on the need to complete development up to the diapausing stage before the onset of unfavourable season. Nevertheless, there must be some limit beyond which a compensation for a shorter development cannot be achieved. By comparing three geographically isolated populations of Lycaena hippothoe in common environments we show that in the Hungarian population development time seems to be traded off against size at maturity. This population is the only bivoltine one within this principally monovoltine species. Thus, realization of an additional generation per year, achieved through largely reduced development times, appears to carry the cost of substantially lower adult weights compared with other populations. In contrast, differences in development time in two monovoltine populations were not accompanied by a trade-off between development time and size. These results suggest that clear trade-offs are restricted to stressful situations, when compensation by an increase in growth rates is no longer feasible. We suggest the particularly short development time in the Hungarian population (facilitating a second generation), as well as the shorter development in an alpine (short vegetation period) compared with a western German population, to be adaptations to local climatic conditions. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 173–185.  相似文献   

16.
According to life‐history theory, longer development time may result in bigger adults. However, reaction norms describing age and size at maturity often follow an L‐shaped form. This relationship is attributable to the simple notion that slowly growing individuals may not lengthen their development excessively after the maturation decision has been made, for example, when development is time limited in seasonal environments. In arthropods, growth occurs within instars, and thus the optimal growth strategy might be mediated by the phenotypic adjustment of instar numbers. We studied the relationship between age and size at maturity of a lichen‐feeding moth, Eilema depressum (Esper) (Lepidoptera: Arctiidae: Lithosiinae), and the variability of instar numbers in relation to achieved adult body mass and time used for maturation. A positive relationship between age and size at maturity was found across developmental pathways and a negative one within the developmental pathways. Directly developing larvae had higher growth rates, attained smaller pupal mass, and passed fewer instars than larvae maturing after overwintering. Host quality did not affect whether larvae matured during the remaining or the next season. High variation in the number of instars together with variable growth rates indicates high plasticity in adaptation to varying environmental conditions. Our results also confirm previous results that instar number variability may be a key characteristic mediating age and size at maturity in insects.  相似文献   

17.
Population dynamics and resource use are often intricately connected via density‐dependent intraspecific competition. However, experimental studies of concurrent change in population and resource use dynamics are scarce. In particular, the impact of factors such as genetic diversity, which can affect both population dynamics and competition, remains unexplored. Using stable isotope analysis and periodic population censuses, we quantified both diet and population dynamics in wheat‐adapted Tribolium castaneum (flour beetle) populations provided with an additional novel resource (corn). Populations were initiated with different levels of genetic variation for traits relevant to population growth and resource use (e.g. fecundity and survival).We found that high population size decreased subsequent corn use, and high corn use in turn lowered population size. Surprisingly, we did not detect a significant effect of founding genetic variation on resource niche expansion, although genetic variation increased overall population size and stability. In contrast, dietary niche expansion decreased both population size and stability. Finally, larval and adult niche dynamics were uncorrelated, suggesting that various life stages perceive or respond differentially to intraspecific competition and resource availability. Our experiments indicate that population performance in a novel habitat depends on stage‐specific interactions between resource use, standing genetic variation, and population size.  相似文献   

18.
Most studies of phenotypic selection do not estimate selection or fitness surfaces for multiple components of fitness within a unified statistical framework. This makes it difficult or impossible to assess how selection operates on traits through variation in multiple components of fitness. We describe a new generation of aster models that can evaluate phenotypic selection by accounting for timing of life‐history transitions and their effect on population growth rate, in addition to survival and reproductive output. We use this approach to estimate selection on body size and development time for a field population of the herbivorous insect, Manduca sexta (Lepidoptera: Sphingidae). Estimated fitness surfaces revealed strong and significant directional selection favoring both larger adult size (via effects on egg counts) and more rapid rates of early larval development (via effects on larval survival). Incorporating the timing of reproduction and its influence on population growth rate into the analysis resulted in larger values for size in early larval development at which fitness is maximized, and weaker selection on size in early larval development. These results illustrate how the interplay of different components of fitness can influence selection on size and development time. This integrated modeling framework can be readily applied to studies of phenotypic selection via multiple fitness components in other systems.  相似文献   

19.
In ectotherms, temperature induces similar developmental and evolutionary responses in body size, with larger individuals occurring or evolving in low temperature environments. Based on the occasional occurrence of opposite size clines, showing a decline in body size with increasing latitude, an interaction between generation time and growing season length was suggested to account for the patterns found. Accordingly, multivoltine species with short generation times should gain high compound interest benefits from reproducing early at high temperatures, indicating potential for extra generations, even at the expense of being smaller. This should not apply for obligatorily monovoltine populations. We explicitly test the prediction that monovoltine populations (no compound interest) should be selected for large body size to maximise adult fitness, and therefore size at maturity should respond only weakly to temperature. In two monovoltine populations (an Alpine and a Western German one) of the butterfly Lycaena hippothoe, increasing temperatures had no significant effect on pupal weight and caused a slight decrease in adult weight only. In contrast, two closely related, yet potentially multivoltine Lycaena populations showed a greater weight loss at increasing temperature (in protandrous males, but not in females) and smaller adult sizes throughout. Thus, the results do support our predictions indicating that the compound interest hypothesis may yield causal explanations for the relationship between temperature and insect size at maturity. At all temperatures, the alpine population had higher growth rates and concomitantly shorter development times (not accompanied by a reduction in size) than the other, presumably indicating local adaptations to different climates.  相似文献   

20.
Couch's spadefoot toads (Scaphiopus couchii) breed in ponds of uncertain duration. In natural ponds, larvae exhibit considerable variation in growth, size at metamorphosis, and development time. Phenotypic differences in development time may dramatically affect survivorship in these ponds. A quantitative-genetic analysis of larval traits was undertaken to determine the potential evolutionary relevance of phenotypic variation observed in the field. Additive genetic variance was detected for development time, but not for any other trait. Some variation in early growth was attributed to maternal effects; maternal effects, however, were not apparent for size at metamorphosis or development time. Nonadditive genetic effects were not statistically significant for any trait, but the nonsignificance of these effects must be interpreted cautiously, as the sample of females was relatively small and the mating design used is not very effective for detecting interactions. Genetic variation in development time in this population is most likely maintained by variability in the direction of selection as a consequence of variation in pond duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号